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Abstract Sepsis is a significant cause of death worldwide.
Although the prevailing theory of the sepsis syndrome has
been that of a condition of uncontrolled inflammation in
response to infection, sepsis is increasingly being recog-
nized as an immunosuppressive state. The immune modu-
lations of sepsis result in altered innate and adaptive
immune responses, thereby rendering the septic host
susceptible to secondary infections. In this review, we
present an overview of the clinical and experimental
evidence for sepsis-induced immunosuppression and out-
line the mechanisms that underlie this phenotype. With an
improved understanding of how host immune states may be
altered during sepsis, better immunomodulatory therapies
may be developed to address the immune derangements
observed in patients with sepsis.

Keywords Sepsis . Immunosuppression . Cytokines

Introduction

Sepsis remains a major cause of morbidity and mortality in
the United States and worldwide, despite advances in
supportive care [1, 2]. Historically, sepsis was defined as
the presence of pathogenic microorganisms or their toxins

in the bloodstream and the term was used interchangeably
with bacteremia [3]. More recently, the prevailing theory of
sepsis has been that of a condition of uncontrolled
inflammation in response to infection. In 1972, Lewis
Thomas described sepsis in the following way: “It is our
response to [the microorganism’s] presence that makes the
disease. Our arsenals for fighting off bacteria are so
powerful...that we are more in danger from them than the
invaders.” [4]. In 1992, the American College of Chest
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Physicians and Society of Critical Care Medicine consensus
conference officially defined sepsis as the systemic inflam-
matory response syndrome (SIRS) occurring as a result of
infection [5]. While certain cases of sepsis, such as
meningococcemia, are accurately characterized in this way
[6], subsequent clinical and immunologic discoveries have
challenged this view. In clinical trials, attempts at neutral-
izing inflammation and inflammatory mediators during
sepsis, using agents such as high-dose corticosteroids,
tumor necrosis factor (TNF) antagonists, and interleukin-1
(IL-1) pathway inhibitors, have been largely unsuccessful
in terms of improving survival or other clinical outcomes
[7–9].

With a better understanding of the complexity of sepsis
pathophysiology, it is now appreciated that anti-inflammatory
immunologic events develop concurrently or subsequently
during the time-course of sepsis (Fig. 1). Although anti-
inflammatory responses likely are essential to the restora-
tion of immune homeostasis following an inflammatory
stimulus such as infection, this anti-inflammatory state can
result in immunosuppression and subsequent death because
of the inability to fight secondary infections in the post-
septic period [10]. This has been demonstrated in animal
models of sepsis using animals rendered septic by cecal
ligation and puncture (CLP)-induced peritonitis. As early as
24 h following CLP, septic animals had marked impairment
in their ability to clear secondary intrapulmonary challenge
with Pseudomonas aeruginosa, as compared to non-septic
controls. Even 2 weeks after CLP, enhanced susceptibility
to Aspergillus infection was observed in mice with severe
sepsis [11]. The immunosuppressive properties of the septic
immune response are becoming increasingly relevant with
continued improvements in critical care, as many deaths

due to sepsis do not occur acutely but rather occur after a
protracted hospital course [12, 13]. Therefore, therapies
aimed at blocking pro-inflammatory mediators may be
detrimental to septic hosts who are in a relatively immuno-
suppressed state.

Terms used to describe the anti-inflammatory events
occurring during sepsis include “sepsis-induced immuno-
suppression,” “immunoparalysis,” and the “compensatory
anti-inflammatory response syndrome” (CARS) [10, 13].
These terms reflect the presence of anergy, monocyte
deactivation, and a potential increased risk of subsequent
secondary infections among patients with sepsis [14].
Several main molecular and cellular mechanisms underly-
ing the development of sepsis-induced immunosuppression
(Figs. 1 and 2) have emerged from studies of septic patients
and experimental animals, which will be discussed in detail
in this review.

Mechanisms of sepsis-induced immunosuppression

Anti-inflammatory cytokines

Many studies have examined cytokine levels during sepsis
both in patients and experimental animals. Indeed, much of
our understanding about sepsis pathophysiology is derived
from analyzing patterns of cytokine expression, particularly
over time. Experimental animal models of sepsis using
systemic endotoxemia or CLP-induced septic peritonitis
have demonstrated markedly increased levels of inflamma-
tory cytokines such as IL-1, IL-6, and TNF-α [15, 16]. In
contrast to the systemic endotoxemia model where animals
develop a rapid spike and fall in inflammatory cytokine

Fig. 1 Dynamics of the septic
inflammatory response. This
graphic illustrates the general
framework for the immunologic
response to sepsis over time.
Upon a significant physiologic
insult, such as overwhelming
infection or traumatic injury,
inflammatory components of the
immune system are activated. At
the same time, the body initiates a
counteractive anti-inflammatory
response presumably to restore
immunologic homeostasis. After
the initial septic period, however,
anti-inflammatory components
appear to predominate,
resulting in a state of relative
immunosuppression
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levels, mice that have undergone CLP initially develop con-
current elevations in circulating pro- and anti-inflammatory
cytokines, but later on, acquire a predominantly anti-
inflammatory profile [17, 18]. Similarly, in human patients
with sepsis, a systemic elevation in pro-inflammatory
cytokines is neither consistently nor persistently observed.
On the other hand, anti-inflammatory cytokines, including
IL-4, IL-10, IL-13, IL-1 receptor antagonist (IL-1ra), and
transforming growth factor-beta (TGF-β) [14] are more
consistently detected and typically elevated to a higher
degree and for a longer duration of time [19].

These anti-inflammatory cytokines have the ability to
inhibit the synthesis of IL-1, TNF-α, and other major pro-
inflammatory cytokines such as IL-12 [20]. Of the anti-
inflammatory cytokines, IL-10 has been the most studied
and acts as a potent inhibitor of pro-inflammatory cytokine
production by mononuclear cells. It also exerts a wide
range of anti-inflammatory effects including inhibition of
cell surface expression of class II major histocompatibility
complex (MHC) expression by monocytes, downregulation
of TNF receptors, inhibition of macrophage bactericidal
activity, and inhibition of the crucial pro-inflammatory
transcription factor, nuclear factor κB (NF-κB), after
endotoxin stimulation [19, 20]. IL-10 has been found in
multiple studies to be elevated in sepsis, with the degree of
elevation correlating with fatal outcomes [21–23]. Levels
of IL-10 remain higher in non-survivors of sepsis until
15 days after the onset of septic shock [22] and the ratio of
IL-10 to TNF-α is significantly higher in patients who do
not survive sepsis [21–23]. Furthermore, experimental
animals rendered septic by CLP were significantly less
susceptible to secondary pulmonary infection with P.
aeruginosa when treated with IL-10 neutralizing anti-
bodies [24].

Further support for the detrimental role of an anti-
inflammatory response in sepsis has come from studies
examining the role of caspases, a family of cysteinyl
aspartate proteases involved in apoptosis and inflammatory
cytokine processing. Several important recent studies
performed by Saleh et al. have focused on the role of the
anti-inflammatory caspase, caspase-12. They found that
individuals who synthesized the long-form of caspase-12
were hyporesponsive to endotoxin and had a higher
frequency of sepsis [25]. Further mechanistic basis for this
observation was provided by a subsequent study showing
that the targeted disruption of the caspase-12 gene in mice
rendered the animals resistant to peritonitis and septic shock
[26]. Splenocytes from caspase-12−/− animals elaborated
higher levels of inflammatory cytokines including IL-1β
and interferon-gamma (IFN-γ) following exposure to
microbial ligands. Administration of neutralizing antibodies
to IFN-γ receptors ablated the survival advantage that
occurred in the caspase-12 deficient mice [26]. Collectively,
these studies highlight how an imbalance towards an anti-
inflammatory state is detrimental in host defense against
sepsis.

Monocyte deactivation

During infection, monocytes are one of the primary
effectors of innate immunity. Monocytes and macrophages
ingest microbes and are a source of inflammatory media-
tors, which in turn, activate and recruit other innate immune
cells. They can also exert direct antimicrobial effects via
bactericidal activity and activate adaptive immune
responses by serving as antigen-presenting cells [27].

Monocytes from patients with sepsis lose their ability to
mount an inflammatory response after stimulation by

Fig. 2 Sepsis-induced altera-
tions in immune cell function.
In septic patients, multiple
aspects of leukocyte function are
disrupted, leading to suscepti-
bility to secondary infections
among survivors of sepsis
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bacterial products and instead increase their production of
anti-inflammatory mediators such as IL-10 and IL-1ra [13,
28, 29]. In animal models of experimental sepsis, alveolar
macrophages isolated as early as 24 h following CLP had
decreased expression of TNF, IL-12, and other inflamma-
tory cytokines in response to ex vivo stimulation by
lipopolysaccharide (LPS). Peritoneal macrophages isolated
from mice post-CLP were similarly hyporesponsive [30].
The hyporesponsiveness of macrophages from septic hosts
to ex vivo stimulation with LPS has drawn many analogies
to endotoxin tolerance, which will be discussed later in this
review.

Another major characteristic of monocytes from sepsis is
the decreased surface expression of human leukocyte
antigen-DR (HLA-DR) [31, 32]. Low levels of HLA-DR
expression are correlated with loss of monocyte functions
such as the ability to produce pro-inflammatory cytokines
and induce antigen-specific T cell responses [13]. This
decrease in surface expression of MHC II molecules among
septic and other critically ill patients has been well
described in the literature. In the majority of these studies,
low HLA-DR expression has been associated with poor
outcomes [33]. In a prospective study of 93 patients with
septic shock, persistently low monocyte HLA-DR values,
defined as <30%, at days 3–4 after ICU admission were
independently associated with mortality and served as a
better predictor of mortality than organ dysfunction scores
such as the Sequential Organ Failure Assessment (SOFA)
score [34]. Similarly, persistently low HLA-DR expression
in patients 4–10 days after severe burn injury predicted the
development of secondary septic shock and death [35]. In
sepsis survivors, a progressive elevation of HLA-DR
expression has been shown in the first 2 weeks following
shock, suggesting ongoing recovery of immunologic
functions [22].

The clinical utility of identifying patients with decreased
HLA-DR expression is limited by several unresolved
issues. First, it remains uncertain whether decreased MHC
class II expression actually leads to or merely is associated
with sepsis-induced immunosuppression. Second, the benefit
of treating septic patients with inflammatory cytokines—
thereby enhancing HLA-DR levels—in large randomized
clinical trials has not been demonstrated. Nonetheless,
persistently low HLA-DR values have emerged as a
potentially useful marker in identifying those patients with
persistent immunoparalysis and may provide prognostic
information. Ongoing studies are necessary to determine
whether HLA-DR levels can be measured accurately and
reproducibly in different cohorts of septic and critically ill
patients or healthy controls.

Attempts have been made to restore macrophage
function by treating with inflammatory cytokines. In one
study, the transient transgenic expression of TNF-α in the

lungs of septic animals restored multiple aspects of alveolar
macrophage function, including phagocytic function, which
resulted in an enhanced ability to clear secondary bacterial
lung infection [36]. Two small studies have evaluated the
use of IFN-γ in patients with sepsis and low monocytic
HLA-DR expression [37, 38]. Treatment with IFN-γ
increased monocytic HLA-DR expression and recovered
their capacity to produce TNF-α and IL-6 [37, 38]. Eight
out of nine patients in one study subsequently recovered
from sepsis and also significantly improved their multiple
organ dysfunction scores [37]. Finally, granulocyte macro-
phage-colony stimulating factor (GM-CSF) is a cytokine
that increases HLA-DR expression on monocytes leading to
increased pro-inflammatory cytokine production [39].
Down-modulation of the GM-CSF receptor on septic
monocytes has recently been demonstrated and could
partially explain the monocyte deactivation linked to sepsis
[40]. In a study of nine patients with severe sepsis and
associated low HLA-DR expression, administering three
days of GM-CSF significantly increased HLA-DR expres-
sion as well as the ex vivo production of TNF-α after
endotoxin stimulation [41]. It has also been shown to
improve gas exchange in severe sepsis with respiratory
failure [42] and improve mortality in the setting of
neutropenic neonatal sepsis without any untoward side
effects [41].

The loss and dysfunction of dendritic cells

Dendritic cells (DCs) play an essential role in adaptive
immunity and immune activation as antigen-presenting
cells. In addition, they are an important source of cytokines
upon microbial challenge, thereby polarizing the subse-
quent T cell response to type 1, type 2, or regulatory
phenotype. Human autopsy studies and studies of experi-
mental animals undergoing CLP have shown a profound
loss of splenic DCs, which leads to significant compromise
of B and T cell function [43–45]. In animal studies, a
similar loss of DCs has also been shown in the lymph nodes
and lungs [46, 47]. There is evidence of increased apoptosis
as the mechanism for this loss, but a detrimental influence
on DC development may also play a role [46, 47].

In addition to depletion of DCs, sepsis also impairs the
ability of DCs to initiate type 1 cytokine responses. Splenic
and lung DCs isolated from mice subjected to CLP are
skewed toward a TH2-type cytokine profile with enhanced
IL-10 synthesis and reduced IL-12 synthesis following ex
vivo challenge with microbial components [47–49]. In the
lung, this phenotype persists even after restoration of the
DC cell population in the post-septic period. In mice
undergoing CLP, intrapulmonary instillation of DCs from
non-septic mice was able to restore the antifungal host
response in the lung and prevent fatal Aspergillus infection
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[48]. Similar impairment of DC function has been described
following other forms of significant physiologic insults,
such as trauma/hemorrhagic shock [50].

Impairment of neutrophils

Neutrophils are a critical cellular component of innate
immunity against a wide variety of pathogens, including
bacteria and fungi. Multiple aspects of neutrophil function
are dysregulated during sepsis. While sepsis can cause
elevated, normal, or reduced neutrophil counts, neutropenia
has been linked to poorer outcomes in sepsis. Circulating
neutrophils in patients with sepsis have been found to
express increased levels of activation markers, including
CD11b, ICAM-1, MPO, and CD66b on their cell surfaces
[51]. Despite the increased expression of adhesion mole-
cules, neutrophilic adherence and migration is impaired in
sepsis [51–54]. Furthermore, expression of neutrophil
activation markers is significantly lower in patients who
do not survive sepsis [51]. In the lung, significant down-
regulation of the CXCR2 chemokine receptor also occurs
on septic neutrophils leading to decreased neutrophil
recruitment and impairment of bacterial clearance from
the lung [55–57]. During sepsis, however, the beneficial
effects of neutrophils (i.e., antimicrobial functions) must be
weighed against the destructive potential of activated
neutrophils, which have been shown to mediate lung injury
and multiple organ failure [58]. A trial investigating the use
of recombinant G-CSF, which augments neutrophil func-
tion and number, in septic patients was largely unsuccessful
in terms of improving overall clinical outcomes [59].

Apoptosis and lymphocyte dysfunction

Multiple studies by Hotchkiss and Karl have demonstrated
that apoptosis plays an important role in mediating sepsis-
induced immunosuppression. In addition to contributing to
the loss of DCs, apoptosis is the primary mechanism of
lymphocyte cell death in the setting of sepsis [14]. In
autopsy studies, the spleen and colon were the two organs
exhibiting the greatest degree of cell death with apoptosis
as the major mechanism of lymphocyte loss [60, 61].
Specifically, there was a profound depletion of B cells and
CD4+ T cells in the spleens of septic patients [62] which
was not observed in critically ill non-septic patients [60].
Because lymphocytes produce pro-inflammatory cytokines,
activate macrophages, and produce antibodies, the loss of
lymphocytes in sepsis may contribute to sepsis-induced
immunosuppression [60, 61]. Intensive care unit patients
who develop a decreased lymphocyte count for >3 days are
at a greatly increased risk of nosocomial sepsis [63]. In
experimental animals undergoing CLP, inhibition of apo-
ptosis by using caspase inhibitors or performing studies in

caspase-3 knockout mice resulted in improved survival [61,
64]. Apoptotic T lymphocyte loss in sepsis is believed to
contribute to the development of anergy, which is defined
as a lack of response to skin testing with antigens derived
from microbes to which previous exposure would be
expected. This state of impaired delayed hypersensitivity
is commonly present in sepsis and reflects monocyte
defects in antigen processing and defective T cell cytokine
secretion in response to specific antigens [14, 65]. Anergy
has been identified as a marker of sepsis and mortality in
surgical patients. An early study by Meakins et al. reported
a mortality of 5% in surgical patients who improved their
response to skin testing compared to 74% mortality in
patients whose skin tests failed to improve [66].

There is also abundant evidence that apoptotic cells
themselves modulate the inflammatory response in sepsis.
The presence of apoptotic cells during monocyte activation
has been shown to increase their secretion of IL-10 and
TGF-β while decreasing the secretion of TNF-α, IL-1, and
IL-12 [67, 68]. This shift of pro-inflammatory to anti-
inflammatory cytokines in response to endotoxin further
impairs the host response to pathogens. In adoptive transfer
experiments, transfer of apoptotic splenocytes to animals
undergoing CLP resulted in decreased survival compared to
untreated animals. Interestingly, in the same studies,
transfer of necrotic cells was associated with higher levels
of IFN-γ production by splenocytes and improved survival
following CLP [69].

Toll-like receptors and endotoxin tolerance

Toll-like receptors (TLRs) are a critical family of pattern
recognition receptors that recognize a variety of microbial
components, referred to as pathogen-associated molecular
patterns (PAMPs). PAMPs include LPS, double-stranded
RNA, flagellin, and microbial DNA. Toll-like receptors are
expressed on a variety of cell types, including leukocytes,
endothelial cells, and fibroblasts. Upon TLR ligation,
intracellular signaling kinases are activated, ultimately lead-
ing to activation of multiple transcription factors, particularly
NF-κB, that lead to inflammatory gene expression.

Polymorphisms in the TLRs and signaling intermediates
have been linked to increased risks of infection. Mutations in
TLR4 and CD14, which form the main receptor complex for
LPS, have been examined regarding their role in mediating
endotoxin responsiveness. In mice, a TLR4 mutation confers
resistance to endotoxin, but also leads to increased suscepti-
bility to gram-negative infections [70]. In humans, single
nucleotide polymorphisms (SNPs) identified in TLR4 and
CD14 have been linked to an endotoxin hyporesponsive
phenotype [71]. Specifically, the Asp299Gly and the
Thr399Ile cosegregating SNPs occurring in the extracellular
portion of TLR4 have been identified as occurring at a higher
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frequency among individuals displaying decreased airway
responsiveness to inhaled LPS [71]. These SNPs are present
in approximately 10% of white individuals and this popula-
tion may be more susceptible to a systemic inflammatory
response initiated or exacerbated by endotoxin [72]. It is
interesting to note that carriers of these SNPs appear to have
a higher incidence of gram-negative infections (post-surgical
patients) [73] and higher rates of gram-negative septic shock
(medical ICU patients) [74] Similarly a polymorphism has
been identified for TLR2, the receptor for many gram-
positive organisms and fungi, and this polymorphism may be
associated with staphylococcal infections [75]. Thus, genetic
factors may influence a host’s immune state during sepsis and
these factors are discussed further below.

Endotoxin tolerance is the phenomenon whereby a cell
develops reduced endotoxin responsiveness following
repeated exposure to LPS [76]. Pro-inflammatory cytokine
secretion, especially TNF-α, is markedly diminished in
endotoxin-tolerant animals and humans [76]. The phenom-
enon of tolerance has also been described with other TLR
ligands, including lipoteichoic acid and flagellin [77–79].
Mechanisms underlying endotoxin tolerance include down-
regulation of TLR-4 (LPS receptor) expression, inhibition
of downstream TLR signaling intermediates such as
Interleukin-1 Receptor Kinase (IRAK)-1, and alterations
in the NF-κB subunits [80–85]. These mechanisms may
serve as an important means whereby the host limits the
inflammatory response to an ongoing immune stimulus,
thereby protecting itself from further injury.

Striking similarities have been observed between sepsis-
induced macrophage dysfunction and endotoxin-tolerized
macrophages. Both endotoxin-tolerant cells and monocytes
isolated from septic patients have a predominance of p50
homodimers, which is the functionally inactive form of NF-
κB [86, 87]. Interleukin-1 receptor-associated kinase-M
(IRAK-M) has recently been identified as an inhibitor of
TLR signaling and is implicated in mediating both peptido-
glycan (TLR2 ligand) and LPS tolerance [80, 82]. It is
interesting to note that in macrophages and monocytes
isolated from patients and experimental animals with sepsis,
IRAK-M expression is upregulated upon ex vivo LPS
stimulation [88, 89]. Furthermore, IRAK-M knockout mice
are relatively resistant to the development of sepsis-induced
immunosuppression in terms of their enhanced ability to
clear a secondary lung bacterial challenge following CLP
[88]. These studies suggest that common molecular mecha-
nisms may underlie the hyporesponsiveness to LPS exhibited
by monocytes from patients with sepsis and endotoxin-
tolerant cells.

The clinical significance of hyporesponsiveness to LPS
in sepsis has been examined. Lower levels of endotoxin-
stimulated TNF-α production are associated with poorer
outcomes in ICU patients [90, 91]. Monocytes isolated

from patients who went on to survive their septic episode
were found to regain LPS responsiveness whereas normal
reactivity was never restored in non-survivors [29]. In
surgical intensive care units, low levels of TNF-α and IL-6
following LPS stimulation correlated with longer ICU
length of stay, more ventilator days, higher incidence of
infection, and a higher white blood cell count [91]. Thus,
the phenomenon of endotoxin/TLR tolerance is thought to
play an important role in the susceptibility to reinfection in
patients with severe sepsis [92].

Endotoxin tolerance can be prevented by the administra-
tion of IFN-γ or GM-CSF [93, 94]. Interferon-γ augments
the mRNA and surface expression of TLR4 and counteracts
the LPS-induced downregulation of TLR4. Human mono-
cytes primed with IFN-γ show increased responsiveness to
LPS by increasing NF-κB binding activity as well as the
secretion of TNF-α [94]. When LPS-tolerized human
monocytes are pretreated with GM-CSF or IFN-γ, they do
not exhibit endotoxin tolerance and are able to activate
NF-κB and secrete TNF-α [93]. This phenomenon appears
to be independent of the modulation of TLR2 or TLR4
expression.

Other genetic factors

In addition to the TLR polymorphisms discussed above, a
variety of known and unknown genetic factors play an
important role in any individual patient’s susceptibility to
sepsis. Given the immense literature in this field, a
comprehensive examination of this topic is beyond the
scope of this review, and we direct the reader towards
two excellent recent reviews [95, 96]. Here, we will
present a brief overview and some observations. Of all the
cytokines, polymorphisms in TNF, IL-6, and IL-10 have
been most extensively studied as they relate to sepsis risk.
An inherited risk for death from meningococcemia has
been shown in identical twins and families with a
phenotype of decreased pro-inflammatory (TNF) or in-
creased anti-inflammatory (IL-10) response [97]. The
TNF2 allele, which correlates with enhanced TNF produc-
tion, is more common in patients with septic shock than
healthy controls and, in those with septic shock, it is more
common in non-survivors [98]. Among coagulation
pathway-related genes, polymorphisms in the protein C
gene have affected survival and organ dysfunction scores
in a study of Caucasian patients [98]. Following burn
injury, polymorphisms within TNF-α, TLR4, IL-6, and
CD14 have been associated with an increased risk for
severe sepsis [99]. Gender itself appears to affect the
response to infection as shown by a study of experimental
human endotoxemia in which healthy females showed a
more pro-inflammatory response compared to healthy male
subjects [100].
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Hyporesponsiveness to endotoxin per se, however, does
not necessarily translate into a predisposition to sepsis or
septic shock. For example, a polymorphism occurring in the
CD14 promoter region (C-159T) has been studied exten-
sively in various clinical populations with sepsis. Mono-
cytes isolated from TT homozygous patients have been
shown to produce more sCD14, IL-6, and TNF-α than C/T
heterozygotes or CC homozygotes, thereby conferring a
pro-inflammatory state systemically [101]. Studies of septic
patient populations, however, have demonstrated inconsis-
tent results in terms of whether possessing a particular allele
(C or T) or genotype (CC vs. C/T vs. TT) is associated with
increased rates of sepsis or poorer outcomes following
onset of sepsis. Two German studies found no association
between genotype and the development of sepsis, whereas
one American study of burn victims demonstrated that the
C allele was a risk factor for the development of sepsis [99,
102]. Conversely, in a French study of 90 Caucasian
patients with septic shock, the TT genotype was found at
higher frequency in patients with septic shock and non-
survivors of septic shock, as compared to healthy controls
or survivors of sepsis [103]. Given our current understand-
ing that sepsis is clearly not a homogenous immune state,
these studies highlight the inherent complexity of establish-
ing causal associations between a host’s genetic predispo-
sition and the development/outcomes of sepsis.

Furthermore, given the multi-faceted aspects of sepsis-
induced immunosuppression, other factors may overwhelm
the phenotype of a particular genetic polymorphism. For
example, the TLR4 Asp299Gly/Thr399Ile SNP associated
with reduced responsiveness to inhaled endotoxin has been
examined in post-surgical patients. Carriers of this mutation
had similar rates of hyporesponsiveness following whole
blood stimulation by LPS as wildtype post-operative
patients [104]. This suggests that certain inflammatory
stimuli (in this case, major surgery) lead to a generalized
modulation of the endotoxin response, which ultimately
determines the host’s immune state more so than specific
genotype. It is interesting to note that patients predisposed
to produce a balanced anti-, pro-inflammatory response
appear to have the best chance for survival in sepsis [105].

Clinical significance

Currently, a widely held model of sepsis is that immuno-
logically, sepsis evolves from initial hyperinflammation
(SIRS), towards a period of relative homeostasis (mixed
anti-inflammatory response syndrome, or MARS), and,
finally, a state of immunosuppression (CARS). Unfortu-
nately, this orderly model is poorly supported by clinical or
in vivo evidence [17]. Studies using experimental animal
models of sepsis have suggested that the mechanisms of

death occurring early after the onset of sepsis differ from
those occurring at later timepoints. In one study, mice that
died early (i.e., within 4 days) following CLP-induced
septic peritonitis had elevated plasma IL-6, whereas
animals that died later had variable IL-6 levels and
hyporesponsive macrophages to inflammatory stimuli ex
vivo [18]. In another study examining late sepsis mortality
(days 6–28) in a murine model, the late prelethal inflam-
matory response varied considerably from a virtually non-
existent response to the presence of nearly all measured
pro- and anti-inflammatory cytokines [106]. This suggests
that the SIRS-to-CARS transition is not linear but rather
constantly fluctuating between hyper-responsiveness and
hyporesponsiveness in different hosts. In the clinical
setting, the immunologic state of a septic patient is further
modulated by a variety of internal and external factors,
including genetic makeup, comorbidities, medications with
immunomodulatory properties (e.g. steroids), and therapeu-
tic interventions (e.g. surgery, blood product transfusions,
etc.; Fig. 3) Therefore, similar to the murine model, rather
than undergoing a one-way transition from SIRS to CARS,
a septic patient may very well fluctuate back and forth
along this spectrum multiple times during their hospital
course.

Nonetheless, it has been recognized for many years that
survivors of sepsis have an increased risk of death for up to
5 years following the event, even when their underlying
medical comorbidities are accounted for [107]. This
increased risk of death correlates with the severity of the
initial sepsis [107]. Survivors of sepsis also have a high
rehospitalization rate of approximately 50% in the first year

Fig. 3 Temporal development of sepsis-induced fluctuations on
immune response. Experimental and clinical evidence demonstrate
that an orderly progression from pro-inflammatory/SIRS state to an
anti-inflammatory/CARS state does not occur following sepsis.
Particularly in the clinical setting, multiple other factors, including
those listed in the box, will tilt the balance towards one end of the
spectrum or the other. (SIRS, systemic inflammatory response
syndrome; MARS, mixed anti-inflammatory response syndrome;
CARS, compensatory anti-inflammatory response syndrome)
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after their septic episode [108]. It could be hypothesized
that this subsequent elevated risk of death and rehospital-
ization is secondary to a persistent state of immunosup-
pression and associated recurrent infections. Indeed, we
have observed in an ongoing study that patients who
survive sepsis have higher rates of infections during the
first year as compared to survivors of other forms of critical
illness (T. Wang, unpublished data). In the surgical
literature, it has been shown that the majority of life-
threatening complications that occur in surgical patients are
secondary to the failure to control infections, and the
phenomenon of immune paralysis has been well docu-
mented in this population after major surgery or trauma
[109–111]. Thus, developing therapies to enhance host
resistance against secondary infections will be an important
therapeutic strategy in patients with sepsis.

Potential therapeutic applications

From previous failed clinical trials targeting inflammation,
the therapeutic strategy for designing immunomodulatory
treatments has changed. For example, high-dose cortico-
steroids were initially thought to be beneficial in the
treatment of sepsis. Experimental data obtained from
endotoxin shock models supported the use of high-dose
steroids [112], before large clinical trials confirmed the lack
of benefit as well as the increased risk of secondary
infections [113, 114]. In retrospect, given our current
understanding that many patients with sepsis develop a
relative state of immunosuppression, high-dose glucocorti-
coids may serve to exacerbate the host’s susceptibility to
secondary infections. Therefore, anti-inflammatory thera-
pies that are beneficial in markedly inflammatory states
such as that induced by experimental endotoxemia may not
translate into clinical practice, where the immune status
during sepsis is considerably more heterogeneous. Subse-
quently, corticosteroids have been shown to be beneficial
only when used in replacement doses for those patients
with relative adrenal insufficiency in sepsis [115].

It has become evident that patients have different
immunologic profiles in sepsis and multiple factors,
including genetic polymorphisms, the virulence of the
organism, and timing, affect this profile. Thus, successful
treatment of sepsis requires a better understanding of each
individual patient’s immunologic status. An example of this
was a large placebo-controlled trial of the monoclonal anti-
TNF antibody afelimomab in which the investigators
attempted to stratify patients based on their IL-6 levels. In
this study, there was a small but significant reduction in
28-day all-cause mortality, which was more marked in the
population of patients with elevated IL-6 levels [116]. As
mentioned above, in small studies, IFN-γ and GM-CSF
have shown some promise in increasing monocyte HLA-

DR expression, preventing endotoxin tolerance and helping
patients clear sepsis. Another cytokine that may be targeted
in future therapeutic trials is IL-12, which has been
examined in preclinical models of burn injury-induced
immunosuppression. In these studies, administration of
IL-12 to burn-injured animals has been shown to improve
survival and enhance resistance against secondary sepsis
[117, 118].

In general, however, cytokine targets should be used
with caution given the complexity and ever-changing
nature of each patient’s immunologic profile. Simply stated,
if we are trying to replace something that is missing or
block something that is deleterious, constant monitoring
will have to be performed to assure that we do not shift the
anti-inflammatory cascade back into an inflammatory one
or vice-versa. It is also likely that “deleterious” cytokines
have beneficial effects that may not be realized until they
are neutralized.

Volk et al. utilized plasmapheresis in patients with
persistently low HLA-DR expression with the hopes of
eliminating anti-inflammatory cytokines and other inhibito-
ry factors. The 28-day survival rate of the plasmapheresis
group was significantly higher than the control group (48%
vs. 20%). None of the patients who failed to improve their
HLA-DR expression with plasmapheresis survived while
only one patient out of 18 died in the group that normalized
their HLA-DR expression with plasmapheresis [13]. A
large placebo-controlled multi-center trial is needed to
verify these promising results. There is also much hope
and potential with the elucidation of TLR signaling path-
ways as they represent a novel target for therapeutic agents
in sepsis. Depending on the phase of sepsis that a patient is
in, agonists or antagonists of TLR signaling pathways could
be utilized to boost or depress innate immunity respectively.

Recent interest has emerged in the use of statins prior to
or during sepsis. In a large observational population based
study, the use of statins in patients with atherosclerosis was
associated with a reduced risk of subsequent sepsis [119]. A
subsequent observational study did not confirm this finding
for community-acquired pneumonia suggesting the possible
presence of confounding factors and the need for formal
clinical trials [120]. Since statins do not target individual
inflammatory mediators but rather reduce the overall
magnitude of the systemic response, this class of medications
could provide a unique benefit in sepsis [121]. It remains to
be determined whether statins will be beneficial as pre-
treatment or treatment for sepsis in the clinical setting.

Conclusion

Sepsis can no longer be characterized as the systemic
inflammatory response syndrome associated with infection.
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Rather, patients with sepsis acquire heterogeneous immune
phenotypes with immunologic disequilibrium that vary not
only from individual to individual, but over time within a
given individual. An individual’s immune response to
sepsis can be modulated by a variety of factors—the nature
of the infectious stimulus itself, the host genetic makeup
(i.e., predisposition to inflammation), comorbidities, and
exogenous factors (e.g., medications, blood transfusions,
etc.). Thus, septic patients are not a homogenous group and
therein lies the difficulty that physicians and scientists have
faced in prior attempts to design effective therapies. Some
patients may need suppression of their inflammatory
response but other patients, especially those who survive
their initial bout of sepsis, may need therapies that enhance
their immune system and restore their ability to mount an
inflammatory response. As we identify more reliable
markers of sepsis-induced immunosuppression, such as
HLA-DR expression, and find effective ways of targeting
these markers, we move closer to being able to make a
significant impact on the high initial and subsequent
mortality in patients suffering from sepsis.
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