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Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There

is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism.

Studies within the last few decades provide growing evidence for a central role of amyloid β (Aβ) and tau, as well

as glial contributions to various molecular and cellular pathways in AD pathogenesis. Herein, we review recent

progress with respect to Aβ- and tau-associated mechanisms, and discuss glial dysfunction in AD with emphasis on

neuronal and glial receptors that mediate Aβ-induced toxicity. We also discuss other critical factors that may affect

AD pathogenesis, including genetics, aging, variables related to environment, lifestyle habits, and describe the

potential role of apolipoprotein E (APOE), viral and bacterial infection, sleep, and microbiota. Although we have

gained much towards understanding various aspects underlying this devastating neurodegenerative disorder,

greater commitment towards research in molecular mechanism, diagnostics and treatment will be needed in future

AD research.
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Introduction

As the most prominent form of dementia, Alzheimer’s

disease (AD) is becoming a dire global health concern

among the elderly [1]. According to current statistics

(2019), nearly 50 million people suffer from AD or AD-

related dementia worldwide [2]. Alzheimer’s and age-

related dementia are leading causes of disability in aged

individuals, where the risk of AD onset increases exponen-

tially with increased age. The prevalence of dementia is

predicted to increase by 68% in low- and middle-income

countries by 2050 [3]. Clinical symptoms of AD include

progressive memory decline, impaired executive function

and difficulties executing routine daily activity; early

symptoms of AD onset include changes in thinking or un-

conscious behavior, memory impairment with respect to

new information, and dysfunctional changes in language

and speech [4]. In addition, 20 to 30% of early AD patients

show significant depressive symptoms and mood changes

[5]. Patients in advanced stages of AD suffer from severe

memory loss, hallucinations, disorientation, and lack self-

sufficiency, where individuals eventually die due to re-

spiratory syndrome [6], infection or fasting [4, 7]. Primary

pathological hallmarks of AD include Aβ plaques, neuro-

fibrillary tangles (NFTs), gliosis, and neuronal loss [8–12],

accompanied by cerebrovascular amyloidosis, inflamma-

tion and major synaptic changes [13–15].
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Aβ and AD pathogenesis
Structure and function of APP

β-amyloid (Aβ) protein is the principal component of

AD-associated amyloid plaques, and is produced by pro-

tease cleavage of the type I transmembrane amyloid pre-

cursor protein (APP) [16, 17]. Anywhere from 8 to 11

APP isoforms can be generated from alternative tran-

scriptional splicing, where the 3 most common splice

isoforms include the 695 amino acid form (APP695) pre-

dominantly expressed in neurons, 751 and 770 amino

acid forms (APP751, APP770) expressed both in neurons

and glial cells [18]. Although APP has been extensively

investigated, the specific physiological function of APP

remains unclear. So far, several physiological roles of

APP have been proposed. The extracellular domain of

APP mediates cell-to-cell adhesion to support synaptic

connections. APP homodimers may function as cell-

surface G-protein coupled receptors which can bind Aβ,

and mediate neuronal signaling and neurotransmitter re-

lease through the activation of calcium channels [17,

19]. More specifically, APP can mediate hippocampal γ-

aminobutyric acid (GABA)-ergic inhibition via direct

protein-protein interactions with K+-Cl− cotransporter 2

(KCC2), thereby stabilizing KCC2 on cell membranes.

APP deficiency increases KCC2 degradation via tyrosine-

phosphorylation and ubiquitination, therefore, leading to

GABA reversal potential depolarization and impairment

during GABAA receptor-mediated inhibition [20]. Some

aspects of APP function are derived from APP cleavage

products such as the soluble amyloid precursor proteins

(sAPP) α and β, where sAPPα function has been well

characterized. sAPPα plays an important role in neur-

onal plasticity/survival and has been shown to be pro-

tective against Aβ-induced toxicity [21]. In addition,

sAPPα can regulate neural stem cell proliferation and

early developmental events in the central nervous system

(CNS) [22, 23]. It has been suggested that sAPPα can in-

hibit excitotoxicity-induced cyclin-dependent kinase 5

(CDK5) activation and participates in various aspects of

excitoprotection in response to various neuroprotective

reagents [24]. Interestingly, sAPPα expression is suffi-

cient to rescue abnormalities in APP-deficient mice [25],

suggesting that sAPPα may mediate most aspects of

APP function. In contrast, N-terminal fragment of APP

derived from sAPPβ may be toxic, where it can bind

death receptor 6 and mediate axonal pruning and neur-

onal cell death [26].

APP processing

APP processing is mainly dependent on three proteolytic

secretase enzymes: α-, β- and γ-secretase. Potential α-

secretases include ADAM9, 10 and 17. In brain, BACE1

is the major β-secretase, while γ-secretase is comprised

of at least four core components, including presenilins

(PS1 and PS2), niacstrin, PEN2, and APH1 [27]. Based

on its cleavage products, APP processing can be divided

into non-amyloidogenic and amyloidogenic processing

pathways. The non-amyloidogenic pathway involves α-

secretase-mediated cleavage of full-length APP, which

releases the sAPPα ectodomain outside the cell mem-

brane, retaining an 83 amino acid-C-terminal APP

fragment (α-CTF or C83) within the plasma membrane.

C83 can be further cleaved by γ-secretase which then re-

leases a small p3 fragment into the extracellular space,

where the remaining APP intracellular domain is

retained in the cytoplasm [27]. The amyloidogenic path-

way comprises sequential proteolytic cleavage of APP by

β-secretase and the γ-secretase complex. Following β-

cleavage, the sAPPβ ectodomain is released, and a 99

amino acid APP carboxy-terminal fragment (β-CTF or

C99) can be further cleaved by γ-secretase at various

sites. APP cleavage by γ-secretase can generate amyloid

peptides of varying chain lengths including Aβ37, 38, 39,

40, 42 and 43 [28, 29]. Among them, Aβ42 and Aβ40

comprise the two major Aβ species in the brain.

Although soluble Aβ40 is much more abundant than

soluble Aβ42, Aβ42 exhibits a higher propensity for ag-

gregation, due to hydrophobicity within its two terminal

residues. Indeed, Aβ42 is the main component of amyl-

oid plaques and is shown to be neurotoxic [30]. There-

fore, Aβ42 is thought to be a key player in initiating

plaque formation and AD pathogenesis [31]. In addition,

it has been shown that the levels of Aβ38, Aβ42 and the

Aβ42/Aβ38 ratio in cerebral spinal fluid (CSF) can be

used to distinguish AD from other dementias [32–34].

Notably, non-amyloidogenic and amyloidogenic path-

ways have been shown to compete, suggesting that both

enhancing non-amyloidogenic pathway and reducing

amyloidogenic pathway represent viable strategies to re-

duce Aβ generation.

In addition to the classical APP processing pathways

as the above described, other types of APP cleavage may

exist. A recent study shows that APP can be cleaved by

a potential membrane-bound matrix-metalloproteinase

η-secretase, such as MT5-MMP, which co-localizes with

amyloid plaques in AD brain [35]. η-secretase-mediated

APP cleavage releases a soluble APPη ectodomain and

retains a membrane bound η-CTF product [36]. In

addition, other soluble and lower molecular weight sol-

uble peptides (Aη) presumably derived from BACE1

(Aη-β) or ADAM10 (Aη-α)-dependent η-CTF cleavage,

or alternatively from η-secretase cleavage of sAPPα/β.

Inhibition of β-secretase activity and consequent en-

hancement of α-secretase cleavage leads to enhanced

production of a long Aη-α species, and decreased pro-

duction of a shorter Aη-β species. Importantly, both

BACE1 inhibitor and Aη-α can alter synaptic plasticity

as evident through impaired long-term potentiation
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(LTP) in the hippocampus, suggesting that BACE1 in-

hibition may manifest adverse effects despite reductions

in Aβ production [36].

Dysregulated APP processing may contribute to AD

pathogenesis by elevating Aβ production, and reducing

the Aβ40/42 ratio. Strongest evidence supporting a role

for Aβ40/42 alterations in AD was first derived from

characterization of early onset familial mutations identi-

fied in APP and presenilin (PSEN1, PS1 and PSEN2,

PS2) genes. Mutations in PSEN1 are especially promin-

ent in familial Alzheimer’s disease (FAD), where 221

mutations pathogenic mutations have been identified so

far. Thirty-two pathogenic mutations have been de-

scribed for APP, while 19 different pathogenic mutations

for PSEN2 have been reported [37]. Mutations in PS1

and PS2 primarily alter APP γ-cleavage, thereby result-

ing in a decreased Aβ40/42 ratio. Most FAD mutations

in APP are clustered in proximity to the γ-secretase

cleavage site, which may alter Aβ40/42 ratios [38]. How-

ever, the extensively characterized Swedish APP FAD

mutation (APPswe, K595N/M596L) resides adjacently to

the BACE1 cleavage site, thereby enhancing BACE-

mediated APP cleavage [39]. Not all APP mutations are

pathogenic, a rare APP protective mutation (A673T) has

been identified recently, which can reduce risk of AD

onset through the attenuation of Aβ production [40].

Alterations in the intracellular trafficking of APP, as

well as β- and γ-secretases can also impact APP process-

ing. β- and γ-secretases exhibit optimal APP proteolysis

in acidic compartments such as late endosomes. In-

creased distribution of APP, β- and γ-secretases in endo-

cytic pathways has been shown to promote Aβ

generation, whereas enhanced distribution of APP and

β-secretase at the cell surface can reduce Aβ production.

Recent studies have identified numerous proteins that

can regulate APP processing by modulating protein traf-

ficking. For example, low-density lipoprotein receptor-

related protein 1 (LRP1), an AD risk factor, is able to en-

hance APP endocytosis, leading to increased Aβ and

sAPPβ generation [41], whereas mutation of LRP1 in-

creases sAPPα secretion in vitro [42, 43]. Another AD

risk factor sortilin-related receptor containing LDLR A

repeats (SORLA) can bind and sequester APP in intra-

cellular compartments to reduce Aβ production [44].

Members of the sorting nexin (SNX) family which are

endosomal trafficking components have also been found

to regulate APP processing/Aβ production by modulat-

ing the trafficking of AD-associated processing compo-

nents. For instance, SNX6 can associate with BACE1

and reducing SNX6 levels results in elevated steady-state

BACE1 levels as well as increased endocytic retrograde

BACE1 transport, thus increasing Aβ generation [45].

SNX12 binds to BACE1, and downregulation of SNX12

increases BACE1 endocytosis and reduces steady-state

levels of BACE1 at the cell surface, thereby modulating

β-cleavage of APP and consequent Aβ production [46].

SNX27 regulates APP processing via two pathways:

SNX27 can limit Aβ production through the interaction

with PS1 which leads to destabilization of γ-secretase

complex; in addition, SNX27 can enhance non-

amyloidogenic APP processing through promoting the

recycling of APP to the cell surface via interacting with

SORLA [47, 48]. The Golgi-localized, γ-ear-containing

clathrin adaptor ARF binding protein 3 (GGA3) regu-

lates the trafficking of BACE1 to lysosomes, and modu-

lates BACE1 levels through interactions with ubiquitin

sorting machinery, where depletion and overexpression

of GGA3 inversely regulates BACE1 levels [49, 50].

Markedly, changes in the expression of trafficking regu-

lators have been observed in AD. For example, the levels

of SNX12 and GGA3 are reduced in the AD brain [51].

Altogether, these studies indicate a fundamental role for

APP trafficking components in Aβ generation and accu-

mulation, and suggest that dysregulated protein traffick-

ing may contribute to AD pathogenesis.

Aβ aggregation and neurotoxicity

During AD pathogenesis, Aβ aggregates are assembled

from Aβ monomers into a variety of unstable oligomeric

species. Oligomeric Aβ (oAβ) then further aggregates to

form short, flexible, irregular protofibrils, which ultim-

ately elongate into insoluble fibrillar assemblies compris-

ing β-strand repeats oriented perpendicularly to the fiber

axis. Extracellular Aβ aggregates in their fibrillar form

are resistant to hydrolytic degradation [52, 53].

The Aβ peptide is a primary component of senile pla-

ques, and is crucial to neuronal and synaptic dysfunction

during AD progression. Although Aβ monomers at

physiological concentrations are generally considered to

be nontoxic, multiple lines of evidence suggest that Aβ

oligomers rather than Aβ fibrils are neurotoxic [54]. oAβ

can induce abnormal elevations in extrasynaptic glutam-

ate levels and subsequent extrasynaptic N-methyl-D-

aspartic acid receptor (NMDAR)-mediated excitotoxi-

city, thereby inhibiting hippocampal LTP. This also

results in postsynaptic depression and dendritic spine

loss through enhancement of long-term depression

(LTD)-related mechanisms. Additionally, oAβ can dis-

rupt intracellular calcium balance, impair mitochondria

dysfunction, and induce the production of reactive oxy-

gen species (ROS). All of these events eventually lead to

neuronal apoptosis and cell death [55].

oAβ associated-receptors in neurons

Although mechanisms underlying oAβ-dependent syn-

aptic dysfunction have not been exhaustively character-

ized, studies have identified several receptors which can

mediate Aβ synaptotoxicity. These receptors bind Aβ
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with a relatively high affinity, which include the

NMDAR, ephrin type-B receptor 2 (EphB2), ephrin

type-A receptor 4 (EphA4), cellular prion protein (PrPc),

and leukocyte immunoglobulin-like receptor B2 (Lilrb2).

NMDAR

NMDARs are glutamate-triggered ion-gated cationic

channels which play a pivotal role in excitatory synaptic

transmission, plasticity and excitotoxicity in the nervous

system [56]. Seven NMDAR subunits have been charac-

terized in total for GluN1, GluN2 and GluN3 subtypes:

GluN1, GluN2A through D, and GluN3A and B. Struc-

turally, functional NMDAR comprises two GluN1 and

GluN2 or GluN3 subunits which can form a Ca2+-per-

meable ion channel [57].

Several single nucleotide polymorphisms (SNPs) in

NMDAR genes have been associated with AD onset. For

example, rs1806201 within exon 13 of the GRIN2B gene

locus may play a role in modulating susceptibility to AD

[58]. Additionally, frequency of the Ht2-AG haplotype in

the GluN3A gene is higher in AD patients, indicating

that GluN3A variants may confer elevated risk of AD

onset [59]. Expression of NMDAR subunits has been ex-

tensively characterized in human AD brain, and in vari-

ous AD models. Downregulation of the GluN1 subunit

is observed in AD patient brain at different stages of

neurodegenerative onset [60]. GluN1 mRNA levels were

also significantly decreased in AD patients, and expres-

sion of a GluN1 isoform containing a unique N-

terminus was significantly lower in AD brain compared

to controls [61]. GluN2A and GluN2B expression levels

(mRNA and protein) were also found to decrease in vul-

nerable brain regions, including the hippocampus and

cerebral cortex in AD [62].

NMDARs play a critical role in regulating synaptic dys-

function in AD. oAβ may directly interact with NMDAR,

as NMDAR subunits can co-immunoprecipitate with oAβ

[63]. Activation of NMDARs through the accumulation of

Aβ likely occurs during early stages of disease progression

[64]. Similar to NMDA stimulation, Aβ evoke immediate

cellular Ca2+ influx through the activation of GluN2B-

containing NMDARs in primary neurons. oAβ has been

reported to impair NMDAR-dependent synaptic LTP

within hippocampal CA1 and dentate gyrus regions [65].

In addition, both synthetic oAβ and AD brain-derived Aβ

can enhance NMDAR-dependent LTD [66, 67]. These

alterations may be a result of Aβ-induced enhancement of

NMDAR endocytosis and reductions in NMDAR expres-

sion [68]. The relevance of NMDAR in AD lends support

from studies showing that partial blockade of NMDAR

overstimulation with NMDAR antagonists rescues Aβ-

induced LTP impairment and cognitive function in vari-

ous animal models [69]. Notably, a NMDA antagonist,

memantine, has been used clinically to treat AD patients.

The beneficial effects of memantine may be explained par-

tial antagonism of NMDAR activity [70].

EphB2

The Eph family of receptor tyrosine kinases, as well as

membrane-anchored ephrin ligands, play critical roles in

developing and mature nervous system [71–73]. Eph re-

ceptors and B-class ephrin ligands mediate bidirectional

signaling, leading to activating signals in both ligand- and

receptor-bearing cells. Eph receptors in the brain regulate

maturation of dendritic spines, synaptic plasticity and

neuronal-glial communication [73]. Interestingly, Eph re-

ceptors and their role in synaptic plasticity have recently

been implicated in pathologies of several neurological dis-

eases including AD [74]. Exposure to oAβ has been shown

to decrease membrane EphB2 levels in hippocampal neu-

rons [75], potentially through cross-regulatory interactions

between EphB2 and NMDAR. oAβ binds to the fibronec-

tin repeat region of EphB2, thereby triggering EphB2

endocytosis and degradation. Remarkably, overexpression

of EphB2 in the dentate gyrus region in an AD mouse

model reversed impairments in LTP and cognitive mem-

ory [76]. In addition, EphB2 overexpression can restore re-

ductions in AMPAR and NMDAR levels induced by oAβ.

These protective effects may be related to the PDZ-

binding motif within the cytoplasmic tail of EphB2 [76,

77].

EphA4

EphA and EphB have opposing roles with respect to syn-

aptic function; EphA4 is expressed on dendritic spines

in pyramidal neurons, and its activation results in re-

duced spine length as well as spine density in acute hip-

pocampal slices [78]. Physiological EphA4 activation at

postsynaptic densities through an astrocytic ephrinA3

ligand induces retraction of dendritic spines through

CDK5 and ephexin1 during synaptic pruning. To this

effect, EphA4 deletion in mouse brain results in more

spines, which are longer and lack organization compared

to wild-type [78]. Remarkably, recent studies have estab-

lished a relationship between EphA4 with AD. Increased

EphA4 mRNA levels are observed in synaptosomes from

AD patients [79]. Moreover, deposition of EphA4 is ob-

served in regions surrounding senile plaques in human

hippocampus [79], and greater amounts of active EphA4

are evident in AD brain [80].

oAβ can bind to EphA4 and induce its activation, and

inhibition or absence of EphA4 in hippocampal neurons

prevents synaptic loss [81]. The inhibitory EphA4 pep-

tide, KYL was found to protect neurons from the synap-

totoxicity with exposure to oAβ [82]. In addition, a plant

alkaloid rhynchophylline was shown to block EphA4 sig-

naling, thereby preventing LTP impairment in an AD

mice model [81]. Our recent work provides a new
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insight into EphA4-mediated Aβ toxicity; SORLA inter-

actions with the EphA4 receptor can consequently at-

tenuate EphA4 activation in response to Aβ exposure.

An AD-associated mutation in SORLA impairs the inter-

action between EphA4 and SORLA. In addition, we

found that EphA4 is activated in human AD brain, and

EphA4 activation correlates with decreased EphA4/

SORLA interaction [80]. These findings suggest that

SORLA may affect AD pathogenesis at least partially

through regulating EphA4-medaited Aβ toxicity.

PrPC

PrPC is a highly conserved protein, which can be found

in vertebrates and at all stages of development [83].

PrPC is expressed in many brain regions, including cor-

tex and hippocampus [84], and is localized in neuronal

pre- and postsynaptic compartments [85]. PrPC can me-

diate various functions, including neurite outgrowth,

neuronal differentiation and survival [86]. A genome-

wide association study (GWAS) identified PrPC as a po-

tential high-affinity receptor for oAβ [87]. Subsequent

studies showed that oAβ, especially high-molecular

weight oligomers [88], preferentially bind to PrPC within

an N-terminal 95-111aa segment [87]. PrPC deletion

functionally restored synaptic LTP deficits induced by

oAβ in different AD mouse models, such as APP/PS1

(APPswe /PSEN1△E9) [89]. Interestingly, neurons lack-

ing PrPC are refractory to dendritic spine loss triggered

by oAβ. However, oAβ interactions with PrPC have little

effect on Aβ plaque deposition and glial activation [89].

Antibodies targeting various regions in PrPC abolish

LTP impairment triggered by exposure to human AD

brain extracts [90], and peripheral injection of these

antibodies displays protective effects in AD mouse

models [91].

LilrB2

LilrB2 is an immune inhibitory receptor which plays a

vital role in suppressing the immune system and sustain-

ing the homeostasis of the immune system [92]. Many

studies have focused on the role of LilrB2 in tumors. A re-

cent study has linked LilrB2 to AD, and suggests that

human LilrB2 and its murine homolog paired

immunoglobulin-like receptor B (PirB) are potential oAβ

receptors [93]. Deletion of PirB rescued hippocampal LTP

deficits induced by Aβ42 oligomers. In addition, PirB defi-

ciency can rescue cognitive deficits in an AD mouse

model. Mechanistically, PirB interacts with cofilin, and

levels of the inactive phosphorylated form of cofilin in hu-

man AD brains appear to be reduced. Therefore, binding

between oAβ and PirB would recruit cofilin-signaling

modules, which leads to actin depolymerization, resulting

in synaptic dysfunction and cognitive deficits [93]. Com-

pounds inhibiting Aβ/LilrB2 interactions in vitro have

been identified, and potentially bioactive Aβ/LilrB2 inhibi-

tors such as ALI6 can inhibit Aβ-mediated neurotoxicity

in primary neurons [94].

Aβ and mitochondrial dysfunction

Multiple lines of evidence suggest that mitochondrial dys-

function is involved in AD pathogenesis [95]. Aβ accumu-

lates in mitochondria in AD brain, which is accompanied

by altered mitochondrial structure, decreased mitochon-

drial respiratory function and ATP production, impaired

mitochondrial dynamics, and elevated mitochondria-

associated oxidative stress. Aβ has been observed in mito-

chondria in the brain of AD patients and AD mouse

models. Mitochondrial Aβ levels correlate with abnormal-

ities in mitochondrial structure and function. For instance,

decreased mitochondria associated-energy metabolism

was observed in brain regions associated with amyloid pla-

ques. Aβ also triggers abnormalities in mitochondrial

dynamics; aberrant changes are also observed with mito-

chondrial dynamics as a result of reduced energy produc-

tion. Aβ-exposure also leads to the enrichment of proteins

associated with increased mitochondrial fission and de-

creased mitochondrial fusion [96, 97].

Evidence also suggests that oxidative insults signifi-

cantly contribute to AD pathogenesis [98]. Oxidative

stress manifests early in AD, which supports the notion

that oxidative stress may drive Aβ-induced AD patho-

genesis [99]. Mitochondria are the primary source of

intracellular ROS. Aβ peptides can induce ROS produc-

tion from mitochondria, leading to release of cyto-

chrome c and apoptosis-inducing factor, thereby driving

mitochondrial dysfunction, cell apoptosis and neuronal

loss [97, 100]. We have recently identified a mitochon-

drial protein, appoptosin, as an important regulator for

Aβ-induced neuronal cell death. The expression of

appoptosin is upregulated in AD, where it can activate

the intrinsic caspase pathway. Notably, downregulation

of appoptosin can protect against Aβ-induced neurotox-

icity [101]. Other mitochondrial proteins such as

amyloid-binding alcohol dehydrogenase, cyclophilin D

also have been shown to play a role in mitochondrial

dysfunction [102–104].

Tau and AD pathogenesis

Tau

Human tau is encoded by the MAPT gene on chromo-

some 17 which comprises 16 exons [105]. Alternative

splice variation including exons 2, 3, and 10 generates up

to six differing tau isoform variants in the human brain

[106, 107]. These isoforms can be distinguished from each

other through compositional inclusion or exclusion of

zero (0N), one (1N) or two (2N) 29 amino acid inserts at

the N-terminus, and three (3R) or four (4R) microtubule-

binding repeats [106, 107]. In normal adult human brain,
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3R and 4R tau isoforms are maintained in a 1:1 ratio. Im-

balanced 3R:4R tau ratios resulting from altered MAPT

pre-mRNA splicing have been observed in various tauopa-

thies. For example, increased 3R:4R ratios have been ob-

served in Pick’s disease [108], while decreased 3R:4R ratios

are found in progressive supranuclear palsy (PSP) and cor-

ticobasal degeneration [109–111]. Frontotemporal demen-

tia with parkinsonism-17 (FTDP-17) generally exhibits

increased levels of the 4R tau isoform, with several excep-

tions [112]. Expression of tau isoforms in AD brain is

complicated; although it is still under debate that whether

the overall 3R:4R tau ratio is altered, several studies sup-

port a notion that 4R tau expression is increased in vul-

nerable brain regions and NFT bearing neurons in AD

brain [111, 113–118].

As a microtubule binding component, tau promotes

the polymerization and stability of microtubules [119–

121]. Since tau binds to microtubules through C-

terminal repeats within the microtubule-binding domain,

4R tau isoforms show a higher propensity to promote

microtubule assembly compared to 3R tau isoforms

[122, 123]. Tau is highly expressed in neurons in the

mammalian brain, and normally localizes predominantly

to axons as an important regulator of axonal transport

[124–126]. However, deletion of the tau gene fails to in-

duce problems in axonal transport, suggesting that other

proteins associated with microtubule binding or regula-

tion, such as MAP1 and MAP2 may compensate for tau

[127]. Recent studies demonstrate that tau is also

present in dendrites and postsynaptic compartments

[128–130]. Dendritic tau may also play a role in regulat-

ing synaptic plasticity, as synaptic activity can recruit tau

to the postsynaptic densities, where tau deletion in vari-

ous mouse models show deficits either in LTP or LTD

[129, 131, 132]. Tau distribution in neurons and its role

in synaptic function is regulated by post-translational

modification, including phosphorylation and proteolytic

cleavage, as discussed below. Tau is also moderately

expressed in oligodendrocytes and astrocytes [133–135].

In oligodendrocytes, tau plays a role in process out-

growth and myelination [133, 136–138], however, it re-

mains unclear at this point whether tau regulates

physiological functions of astrocytes. Additional physio-

logical functions for tau include regulation of iron ex-

port and insulin signaling [139, 140].

Post-translational modifications of tau

Various forms of post-translational modifications

(PTMs) on tau include phosphorylation, acetylation, gly-

cosylation, nitration, glycation, methylation, ubiquitina-

tion, sumoylation, truncation and prolyl-isomerization.

Multiple lines of evidence indicate that PTMs regulate

tau function, as well as pathogenesis of tauopathies such

as AD. Alterations of tau PTMs have been observed in

AD and other tauopathies. Several key tau PTMs rele-

vant to AD pathogenesis are reviewed below.

Phosphorylation

Eighty-five potential phosphorylation sites (45 Ser, 35

Thr, and 5 Tyr) are present in the longest tau isoform

(2N4R) in human brain [141]. Among them, more than

47 phosphorylation sites have been identified by mass

spectrometry, which primarily reside in the proline-rich

domain and C-terminus [141]. Hyperphosphorylated tau

is enriched in paired helical filaments (PHFs) from AD

patient brain or AD mouse models. Tau hyperphosphor-

ylation may be an early event during AD pathogenesis,

since increased levels of phosphorylated tau are detected

in the CSF from potential AD patients at early stages of

disease onset, and correlate with cognitive impairment.

Therefore, phosphorylated tau species in human CSF is

proposed to be a biomarker in AD diagnostics. Tau

phosphorylation/hyperphosphorylation can modulate

physiological and pathological tau function. Phosphoryl-

ation affects tau microtubule binding, whereas concur-

rent tau hyperphosphorylation at numerus sites results

in tau dissociation from microtubules and enhances tau

aggregation. In addition, tau phosphorylation also modu-

lates its distribution to dendritic spines to alter synaptic

function. While phosphorylation at S396 plays a key role

in the induction and maintenance of hippocampal LTD

[142], mutant tau hyperphosphomimetic Ser/Thr iso-

forms promotes tau distribution to dendritic spines and

impairs synaptic function [143]. Interestingly, tau phos-

phorylation is not exclusively deleterious to synaptic

function. Tau phosphorylation at T205 has been shown

to reduce the association of tau to postsynaptic density-

95 (PSD95)/NMDAR complexes and therefore to limit

Aβ-induced excitotoxicity [144]. Nevertheless, hyperpho-

sphorylation of most tau residues characterized so far is

thought to be pathogenic in AD and other tauopathies.

Tau phosphorylation is regulated by multiple protein

kinases and phosphatases. Tau kinases can be classified

to two categories: 1) Ser/Thr kinases such as CDK5,

glycogen synthase kinase 3β (GSK3β), mitogen-activated

protein kinase, Ca2+/calmodulin-dependent protein kin-

ase II, microtubule-affinity regulating kinase, protein

kinase A (PKA), protein kinase C, Akt, TTBK1/2, CK1,

DYRK1A, and 2) tyrosine kinases including Fyn, Src, Syk

and c-Abl [141]. Tau is dephosphorylated by protein

phosphatase 1 (PP1), PP2A, PP2B and PP5 [145–147].

Tau hyperphosphorylation may result from imbal-

anced activity or expression of tau kinases and pro-

tein phosphatases. In support of this, increased

GSK3β expression and CDK5 activity, decreased ex-

pression of PP1 and PP2A, and decreased PP2A activ-

ity has been observed in specific brain regions in AD

patients [148–152]. Since hyperphosphorylated tau
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species are enriched in NFTs, strategies to suppress

tau phosphorylation may be a viable therapeutic strat-

egy in AD and other related tauopathies. Unfortu-

nately, attempts to target hyperphosphorylated tau or

inhibit tau kinases have not seen success so far.

Lysine-based PTMs

Forty-four Lys residues may be potentially modified by

acetylation, ubiquitination, sumoylation, methylation or

glycation in the 2N4R tau isoform. Tau can be acetylated

by the histone acetyltransferases CREB-binding protein

and P300, autoacetylated through catalytic Cys291 and

Cys322 residues within the microtubule binding domain,

and deacetylated by SIRT1 and HDAC6 [153–155].

Acetylation of tau at Lys174, Lys274, Lys280, and Lys281

have been well characterized due to their association

with AD: tau acetylation at Lys280 can only be detected

in AD and 4R tauopathies such as corticobasal degener-

ation and PSP. Additionally, increased levels of acety-

lated tau at Lys174, Lys 274, and Lys281 have been

observed in the brain of AD patients at varying disease

stages [156–159]. Acetylation may compromise normal

tau function and confer toxic properties to tau. Specific-

ally, acetylation of tau at Lys274, Lys280 and Lys281 res-

idues within the microtubule binding domain impairs

tau binding to microtubules. Lys280 acetylation en-

hances fibrillization, whereas Lys274 and Lys281 acetyl-

ation promotes tau distribution to the soma and

dendrites, and resulting in synaptic and cognitive dys-

function [157, 158, 160]. Tau acetylation at Lys174 re-

duces tau turnover and induces cognitive deficits.

Acetylation may affect other PTMs in tau: since both

acetylation and ubiquitination are modifications on Lys

residues, acetylation may decrease proteasome-mediated

tau degradation by competitively attenuating tau ubiqui-

tination [153, 161]. The effect of tau acetylation on tau

phosphorylation is dependent on acetylation at specific

Lys residues. Acetylation of Lys residues within the

KXGS motif reduces tau phosphorylation, acetylation of

Lys274 and Lys281 does not generally affect tau phos-

phorylation, and acetylation of Lys280 alters certain tau

phosphoresidues [155, 157, 160, 162]. Therefore, inhib-

ition of acetylation at specific but not all Lys residues of

tau maybe beneficial for AD and other tauopathies. Ubi-

quitination is essential to maintaining intracellular pro-

tein homeostasis, and the ubiquitin proteasome system

(UPS) and lysosomal degradation pathways are both

linked to tau stability and turnover. Lys48-linked polyu-

biquitination directs protein to UPS-mediated degrad-

ation pathways, whereas proteins conjugated with Lys63-

linked polyubiquitin chains are predominantly degraded

through the auto-lysosomal pathway. Both Lys48-linked

and Lys63-linked polyubiquitination species have been

identified in tau [163–165]. Therefore, ubiquitination

plays an important role in maintaining a pool of cellular

tau under physiological conditions. Accumulation of

ubiquitin-conjugated tau at Lys254, 257, 290, 311, 317

and 353 has been identified in PHF from AD brain and

in an AD mouse model [161, 163, 164]. Tau in PHFs is

primarily monoubiquitinated, rather than polyubiquiti-

nated; since UPS mainly mediates the degradation of

polyubiquitinated protein, tau monoubiquitination may

preclude tau from UPS-mediated degradation. In

addition, impaired proteasomal activity induced by

pathological PHF binding to proteasomes enhances the

accumulation of ubiquitinated tau in AD brain [166].

Tau can be ubiquitinated by several E3 ligases such as

Hsc70-interacting protein (CHIP), TNF receptor-

associated factor 6 (TRAF6) and axotrophin/MARCH7

[167–169]. The relationship between CHIP and tau has

been extensively studied. CHIP can interact with heat

shock protein 70 (Hsp70) and induces ubiquitination of

tau [170]. Induction of Hsp70 by geldanamycin pro-

motes tau degradation both in vitro and in vivo, whereas

deletion of CHIP increases the accumulation of phos-

phorylated tau and caspase-3 cleaved tau [167, 171].

TRAF6 induces Lys63-linked tau polyubiquitination and

26S proteasome-mediated tau degradation [168]. Axo-

trophin can ubiquitinate tau in vitro and impair tau

microtubule-binding activity [169]. The consequence of

ubiquitination on tau degradation and pathogenesis to

this point, remains controversial.

Sumoylation involves the conjugation of a small

ubiquitin-like modifier (SUMO) moiety on targeted ly-

sine residues [172]. Tau can be sumoylated at Lys340 by

all three major SUMO isoforms, including SUMO1,

SUMO2 and SUMO3, with preferential conjugation to

SUMO1 [172]. Tau sumoylation may be pathogenic, as

SUMO1 immunoreactivity was found to correlate with

phosphorylated tau in AD patient brain. Sumoylation

enhances tau phosphorylation, but reduces tau ubiquiti-

nation and UPS-mediated degradation [173]. Factors

modulating tau sumoylation and SUMO deconjugation

remain unclear and require further clarification.

Tau can also be methylated on Lys and Arg residues.

Methylated Lys residues mainly distribute to the projec-

tion region and tau microtubule-binding domain [174–

176]. Although both mono- and dimethylation tau iso-

forms were initially detected in brain tissue from non-

dementia human and AD patients, a recent study sug-

gests that Lys residues are predominately monomethy-

lated in aging or AD cohorts [174–176]. Stoichiometric

Lys methylation of recombinant tau protein at high

levels reduces tau aggregation [174], suggesting that up-

regulation of Lys methylation may be a strategy to pro-

tect against pathogenic tau aggregation. It will be of

interest to elucidate how tau methylation is regulated

and whether Lys methylation directly affects tau
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pathogenesis in vivo in future studies. Although tau Arg

methylation was identified in normal and AD mouse

models [161], the role of Arg methylation on tau func-

tion and pathogenesis has not been characterized.

Tau is preferentially glycated at Lys residues within

the microtubule-binding domain, where advanced glyca-

tion end products are generated [177–179]. Glycated tau

is only detected in PHF-tau isolated from AD brain sam-

ples, but not in soluble tau from AD or normal brain

samples [177, 179]. Glycation modulates many func-

tional properties of tau, and is associated with cellular

effects, including: decreased tau microtubule binding

affinity, enhanced tau aggregation, stabilization of tau

aggregates, induction of oxidative stress, activation of

NF-kB mediated-inflammatory pathways, and increased

Aβ production [177, 179–181]. Therefore, glycation is

thought to be a pathogenic form of tau PTM.

Glycosylation

Both N- and O-linked glycosylation have been identified

in tau [182, 183]. N-glycosylation has been detected in

PHF-tau isolated from AD brains, but not in healthy

brain [182]. The effect of N-glycosylation on tau patho-

biology is not clear. Several studies suggest that N-

glycosylated tau is prone to phosphorylation, but shows

reduced aggregation [184, 185].

Six O-linked Ser and Thr GlcNAcylated sites in tau

have been mapped [186]. O-GlcNAcylation negatively

regulates tau phosphorylation, as Ser and Thr targets for

O-GlcNAcylation and phosphorylation overlap to some

extent. Downregulation of O-GlcNAc transferase leads

to reduced O-GlcNAcylation and increased tau phos-

phorylation, whereas inhibition of O-GlcNAcase reduces

tau phosphorylation [187, 188]. Decreased levels of O-

GlcNAcylated tau have been observed in AD brain, and

inversely correlates with tau phosphorylation at multiple

sites, which may contribute to abnormal glucose metab-

olism in AD [187]. Overall, these observations imply that

decreased tau O-GlcNAcylation contributes to AD

pathogenesis.

Truncation

Truncated tau species are derived from proteolytic pro-

cessing. To date, tau proteases include caspases, calpains,

asparagine endopeptidase (AEP), thrombins, cathespins,

human high-temperature requirement serine protease A1,

puromycin-sensitive aminopeptidase, and ADAM10 [189].

Among them, caspases, calpains and AEP have been re-

cently become of particular interest.

Although tau can be cleaved by caspase-1, 2, 3, 6 and

7 in vitro, only caspase-2, 3 and 6 cleaved tau products

have been linked to AD [190–193]. Caspase-2 cleaves

tau at Asp314 and increased levels of truncated tau-314

have been described in AD brain. Tau-314 dissociates

from microtubules and promotes the distribution of full-

length tau and tau-314 to dendritic spines to induce syn-

aptic and cognitive dysfunction. Indeed, downregulation

of caspase-2 partially rescues memory deficits in

rTg4510 tau transgenic mice [190]. Caspase-3 primarily

cleaves tau at Asp421, generating a tau-421 species

[191]. Elevated levels of caspase-3 and tau-421 have been

observed in AD, as well as PSP [130, 191, 192]. Tau-421

colocalizes with NFTs in human AD brain, and corre-

lates with NFT formation and cognitive impairment in

aged mice [191, 192, 194]. Caspase-3 cleavage leads to

the dissociation of tau from microtubules, and enhanced

tau aggregation [130, 191, 195]. In addition, tau-421 can

be found in PSD fractions from primary neuronal cul-

tures [130], implicating its role in synaptic function. In-

deed, memory deficits were observed in a tau-421

transgenic mouse model [196]. Recently, our group has

identified appoptosin as a positive regulator for caspase-

3 mediated tau cleavage. Increased levels of appoptosin

associate a SNP rs1768208(C/T) associated with AD,

PSP and FTD-T. Appoptosin overexpression activates

caspase-3 and enhances caspase-3 dependent tau cleav-

age, thereby enhancing motor dysfunction in JNPL3 tau

transgenic mice [130]. Since caspase-3 activation pre-

cedes NFT formation [197], and appoptosin is an up-

stream regulator for caspase-3, appoptosin may

contribute to tau pathogenesis at early stages in AD and

other tauopathies. Tau can be cleaved by caspase-6 at

Asp13 (tau-13) and Asp402 (tau-402) [193, 198]. Active

caspase-6 and tau-402 were observed in NFTs and neur-

itic plaques in AD brain [193]. In addition, tau-402 levels

in CSF correlate with cognitive performance in AD pa-

tients or aged individuals [199]. These findings indicate

that tau-402 may be a pathological indicator and poten-

tial biomarker for AD. However, whether tau-402 affects

tau conformation and function remains elusive. There-

fore, it is unknown if caspase-6 cleavage of tau plays a

causative role in AD pathogenesis. Nevertheless, it is

clear that caspase-mediated tau cleavage is a pathological

event in AD.

Calpains are calcium-dependent cysteine proteases,

which are encoded by 15 genes in the human genome

[200]. Calpain-1 and 2 are abundantly expressed in the

CNS [201]. Calpain-1 cleaves tau at Lys44, Arg230,

Arg242, Gly323, and Gly326, while calpain-2 cleaves tau

at Arg230 [202–206]. Calpain-mediated tau cleavage

generates several truncated tau isoforms, including 17

kDa tau45–230, and 24 kDa tau243–441 products [204,

207]. Increased calpain activity and levels of tau45–230

has been identified in brain samples from AD and sev-

eral other tauopathies, while elevated tau243–441 levels

are observed in the tau transgenic Tg601 mouse model

[207, 208]. Although in vitro studies show contradictory

effects of tau45–230 on neuronal cell death, a recent
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study utilizing tau45–230 transgenic mice indicates that

tau45–230 is neurotoxic, and can induce synaptic and

cognitive impairment [204, 205, 209]. While tau243–441

has no apparent effects on microtubule assembly, this

isoform may be pathogenic as it is able to promote tau

aggregation and propagation [207]. Phosphorylation

negatively regulates calpain-mediated tau cleavage: phos-

phorylation of tau by PKA inhibits calpain-mediated tau

proteolysis, and NFTs are resistant to calpain cleavage

[210, 211]. Therefore, calpain cleavage of tau may occur

at early stages in AD progression.

AEP, also known as δ-secretase, is an asparagine-

specific cysteine protease. Tau can be cleaved by AEP at

Asn167, Asn255, and Asn368 [212, 213]. The truncated

tau 1–368 (tau-368) isoform generated by AEP cleavage

exhibits impaired enhancement in microtubule assembly,

and shows increased propensity to form PHFs in vitro.

AEP activity was initially reported to be increased in

aged mouse and human AD brain, and tau-368 was

shown to increase during aging and in AD brain [212].

However, a recent study finds no change in soluble tau-

368 in AD patient brain, and only trace amounts of tau-

368 were observed in insoluble tau aggregates in AD

brain [212, 214]. AEP is predominately expressed in

microglia [135, 213], and AEP cleaves tau without indu-

cing tau accumulation in microglia. It is therefore likely

that AEP plays a role in regulating tau degradation, ra-

ther than enhancing tau aggregation [212, 213, 215].

Exact contribution of AEP and AEP-cleaved tau to AD

pathogenesis requires further investigation.

Both full-length and truncated tau isoforms can be

secreted. However, only the existence of truncated tau

in CSF has been confirmed [216–218], whereas the

presence of full-length tau in the CSF is questionable.

In CSF, full-length tau can only be detected by west-

ern blot, but not by other methods such as ELISA

and IP-MS [216–219]. Using an IP-MS method, a re-

cent study demonstrates that truncated tau isoforms

exclusively exist in human CSF, whereas a small frac-

tion of full-length tau and a large portion of trun-

cated tau are identified in medium from iPSC-

induced neurons [218]. As tau secretion is a key step

to pathological tau spreading (reviewed separately

below), the predominant presence of truncated tau in

the extracellular space suggests that cleaved tau iso-

forms may contribute to the spreading of tau path-

ology. This possibility is likely to be of interest in

future studies related to proteolytic tau processing

and function. In addition, CSF and serum tau cleav-

age products could be potential biomarkers for AD

and other tauopathies. Further investigation correlat-

ing CSF and serum truncated tau during disease onset

will clarify relationships between cleaved tau isoforms

and neurodegenerative progression.

Formation and propagation of tau pathology

Tau aggregation

Tau pathology is initiated and derived from the accumu-

lation of tau aggregates. Monomeric tau is highly soluble

and is biochemically disordered, lacking a well-defined

secondary structure [220]. Under certain conditions,

monomeric tau can aggregate into oligomers, fibrils, fila-

ments, and eventually NFTs. Hexapeptide VQIINK mo-

tifs in the second repeat and VQIVYK in the third

repeat within the tau microtubule-binding domain are

crucial for the formation of β-sheet structures and con-

sequent tau aggregation [221, 222]. Notably, inhibitors

targeting VQIINK dramatically decrease tau aggregation.

Factors that contribute to tau aggregation include ab-

normal PTMs on tau such as hyperphosphorylation, mu-

tations in the MAPT gene, liquid-liquid phase separation

(LLPS), and the presence of pathological tau seeds. The

role of PTMs on tau aggregation has been described

above. Both exonic and intronic mutations in the MAPT

gene have been identified in primary tauopathies. To

date, many transgenic mouse models overexpressing tau

mutants have been developed, and most exhibit tau

pathology and behavioral abnormalities at certain ages,

supporting a pathogenic role of MAPT mutations. These

mutations generally promote tau aggregation through al-

tering 3R:4R tau ratios, inducing tau fragmentation, en-

hancing tau hyperphosphorylation or other mechanisms.

Increased 4R:3R tau ratios have been found to promote

tau phosphorylation and oligomerization, and to induce

behavioral abnormality in a mouse model expressing hu-

man tau [223]. Both 3R and 4R tau isoforms are able to

aggregate, and it is not well understood that how imbal-

anced 3R:4R tau ratio favors tau pathogenesis. Mutations

that cause tau truncation usually also alter 3R:4R tau ra-

tios, such as ΔK280 and ΔN296. However, it should be

noted that no MAPT mutations have been associated

with AD so far. Therefore, mechanisms underlying tau

aggregation in AD may be different from those involved

in tauopathies caused by the MAPT mutations. LLPS is

a newly characterized factor that modulates tau aggrega-

tion. Tau is able to form liquid droplets, which act as

sites to recruit and nucleate tubulin into microtubule

bundles [224]. Peptides containing 2N4R tau micro-

tubule binding repeats or and full-length tau undergo

LLPS in solution and cells, respectively [225, 226]. LLPS

may initiate tau aggregation, and this process is en-

hanced by tau phosphorylation, and impaired by acetyl-

ation [225–227]. Whether tau LLPS occurs in vivo, and

how this process is regulated need to be clarified in fu-

ture studies. Normal intracellular tau can form aggre-

gates in the presence of tau seeds, which supports the

“tau propagation” hypothesis described below.

Various cell types in the CNS may also affect patho-

logical tau aggregation. Tau aggregates are primarily
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found in neurons in AD, whereas accumulation of tau

can be observed in neurons, astrocytes, and oligodendro-

cytes in primary tauopathies [228], suggesting that cell-

specific effects may be involved in tau aggregation in dif-

ferent tauopathies. However, comparative studies inves-

tigating tau aggregation and accumulation have yet to

define these features in AD.

Tau propagation

NFTs first appear in layer II of the entorhinal cortex

(EC) during AD onset. NFTs subsequently appear in in-

terconnected anatomical regions within the brain,

including the hippocampus and neocortex during neuro-

degenerative progression [229–231]. Since the spatial-

temporal distribution of tau pathology correlates tightly

with cognitive decay in AD patients, the severity of AD

onset is classified by Braak stages which are defined by

pathological NFT staining. It was previously believed

that differences in vulnerability to pathogenesis in vari-

ous brain regions account for the spatial-temporal char-

acteristics of tau deposition. However, multiple lines of

recent evidence indicate that prion-like tau propagation

may be causal to spatial-temporal pattern of tau accu-

mulation in AD and other tauopathies.

The “tau propagation” hypothesis lends strong support

from numerous studies using mouse models. In these

studies, seeded synthetic tau fibrils, or brain extracts

from tau transgenic mice or human patients with tauo-

pathy injected into the brain of tau transgenic or WT

mice was found to induce pathological tau spreading at

sites distal to the injection site [232–235]. In transgenic

mouse models exclusively expressing human tau P301L

in the EC region, pathological human tau spreads to syn-

aptically connected regions such as dentate gyrus of the

hippocampus, and induces synaptic degeneration with

aging [236, 237]. In support of these results from mouse

models, cellular studies demonstrate that intracellular

tau aggregation can be induced by brain extracts from

patients with tauopathy, tau fibrils, or even monomeric

tau, and tau aggregates can be transferred between cells

[234, 238–240].

Pathological tau propagation is characterized by key

events in the CNS: tau seeds released from donor cells

are internalized by recipient cells, which then induce ag-

gregation and accumulation of soluble tau in the recipi-

ent cells. Alternatively, tau seeds may be transferred

through cell-to-cell contact [241, 242]. Tau can be se-

creted under both physiological and pathological condi-

tions, as evidenced by the presence of extracellular tau

in the media of neuronal cultures, and in the interstitial

fluid (ISF) of WT and tau transgenic mouse brain [238,

243–247]. Although evidence indicates that exosomes,

neuronal activity, and unconventional secretory path-

ways are involved in tau spreading, mechanisms

underlying tau release are poorly understood [248]. Exo-

somes are extracellular vesicles derived from endosomal

compartments of cells [249]. Tau can be detected in exo-

somes isolated from cultures of mature neurons or

microglia, and CSF and blood of AD patients [248, 250–

253]. Tau-containing exosomes derived from either neu-

rons or microglia are able to promote tau propagation

[250, 251]. Tau in exosomes can be phosphorylated,

truncated, or assembled into oligomers [248, 254]. Levels

of exosome-associated tau are higher in CSF and blood

in AD patients compared to controls [252, 253], suggest-

ing that exosomal tau may be a biomarker for AD. Val-

idation of these results with larger cohorts will be

required. Tau is present in both pre- and postsynaptic

compartments and tau seeds are propagated via neural

networks [128, 130, 235–237, 255, 256]. As expected, in-

creased neuronal activity is shown to promote both

physiological and pathological release of tau in vitro, and

exacerbates tau pathology in vivo [257, 258]. Tau can

also be directly released from plasma membrane. This

process is mediated by heparan sulfate proteoglycans

(HSPGs) on the cell membrane, and is enhanced by tau

phosphorylation and oligomerization [259, 260]. In sum-

mary, both normal and pathological tau seeds can be se-

creted. The propagation of tau pathology may be

primarily influenced by tau aggregation states, although

the possibility that tau seeds are released in a different

manner compared to non-pathogenic forms of tau can-

not be excluded.

Following its release from donor cells, tau can enter

recipient cells via micropinocytosis, endocytosis, or

phagocytosis [251, 261–264]. Notably, a recent study

shows that monomeric tau can enter neurons through

rapid endocytosis and slow endocytosis, whereas aggre-

gated tau enters neurons primarily via endocytosis, sug-

gesting different internalization mechanisms for different

tau forms are involved [264]. Tau uptake is regulated by

HSPGs in neuronal cells, and by Chemokine CX3C re-

ceptor1 (CX3CR1) in microglia [262, 263, 265]. Down-

regulating genes involved in HSPG synthesis, or

inhibiting HSPGs greatly reduces tau uptake and propa-

gation [262, 265].

After internalization, intracellular compartments

where exogenous tau seeds interact with endogenous

tau, and how tau seeds induce endogenous tau aggrega-

tion is unknown. Limited information is currently avail-

able with respect to how tau aggregation may be

templated. Some studies have shown that various dis-

tinct pathological patterns of tau aggregates can be in-

duced by distinct tau strains from tau transgenic mice or

patients with different tauopathies [234, 235, 266, 267].

It will be of interest to determine whether different spe-

cies of tau aggregates differentially affect brain function

in further studies.
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Tau and neurotoxicity

Neurotoxic effects related to tau have been extensively

studied and reviewed [268–270]. Many tau species such

as tauopathy-associated tau mutants, tau with aberrant

PTMs, soluble tau oligomers and tau fibrils have been

shown to be neurotoxic. However, whether tau tangles

are toxic still remains under debate. Tau is primarily

expressed in neurons, and its subcellular distribution is

primarily localized to axons where it associates with

microtubules. Pathological tau has been shown to dis-

tribute to pre- and postsynaptic compartments in synap-

tosomal fractions from AD brain [255, 271]. Thus,

pathogenic tau may impair microtubule assembly, dis-

rupt axonal transport, impair pre- and postsynaptic

functions, and induce neuronal cell death.

As described above, some FTDP-17 linked tau muta-

tions and aberrant tau PTMs such as hyperphosphoryla-

tion and truncation can impair tau binding to tubulin

and destabilize microtubules, leading to impaired cyto-

skeletal integrity in cultured cells. In addition, micro-

tubule destabilization impedes axonal transport [272].

Since mitochondria can be delivered via microtubule-

associated proteins mediated-axonal transport into

synapses [272], tau overexpression and hyperphosphory-

lation can damage mitochondrial axonal transport, dy-

namics and function to impair neuronal viability [273].

Indeed, disrupted mitochondrial distribution has been

observed in neurons containing tau aggregates in the

brain of AD mice and patients [274]. How pathogenic

tau species lead to aberrant mitochondrial distribution is

unclear, although mechanisms related to alterations in

mitochondrial fission and fusion have been implicated in

this phenomenon [274, 275]. Aberrant interactions be-

tween hyperphosphorylated tau and a mitochondrial fis-

sion component, dynamin-like protein 1 (Drp1), lead to

excessive fission of mitochondria in AD mice. Similar re-

sults have been observed in AD brain [276]. In addition,

reductions in Drp1 can rescue mitochondrial and synap-

tic impairment induced by hyperphosphorylated tau in

tau transgenic mice [277].

Pathological tau can cause synaptic loss and dysfunc-

tion. For instance, reduced spine density and impaired

LTP is observed in tau P301L transgenic mice rTg4510

[278]. Mechanisms underlying tau synaptotoxicity are

not clear, although some components have been pro-

posed to mediate tau toxicity. For instance, Fyn kinase at

post synaptic densities can modulate tau-dependent syn-

aptic and cognitive dysfunction. Tau binds to Fyn and

enhances its interactions and stabilizing effects with

NMDA receptors. Deletion of tau in mice altered Fyn

localization in postsynaptic compartments, and reduced

NMDAR-dependent excitatory toxicity in response to

Aβ [128]. Inhibition of Fyn kinase reduces tau aggrega-

tion, suggesting that tau-Fyn interactions can exacerbate

tau pathology in an AD mouse model [279, 280]. Tau

can also interact with the presynaptic protein

synaptogyrin-3, which mediates synaptic vesicle (SV)

clustering induced by pathological hyperphosphorylated

tau species. SV clustering reduced synaptic vesicle mo-

bility and release rate, impaired neurotransmission, and

disrupted presynaptic function. Reducing synaptogyrin-3

levels disrupts interactions between tau and synaptic

vesicles, thereby rescuing presynaptic defects induced by

tau. Together, these results suggest that synaptogyrin-3

is a key modulator for tau-induced presynaptic dysfunc-

tion [281].

Unlike most cell types, neurons are non-proliferative

and are quiescent upon differentiation. However, studies

suggest that numerous signaling pathways triggered by

neurotrophic factor deprivation, neuronal inactivity, DNA

damage, oxidative stress, or excitotoxicity can elicit cell

cycle reactivation, which results in increased susceptibility

to cell death [282]. Some evidence suggests that tau leads

to cell cycle re-entry and arrest at late onset, and supports

a model where cell cycle re-entry can impact AD patho-

genesis. For example, Cdc2/cyclin B1 kinase is a key regu-

lator required to maintain neuronal quiescence.

Accumulation of Cdc2/cyclin B1 in NFT-positive neurons

has been observed in AD brain [283]. In addition, other

cell cycle proteins are abnormally expressed in NFT-

bearing neurons, including BRCA-1 and other various

cyclins and cyclin dependent kinases [284].

Links between Aβ and tau pathogenesis

Unlike mutations in APP and PS1/2 that affect Aβ gener-

ation in early onset familial AD [285, 286], mutations in

MAPT have not been associated with AD [287, 288], sug-

gesting that tau pathogenesis may occur downstream of

Aβ accumulation [289]. Indeed, Aβ can induce tau path-

ology in multiple APP transgenic animal models, whereas

tau does not induce amyloid pathology. For instance,

mouse models with high plaque loads consistently display

dystrophic neurites containing hyperphosphorylated tau

surrounding amyloid plaques [290, 291]. Increased levels

of p-tau and conformationally altered tau were observed

in transgenic rat brain overexpressing AD-associated

APP/PS1 mutations in a wild-type tau background [292,

293]. Aβ may induce tau hyperphosphorylation through

the activation of tau kinases such as GSK3β [294]. In

addition, Aβ-induced inflammation may also contribute to

tau pathology. Aβ plays a primary role in activating several

innate immune pathways, causing inflammatory response

and releasing inflammatory cytokines, such as interleukin-

1β (IL-1β) [295, 296]. Blocking downstream IL-1 signaling

pathways through exposure to an IL-1-R antibody reduced

tau pathology in triple transgenic AD mouse models bear-

ing both APP and tau transgenes [297]. Conversely,
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increasing IL-1β signaling pathways was shown to exacer-

bate tau pathology [298].

Multiple lines of evidence indicate that Aβ-induced

neurotoxicity occurs in a tau-dependent manner [299].

Tau deletion can prevent neuronal cell death induced by

Aβ in vitro, and re-expression of mouse or human tau in

tau knockout neurons can restore Aβ-induced neurotox-

icity [300]. In addition, depletion of tau can prevent Aβ-

induced defects in axonal transport [127]. Animal stud-

ies also support a role for tau in mediating Aβ-induced

neurotoxicity: tau deletion protects against learning and

memory impairment and excitotoxicity in several APP

transgenic mouse models [301–303]. Tau deletion also

decreases BACE1-mediated APP cleavage and subse-

quent amyloid deposition [304]. Importantly, clearance

of pathological tau oligomers is sufficient to alleviate

cognitive impairment and reduce amyloid deposition,

suggesting that oligomeric tau is a critical mediator for

Aβ-induced toxicity. Aβ may trigger the transition of tau

from normal to toxic states [302, 305], where toxic tau

isoforms can further enhance Aβ toxicity through a po-

tential feedback loop [299].

Additionally, tau may amplify Aβ pathogenesis

through excitotoxicity and Aβ processing pathways. Tau

can bind to Fyn and induce Fyn phosphorylation in AD

patient brain [128]. Phosphorylated Fyn promotes inter-

actions between NMDAR and the postsynaptic scaffold-

ing component, PSD95, which can enhance excitatory

glutamate sensitivity, thereby aggravating Aβ excitotoxi-

city [128]. In addition, tau can regulate Aβ through

GSK3, where reducing tau levels can inhibit GSK3β ac-

tivity and consequent Aβ production [306].

Further, tau can directly bind Aβ to promote Aβ ag-

gregation. Tau binds Aβ in a stable complex, which pro-

motes tau phosphorylation through GSK3β activation

and accelerates local Aβ formation and Aβ accumulation

[307, 308]. In Drosophila melanogaster, Aβ and tau co-

expression increases tau phosphorylation and enhances

neurodegenerative alterations induced by Aβ [309]. Co-

localization of Aβ and phosphorylated tau are also de-

tected in neuronal terminal synapses in AD brain [310].

Taken together, Aβ- and tau-mediated pathogenesis acts

synergistically in AD onset.

Glial contributions to AD pathogenesis

Neuroinflammation is an additional hallmark for AD,

which manifests in gliosis, characterized by proliferation

and activation of microglia and astrocytes, two major

glial cell types in the brain. Many newly-identified AD

risk genes such as triggering receptor expressed on mye-

loid cells-2 (TREM2) are exclusively expressed, or highly

enriched in glial cells. Therefore, the potential involve-

ment of glia in AD pathogenesis has recently attracted

much attention. Pathogenic Aβ and tau species can

induce gliosis and neuroinflammation. Reciprocally, glial

cells and inflammation can regulate Aβ and tau patho-

genesis. Generally, it is believed that abnormal activation

of microglia and astrocytes is a deleterious event during

AD onset, and inhibition of malignant glial response to

pathological Aβ and tau, as well as blockade of pro-

inflammatory cytokine release may impede AD

pathogenesis.

Glia and Aβ pathogenesis

Abnormal Aβ accumulation may initiate the inflamma-

tory cascade in AD. Microglia are resident immune cells

that mediate brain homeostasis by regulating immune

function, phagocytosis and tissue repair function; in this

context, oAβ can stimulate microglial proliferation and

activation [311]. In early AD, microglial activation may

be protective as activated microglia actively phagocytose

and degrade oAβ. In addition, microglial activation may

help neuronal repair via secreting glial-derived neuro-

trophic factor (GDNF) and brain-derived neurotrophic

factor (BDNF). For example, administration of exogen-

ous microglia stimulated with interferon-γ significantly

enhanced BDNF and GDNF expression in ischemic

hippocampus, and improved learning behavior in ische-

mic mice [312]. However, activated microglia can also

release proinflammatory cytokines including IL-1β, IL-6,

as well as tumor necrosis factor-α (TNFα) in AD, and

enhance oxidative stress through induced ROS gener-

ation [313, 314]. Further, hyperactive microglia may im-

pair synaptic function by stimulating phagocytic synaptic

pruning. Therefore, chronic microglial activation during

AD onset may be deleterious due to potential adverse ef-

fects associated with inflammation, neurotoxicity and

degeneration. In addition, neuroinflammation can aggra-

vate Aβ accumulation through perturbations in phago-

cytic Aβ uptake and clearance. It has been shown that

IL-1β, lipopolysaccharide (LPS), prostaglandin E2 and

tert-butyl hydroperoxide can reduce the microglial

phagocytosis, thereby enhancing Aβ aggregation [315].

Notably, not all the microglia in the brain behave simi-

larly. Recent studies identified a new microglial subtype

termed “disease-associated microglia” (DAM) in animal

models of AD [316]. DAM features unique transcrip-

tional and functional characteristics [317], and are associ-

ated with altered expression of several genetic AD risk

factors: apolipoprotein E (APOE), TREM2, progranulin

and TYROBP (DAP12) are upregulated in DAM, whereas

CD33, BIN1, PICALM and PLCG2 are downregulated

[317–321]. Deletion of mouse TREM2 or expression of

human TREM2 (R47H) in 5XFAD mice impaired micro-

glia function and exacerbated AD pathology, whereas

overexpression of human TREM2 has been shown to

protect against Aβ pathogenesis [322–324]. An AD-

associated SNP variant within the CD33 promoter region
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(rs3865444C) leads to overexpression of CD33 [325].

Therefore, it is possible that DAM plays a protective role

during AD pathogenesis, though the exact function of

DAM has not been fully determined.

Astrocytes comprise the most prominent glial cell type

within the brain, and define borders separating nerve tis-

sue from non-nerve tissue along the vascular space and

meninges. Astrocyte borders and scars form functional

barriers that limit the entry of inflammatory cells into

the CNS parenchyma. Therefore, astrocytes have crucial

roles in regulating inflammation in the CNS [326]. Dur-

ing AD pathogenesis, accumulation of Aβ together with

proinflammatory cytokines released by activated micro-

glia leads to astrogliosis. Activated astrocytes have bi-

directional effects on AD: on one hand, they can pro-

mote degradation and clearance of Aβ mainly through

the generation of APOE, a key regulator for Aβ clear-

ance [327–329]. Conversely, activated astrocytes can

aggravate inflammation by producing proinflammatory

cytokines and active nitrogen and oxygen species (RNS,

ROS) which interfere with synaptic germination and

axonal growth [330, 331]. Additionally, Aβ can indirectly

induce glutamatergic toxicity by reducing distribution of

the astrocytic glutamate transporter, GLT1 (EAAT2,

SLC1A2) to the cell surface [332]. Microglia may play an

important role in regulating astrocytic activation; recent

studies characterized a specific reactive astrocyte subtype

(A1 astrocytes) induced by IL-1α, TNF, C1q and frag-

mented mitochondria released from activated microglia

[333, 334]. The abundance of A1 astrocytes increases in

neurodegenerative diseases such as AD, where A1 astro-

cytes have been shown to exhibit impaired phagocytic

ability and reduced neuroprotective activities including

their ability to support neuronal survival, outgrowth and

synaptogenesis. In addition, A1 astrocytes can induce

cell death in neurons and oligodendrocytes [333, 334].

Although the mechanisms underlying Aβ and glia in-

teractions are not yet clear, growing evidence indicates

that several glial receptors play critical roles in mediating

Aβ-induced glial responses and functions.

Microglial receptors

TREM2

TREM2 is a cell surface receptor comprising an extracel-

lular Ig-like domain, and is abundantly expressed in

microglia and macrophages [335, 336]. After ligand

binding, TREM2 transmits intracellular signals through

the associated transmembrane adapters DAP12 and

DAP10, which recruit the protein tyrosine kinase Syk

and phosphatidylinositol 3-kinase, leading to the phos-

phorylation of downstream players, including PI-3 K,

PLC-γ and Vav2/3 [337, 338]. Genome-wide sequencing

and GWAS showed that some TREM2 variants can sig-

nificantly increase AD risk by 2–4 fold [296]. The most

common TREM2 variant known to increase AD risk is

rs75932628, which encodes an arginine-histidine muta-

tion at amino acid 47 (R47H) [339, 340]. We and other

groups have recently shown that TREM2 acts as an Aβ

receptor that mediates a variety of microglial responses

to oAβ, where TREM2 binds, internalizes and degrades

Aβ through proteasomal pathways. Additionally, TREM2

interaction with DAP12 is enhanced by Aβ, activating

downstream phosphoregulatory SYK and GSK3β path-

ways. TREM2 deficiency impairs microglia-mediated Aβ

degradation, and reduces Aβ clearance in mouse brain

with oAβ injection [341, 342]. Consistently, TREM2 defi-

ciency in 5 × FAD mice, a genetic AD mouse model,

leads to increased amyloid plaques and an increased

number of dystrophic neurites [323, 343], whereas in-

creasing TREM2 levels can reduce plaque area and cog-

nitive impairment in AD mice [324]. In addition, AD-

associated TREM2 mutations reduce TREM2/Aβ inter-

action [324]. Taken together, these results suggest that

TREM2 plays a key role in Aβ degradation/clearance in

the brain, and mutations in TREM2 may contribute to

AD pathogenesis through impeding microglia-mediated

Aβ degradation. Interestingly, murine and human

TREM2 R47H variants may not be comparable, as mur-

ine Trem2 R47H variant results in the activation of a

cryptic splice acceptor site and thereby downregulating

Trem2 expression in mouse, whereas these effects are

not observed in human TREM2 R47H [344, 345].

Although it has been shown that TREM2 also regu-

lates tau pathogenesis, these results remain controver-

sial. TREM2 deficiency leads to aggravated tau

pathology, changes in microglial reactivity, and marked

signaling abnormalities in mouse models expressing all

six isoforms of human tau at 6 months [346]. However,

TREM2 deletion does not affect tau phosphorylation

and aggregation in tau P301S transgenic PS19 mice, but

alleviates gliosis and brain atrophy at 9 months of age

[347]. In addition, TREM2 deficiency or a TREM2 R47H

mutant can reduce microgliosis around Aβ plaques and

promote seeding and transmission of tau aggregates in

neuritic plaques [348]. Therefore, TREM2 may play dif-

ferent roles during different stages of AD progression.

LRP1

LRP1 is a type I transmembrane glycoprotein which me-

diates trafficking and degradation of a variety of ligands,

including APOE and Aβ [349–352]. In the CNS, LRP1 is

highly expressed in various cell types such as neurons

[353, 354], astrocytes [355, 356] and microglia [357,

358]. In neurons, LRP1 can regulate APP trafficking and

Aβ generation, though contrasting results have been

obtained in different experimental models [359]. In

addition, neuronal and astrocytic LRP1 regulates Aβ

clearance via mediating Aβ uptake and degradation [355,
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360]. However, LRP1-mediated internalization may not

be responsible for soluble Aβ uptake in microglia, as

blockade of LRP1 by an antagonist failed to impair

microglial uptake of aggregated Aβ [355]. Expression of

LRP1 in microglia is likely protective; LRP1 deletion or

downregulation in microglia increased LPS-induced in-

flammatory response, including induction of ameboid

morphology and release of pro-inflammatory cytokines

[357, 361]. Mechanistically, LRP1 can suppress micro-

glial activation by modulating c-jun N-terminal kinase,

as well as NF-κB signaling pathways [357]. It remains

unclear whether LRP1 affects microglial response to Aβ.

Other microglial Aβ related receptors

Microglia may express other putative Aβ receptors, in-

cluding Toll-like receptor 2/4 (TLR2/4) [362], comple-

ment receptor 3 (CR3) [363], Fc γ receptors IIb

(FcγRIIb) [364], CD36 [365, 366], advanced glycation

end product receptor (RAGE) [367]. These receptors co-

operatively bind, internalize and clear Aβ, in addition to

modulating microglial activation.

TLR2 can interact with aggregated Aβ and reduce

microglial neuroinflammatory response triggered by ag-

gregated Aβ [368]. In addition, TLR2 deficiency can en-

hance microglia-dependent Aβ phagocytic uptake [368].

TLR4 can participate in AD pathogenesis and induce

microglial inflammation phagocytosis through interactions

with Aβ [369]. TLR4 activation induced NF-κB nuclear

translocation, leading to the production of proinflamma-

tory mediators [370]. Additionally, TLR4 may regulate Aβ

accumulation, as AD mice carrying loss-of-function TLR4

mutants display more Aβ deposits compared with control

AD mice at 9months [371]. Dysregulation of the comple-

ment system may also contribute to AD pathogenesis:

C1q can enhance proinflammatory cytokines production

induced by Aβ42 [372]. In addition, C1q and a comple-

ment receptor CR3 has been shown to mediate early syn-

aptic loss in an AD mouse model [373]. oAβ injection in

WT mice increased synaptic loss and microglial phago-

cytic activity, while inhibition of CR3 activity could ameli-

orate synaptic loss and dysfunction caused by oAβ [373].

CD36 can bind to oAβ and contributes to AD pathogen-

esis by regulating cerebral inflammation in microglia

[341]. Fibrillary Aβ (fAβ)-induced secretion of inflamma-

tory factors and the recruitment of microglia /macro-

phages were significantly reduced in CD36 KO mice

[374]. Furthermore, CD36 mediates fAβ-induced signal

cascade which leads to the production of ROS and chemo-

kines [366]. The RAGE receptor binds to multiple ligands

and is a member within the immunoglobulin receptor

superfamily. In addition to advanced glycation end prod-

ucts, RAGE can bind to a variety of ligands, such as Aβ,

nerve axon growth factor, S100 protein, starch peptide

and thyroxine transferase. In AD patient brain, RAGE

binding to Aβ can promote microglia migration to amyl-

oid plaques and NF-κB activation, consequently leading to

neuroinflammatory activation [367]. In APP transgenic

mice, overexpression of RAGE in microglia increases glial

infiltration and Aβ accumulation, and exacerbates cogni-

tive function [375]. Neuronal FcγRIIb can bind to Aβ42

with a high affinity, and mediate neurotoxicity and mem-

ory impairment triggered by Aβ [240, 376–380]. Since

FcγRIIb is predominantly expressed in microglia, it is

likely that FcγRIIb also plays a role in mediating Aβ-

induced microglial response.

Although many receptors have been shown to mediate

microglial response to Aβ, several critical questions re-

main open: (1) Which receptor plays a key role in Aβ-

induced microglial activation? (2) What is the relation-

ship between these receptors in AD context? (3) Is acti-

vation or inhibition of microglia beneficial to AD?

Astrocytic receptors

α 7 subtype of nAChR (α7nAChRs)

Nicotinic acetylcholine receptor (nAChRs) is a classical

neurotransmitter receptor which is widely distributed in

the CNS, and participates in a variety of important

physiological functions such as cognition [381]. In the

CNS, nAChRs are expressed in neurons and glial cells,

including microglia, oligodendrocytes and astrocytes,

with highest expression in astrocytes among the glial

cells [382, 383]. Previous studies have shown that cogni-

tive deficits associated with AD may be partly caused by

dysfunction of α 7 subtype of nAChR (α7nAChRs) in

hippocampal neurons [384]. α7nAChRs activation re-

sults in Ca2+ influx and participate in the release of

neurotransmitters; α7nAChRs also regulate neuronal ex-

citability and LTP response, implicating a role for these

receptors in neuronal function [385–387]. In addition,

Aβ42 oligomers released from neurons can bind directly

to α7nAChRs in adjacent astrocytes, thereby inducing

astrocytic glutamate release [380]. Excreted glutamate

can activate extrasynaptic NMDAR in neurons residing

within neuron/astrocyte conjugates, resulting in Ca2+

efflux. This triggers multiple events, including mitochon-

drial dysfunction, caspase 3 activation, tau hyperpho-

sphorylation, and excessive production of NO, ROS and

VEG-F. These events result in damage to dendritic

spines and neuronal synapses, disrupting neuronal/astro-

cytic communication [380, 388].

Calcium-sensing receptor (CaSR)

CaSR is a member of family C of G protein coupled re-

ceptors (GPCRs) [389, 390]. CaSR proteins predomin-

antly form homodimers (CaSR/CaSR) or heterodimers

(CaSR/mGluR), although CaSR also functions as mono-

mers [391]. CaSR primarily mediates homeostasis of free

calcium [392], and regulates intracellular signals
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resulting from Ca2+ influx. CaSR is expressed in all cell

types within the CNS including astrocytes, and almost

all brain regions with enriched expression in the hippo-

campus [393–395]. In the brain, CaSR plays an import-

ant role in axonal and dendritic development, cell

proliferation and differentiation, the migration of neur-

onal and glial cells, and synaptic plasticity [396–398].

Growing evidence indicates that CaSR in astrocytes

plays an important role in inflammation and degenera-

tive brain diseases such as AD [399, 400]. Exogenous

Aβ42 oligomers bind to CaSR in neurons and astrocytes,

thereby activating intracellular signaling pathways that

block proteolytic degradation of Aβ42 oligomers, leading

to intracellular accumulation of Aβ [401]. Moreover, in-

teractions between Aβ42 oligomers and CaSR can also

induce NO production/secretion, and expression of ni-

tric oxide synthase-2 as well as vascular endothelial

growth factor-A through activation of MEK/ERK-

dependent pathways, thereby aggravating neuroinflam-

mation [394, 402]. The CaSR inhibitor NPS2143 can in-

hibit fibrillary Aβ25–35-induced Aβ42 production and

inflammation/neurotoxicity [402]. In conclusion, the role

of CaSR in Aβ production and tau phosphorylation may

implicate its modulation as a promising target in AD

therapeutics [403].

Other Aβ related receptors in astrocytes

In contrast to microglia, less studies describe a phago-

cytic role for astrocytes in AD [404–407]. Blocking re-

ceptors including CD36, CD47, and RAGE with

neutralizing antibodies can attenuate astrocytic phago-

cytosis of Aβ, implicating they are putative Aβ receptors

in astrocytes [407]. In addition, activation of RAGE may

lead to pro-inflammatory changes with Aβ exposure in

astrocytes [408]. RAGE co-localizes with intracellular

APP/Aβ in neurons, and human tau in astrocytes in the

CA1 region, and its expression increases in the 3xTg-

AD mouse model, suggesting that RAGE may be in-

volved in AD pathogenesis [409].

Glia and glymphatic pathway

The glial-lymphoid pathway, or glymphoid pathway, is

required for fluid homeostasis within the CNS [410].

This pathway comprises a periarterial CSF inflow chan-

nel, and a perivenous ISF outflow channel. These two

channels are connected by Aquaporin-4 (AQP-4) on as-

trocytes [410], whereby CSF flows into the cerebral

stroma from the periarterial space and mediates fluid ex-

change with ISF. Metabolites and tissue fluid enter the

perivenous space during exchange, ultimately feeding

into cerebrospinal fluid circulation, cervical lymphatic

vessels, or meningeal lymphatics [410–412]. Exchange

between CSF and ISF in the glymphatic system removes

metabolic waste and maintains the normal physiological

function in neurons and synapses [413]. Studies have

demonstrated a close relationship between the glympha-

tic system and AD. AD patients show altered CSF dy-

namics, thereby inducing impairments in CSF-

dependent Aβ clearance and consequent pathological Aβ

accumulation [414]. Moreover, inhibition of glymphatic

transport leads to a significant accumulation of Aβ in

APP/PS1 mouse brain [415]. On the other hand, Aβ ac-

cumulation hinders glymphatic circulation to aggravate

parenchymal Aβ deposition and neuronal death. Al-

though mechanisms have yet to be fully defined, Aβ de-

position may impair low-resistance fluidity in the

perivascular space within the glymphatic circulation sys-

tem [416].

In addition, perivascular AQP4 dysfunction is a poten-

tially important factor in accelerating AD pathogenesis

[417]. AQP4 deletion was found to increase Aβ accumu-

lation and astrocytic atrophy in APP/PS1 mouse brain,

with consequent effects on cognitive impairment [418].

Loss of polarized basal AQP4 distribution to endfeet in

post-mortem AD patients was significantly lower than

age-matched controls [417]. The glymphoid pathway is

also affected by other factors such as sleep. Sleep can in-

crease CSF circulation and accelerate transport and

clearance of Aβ [419]. Chronic sleep deprivation was

shown to enhance Aβ plaque deposition and patho-

logical tau spreading in mice [420]. Together, these re-

sults suggest that defects in glymphoid function can

promote pathogenesis of AD. Thus, restoring and en-

hancing glymphatic circulation may be potentially effect-

ive in AD prevention and treatment.

Glia and tau pathogenesis

Given that gliosis is observed in many tau transgenic

mouse models and tauopathy patients in the absence of

Aβ pathology, pathogenic tau species can activate micro-

glia and astrocytes independently of Aβ. Tau-dependent

microglial activation can enhance secretion of pro-

inflammatory cytokines such as IL-1β, IL-6, and TNF-α

[421–423]. Although how tau activates microglia to in-

duce inflammation is poorly understood, recent tran-

scriptomic studies demonstrate a role for NF-κB

activation and NLRP3-ASC in this process [424, 425].

Notably, Aβ also can activate NF-κB signaling and the

NLRP3-ASC inflammasome [426, 427], suggesting that

Aβ and tau share common mechanisms in microglia

activation.

Microglia modulate tau pathogenesis through direct

and indirect mechanisms. For example, microglia can

directly promote tau clearance through internalizing and

degrading pathological tau from AD brain [428], where

mechanisms underlying this phenomenon remain elu-

sive. Several studies demonstrate that CX3CR1 plays an

important role in mediating microglial phagocytosis and
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tau degradation. CX3CR1 binds to tau, and to a lesser

extent to hyperphosphorylated tau [263]. CX3CR1 defi-

ciency impairs microglia-mediated tau internalization

in vitro, and promotes the accumulation of hyperpho-

sphorylated tau in vivo [263, 429]. In addition to effects

on modulating tau clearance, microglia may also influ-

ence tau propagation through the formation of exo-

somes, as microglia depletion or inhibition of exosome

synthesis can block the propagation of hyperphosphory-

lated tau [251]. Microglia can also indirectly modulate

tau pathogenesis through inflammatory pathways; pro-

inflammatory cytokines released by activated microglia

can enhance tau pathology through activating tau ki-

nases, such as p38 and CDK5 [430, 431]. Therefore,

pathogenic tau and microglia activation may form cyc-

lical pathogenic events during AD development.

Astrocytes are directly involved in tau pathogenesis.

Although tau primarily accumulates in neurons, tau de-

position can also be observed in the astrocyte nucleus in

AD brain [432, 433]. Phosphorylation, fibrosis and asym-

metric accumulation of tau in astrocytes increased with

age in mice expressing P301L tau [434]. Similar to

microglia, astrocytes can also phagocytose extracellular

tau and contribute to tau spreading through transcrip-

tion factor EB [435]. Glial tau has been shown to medi-

ate toxicity through non-cell autonomous changes in

neurons, and autonomous effects in glial cells. Accumu-

lation of tau in astrocytes alters astrocytic function, in-

duces neuronal degeneration and promotes cell death

through a serial degenerative events, such as boosting

blood-brain barrier (BBB) collapse, and inducing expres-

sion of heat shock proteins with low molecular weight

[228, 434, 436, 437]. In addition, pathological tau may

impair astrocyte-mediated glutamate transport, resulting

in pathological glutamate accumulation in the brain and

the consequent excitotoxicity [438, 439].

In conclusion, it is likely that tau pathogenesis is trig-

gered by Aβ in AD, where pathogenic tau and Aβ syner-

gistically contribute to gliosis and neuroinflammation.

Reactive glial cells together with inflammatory compo-

nents further promote Aβ and tau pathogenesis to ag-

gravate the neurodegeneration.

Factors that contribute to AD pathogenesis

Genetic risk factors

Genetic susceptibility is a prevalent factor in determin-

ing AD onset and pathogenesis, where heritability of

various genetic factors are estimated to contribute to ~

60–80% of all AD cases [440]. Although APOE (APOE

ε4 in particular) was previously implicated as the sole

genetic risk factor for sporadic AD, recent whole-

genome sequencing studies and GWAS analysis identi-

fied additional genetic factors associated with AD risk.

These risk genes include TREM2, CD33, CR1, ABCA7,

SHIP1, BIN1, CD2AP, CLU, EPHA1, PICALM and

MS4A [441–445]. Meta-analysis of late onset AD

(LOAD) datasets identified other risk genes: CASS4,

CELF1, DSG2, HLA, DRB5, DBR1, FERMT2, NPP5D,

MEF2C, NME8, SLC24H4 RIN3, SORL1, ZCWPW1

[378]. Understanding the relationship between these AD

risk genes and their role in modulating cellular and

neuropathological features in AD will undoubtedly pro-

vide insight into mechanisms underlying AD onset.

Here, we summarize the impact and current knowledge

with respect to important genetic risk factors in AD

pathogenesis, with emphasis on APOE, CD33, BIN1,

SORLA and PU.1.

APOE

APOE is a 299 amino acid glycoprotein mainly produced

by liver, where liver-derived APOE accounts for more

than 75% of the total APOE in the body. The brain is

the second-highest source for APOE. In brain, APOE is

highly expressed in astrocytes and microglia, and in neu-

rons under stress [446–448]. The APOE gene locus on

chromosome 19 comprises three allelic variants: APOE2

(ε2), APOE3 (ε3) and APOE4 (ε4) [449, 450]. ε2 encodes

Cys residues at the position 112 and 158, ε3 encodes a

Cys residue at position 112 and a Arg residue at position

158, and ε4 comprises Arg residues at both positions

[447]. Structural and functional differences in APOE iso-

forms may be due to differential charge properties of the

variant amino acid residues in APOE alleles. Compelling

evidence demonstrates that the ε4 allele is potently asso-

ciated with late AD onset [318, 443, 451]. The global fre-

quency of the human ε4 allele is 13.7%, and the

frequency of ε4 carriers is increased to 40% in AD pa-

tients [452, 453]. APOE ε4 affects AD risk and age of

onset dose dependently [452, 454]. Clinical incidence

and average age of AD onset was found to be 91% at 68

years of age in ε4 homozygous carriers, 47% at 76 years

of age in ε4 heterozygous carriers, and 20% at 84 years

of age in non-ε4 individuals [453].

In APP transgenic mouse models, genetic expression

of human APOE4 was found to promote Aβ seeding, ac-

celerate Aβ oligomerization and deposition in the brain

[455, 456]. Lentiviral expression of human APOE4 in

AD mouse brain also increased ISF -oAβ levels and ag-

gravated plaque deposition, while APOE2 was observed

to reduce Aβ accumulation [457, 458]. In AD patients,

APOE4 enhances Aβ deposition, where 40.7% of middle-

aged APOE ε4 carriers featured senile plaques, com-

pared to 8.2% non-carriers identified with senile plaques

[459]. In addition, APOE4 carriers display decreased

Aβ42 levels in CSF compared to non-carriers [460, 461].

Furthermore, APOE4 is associated with enhanced mem-

ory impairment and memory loss. Studies showed that

APOE4 carriers featured decreased cortical thickness
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and smaller hippocampal volume, and with an advanced

mild cognitive impairment (MCI) age compared to non-

carriers [462–464]. Additionally, recent studies indicate

that APOE4 can impact neuronal synaptic activity and

function, astrocyte-associated lipid metabolism, and im-

mune reactivity of induced pluripotent stem cell-derived

microglia models. Compared to isogenic APOE3, APOE4

variants featured an increased number of synapses and el-

evated Aβ42 secretion in neurons, while APOE4 astro-

cytes showed impaired Aβ uptake and cholesterol

accumulation [465]. Of note, APOE4 also triggered in-

flammatory cascades, leading to neurovascular dysfunc-

tion, degeneration of the BBB, consequent penetration of

toxic proteins from blood into the brain and reduced

length of small blood vessels [466]. Thus, APOE4-related

cerebrovascular injury may play a key role in AD patho-

genesis. Interestingly, a potentially protective mutation in

APOE3 (Christchurch, R136S) has been recently identi-

fied. One particular case was reported where a woman

carrying a fully-penetrant familial early-onset PS1 E280A

mutation featured normal cognitive function until seven-

ties despite an abnormally high Aβ load, and showed lim-

ited tau pathology which correlated with two copies of the

APOE3 R136S allele [467].

APOE also affects tau pathogenesis and tau-mediated

neurodegeneration [468]. APOE4 significantly aggra-

vated tau-mediated neurodegeneration in a tauopathy

mouse model and induced tau aggregates in brain, while

genetic ablation of APOE attenuated tau-induced neuro-

degeneration [469, 470]. In addition, APOE ε2 is also as-

sociated with increased pathological tau levels in the

presence of amyloid [471, 472]. Studies have shown that

hyperphosphorylated tau species, tau aggregates and be-

havioral abnormalities were observed in APOE ε2/ε2

mice [471]. However, the association between these find-

ings and AD progression is unclear. Thus, further stud-

ies characterizing the pathobiology of APOE in the

context of AD are required to identify the association of

this risk factor and AD onset.

CD33

CD33 is a type of sialic acid-binding immunoglobulin-

type lectins which is mainly expressed in microglia in

the brain [473]. In 2011, GWAS analysis linked the

rs3865444 CD33 SNP to decreased AD risk [445, 474].

Generally, CD33 expression levels are elevated in AD,

where deficiencies in CD33 promotes protective effects

including enhancing microglial uptake of Aβ42, and re-

duces Aβ pathology in an AD mouse model. The

rs3865444 variant was shown to reduce the expression

of CD33, thereby promoting protecting effects poten-

tially through CD33 downregulation [325]. It will be of

interest in future studies to determine whether CD33

can directly bind Aβ and act as a bona-fide Aβ receptor.

BIN1

Bridging integrator 1 (BIN1) has been identified as the

most important genetic risk factor in LOAD after APOE

[475]. BIN1 is expressed in all neural cell types, and is

highly enriched in oligodendrocytes and microglia [476].

Some studies have shown that BIN1 expression is elevated

in AD patients [376, 477]. Although results with respect

to whether BIN1 can affect AD pathogenesis remain con-

troversial, it seems that BIN1 may affect AD risk by regu-

lating tau pathology. BIN1 overexpression has been shown

to reverse memory deficits in tau transgenic mice, and

neuronal BIN1 expression is inversely correlated with

pathological tau propagation [478, 479]. However, deletion

of BIN1 in microglia reduces tau secretion and spreading

in PS19 tau transgenic mice, suggesting BIN1 may act dif-

ferentially in neurons and microglia. In addition, the SNPs

of BIN1, such as rs744373 and rs7561528, may contribute

to AD susceptibility by impacting brain structure and

function [480, 481].

SORLA

SORLA is encoded by the SORL1 gene. SNPs in SORLA

can either increase or reduce AD risk. For instance,

rs668387, rs2070045, rs11218343 and rs3781834 appear

to be protective [474, 482], whereas other variants of

SORL1, such as rs143571823, aggravate AD pathogenesis

[483]. SORLA is involved in APP processing, Aβ secre-

tion and Aβ turnover [484]. Overexpression of SORLA

in neuronal cells can block amyloidogenic processing

and reduce Aβ production [485], whereas loss of SORLA

increased extracellular Aβ levels and plaque deposition

in several AD mouse models [486, 487]. In addition, we

recently reported that SORLA can interact EphA4 and

inhibit Aβ-induced EphA4 activation, thereby reducing

oAβ-induced synaptotoxicity [488]. Thus, SORLA may

protect against AD pathogenesis via multiple mecha-

nisms. As various AD-associated coding mutations in

addition to G511R and Y1816C have been identified for

SORLA, it will be of interest to determine how muta-

tions in SORLA affect AD pathology and brain function.

PU.1

PU.1, encoded by SPI1, is an important myeloid tran-

scription factor [489]. PU.1 is specifically expressed in

microglia in the CNS, and is fundamental to microglial

development [490]. Studies have shown that PU.1 can

regulate microglia and macrophage function such as

phagocytosis and inflammatory response. SPI1 depletion

down-regulates expression of phagocytosis related genes,

thereby impairs microglia-mediated phagocytosis. Redu-

cing PU.1 levels through miR124 overexpression can de-

crease expression of TNF-α, iNOS and MHC-II, thereby

suppressing neuroinflammatory response in macro-

phages [491]. In addition, PU.1 can regulate expression
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of genes associated with AD risk or onset, including

ABCA7, CD33, TREM2, MS4A4A, MS4A6A, TYROBP,

Aif1, and MYBPC3 [492, 493]. GWAS studies suggest

that reduced PU.1 expression associates with delayed

AD onset [492]. Although these findings suggest that

PU.1 can modulate AD pathogenesis, mechanisms

underlying PU.1-dependent pathogenic events require

further study.

Aging

Aging is the greatest risk factor for sporadic AD. In the

USA, the prevalence of AD in individuals over 65 years of

age is ~ 10%, over 85 years is ~ 32%, and over 95 years is

~ 50% [494]. Neurons in AD brain feature aging hallmarks

including genomic destabilization, decreased telomere

length, alteration in epigenetic signatures, and mitochon-

drial dysfunction [495]. Increased DNA oxidation was

observed in post mortem AD brain [496], MCI [497], and

preclinical AD [498], and may exacerbate AD progression

[499, 500]. Increased DNA damage in AD patients may re-

sult from deficiencies in base excision repair [501]. AD

mouse models with Polβ heterozygosity feature defective

DNA repair and showed increased synaptic and cognitive

deficits, neuronal dysfunction and cell death [502].

Telomeres comprise DNA sequence repeats at

chromosome ends. Characteristic telomere shortening is

observed during cellular aging, and has been linked to

increased risk of dementia in AD [503]. For example, an

allele on chromosome 10p12–14 (40 centimorgan from

the telomere) has been associated with increased AD

risk [504]. Telomere shortening may be accelerated by

oxidative insults, inflammatory elements, excessive

stress, and many other risk factors related to the AD on-

set [505].

Epigenetic mechanisms contribute various aspects of

age-related events in neurodegenerative disorders such

as AD. Diverse neurological phenotypes and biological

processes are regulated by epigenetic mechanisms, in-

cluding learning, memory and behavior [506, 507]. For

example, H4K12 histone acetylation is decreased in aged

mice, leading to deficits in the expression of genes asso-

ciated with learning and memory [170]. Histone acetyl-

ation is regulated by histone acetyl transferases and

histone deacetylases (HDACs). Expression of HDAC2 in-

creases with aging in AD mouse models and patients

[508]. HDAC2 overexpression reduces dendritic spine

density, and impairs synaptic plasticity and memory by

blocking expression of genes related to neuroplasticity,

whereas downregulation or inhibition of HDACs has

been proven successful in restoring synaptic and cogni-

tive function in AD animal models [508, 509]. DNA

methylation is associated with development and aging,

and can be used as an epigenetic clock to predict the age

of various cell and tissue types [510]. During aging,

global DNA hypomethylation is observed in many spe-

cies including rat, mouse, and human [511]. Hypomethy-

lated enhancer regions have been recently identified in

AD neurons, where they may affect the expression of

AD-relevant genes including tau kinases and BACE1

[512]. However, increased levels of DNA methylation in

AD brain has been reported in another study, where

changes in methylation of AD risk genes such as SORL1,

ABCA7 and BIN1 are associated with AD pathology

[513, 514]. Contrasting results from these studies may

be due to different experimental contexts (neurons vs.

brains) and differing experimental methods used in the

studies. Nevertheless, changes in DNA methylation and

its functional consequence in AD warrant further

investigation.

Reductions in metabolic pathways related to glucose

consumption have been well-characterized in AD, and is

likely caused by mitochondrial dysfunction [515]. Aging

typically leads to decreased ROS clearance and elevated

ROS activity. Excessive ROS accumulation can further

aggravate oxidative stress and mitochondrial DNA dam-

age and dysfunction [516]. The mitochondrial cascade

hypothesis proposes that mitochondrial dysfunction is

the primary trigger for events leading to sporadic late

AD onset [517]. In addition, defects in autophagy/lyso-

some pathways that remove damaged mitochondria are

also impaired in AD, thereby enhancing the accumula-

tion of dysfunctional mitochondria [518]. A recent study

reports that impairment of mitophagic activity can in-

duce synaptic dysfunction and trigger cognitive deficits

by enhancing Aβ and tau accumulation, and stimulation

of mitophagy reverses memory loss in nematode and

mouse models of AD [519].

Blood and blood-derived factors may be involved in

aging-induced cognitive impairment. A study using a

parabiosis mouse model comprising young and old mice

indicates that blood from young mice may rejuvenate or-

gans, where old mice showed improvements in synaptic

plasticity and cognitive behavior [520]. Interestingly,

parabiotic conjugation of AD mice with young WT mice

was found to restore synaptic and neuronal protein

levels in AD mouse brain, reversed aberrant ERK signal-

ing, and improved spatial and associative memory in AD

mice [521]. This has given way for clinical trials (Clinical

Trials.gov identifier: NCT02256306). Although how

young blood reversed aging-induced cognitive defects is

not clear, a recent study suggests that tissue inhibitor of

metalloproteinases 2 (TIMP2) plays a critical role in me-

diating human cord plasma-induced beneficial effects on

synaptic and cognitive function in aged mice [522].

Aged glial cells may also contribute to AD pathogen-

esis. Recent transcriptomic analysis of human cortical

microglia implicates that genes involved in actin assem-

bly normally required to mediate morphogenic changes
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in microglia are downregulated during aging. As dy-

namic filamentous actin (F-actin) assembly is essential

to microglia morphogenesis, migration, and Aβ uptake/

clearance, these results suggest that fundamental micro-

glial functions are impaired with age [523]. Other studies

have also shown that young microglia can restore defects

in Aβ clearance in aged microglia, where aged microglia

exposed to conditioned media from young microglia, or

granulocyte-macrophage colony-stimulating factor treat-

ment could reduce amyloid plaque size in a mouse

model ex vivo [524]. In addition, aged microglia may

promote the conversion of astrocytes to a neuroinflam-

matory A1-state through microglia-derived cytokines.

Indeed, A1-astrocytes are abundantly prominent in aged

brain under both normal and LPS stimulated conditions

[525]. It will be of great interest to explore the relation-

ship between aged microglia, astrocytes and neurons in

future studies.

Environmental factors

Viral and bacterial infection

A potential role for microbes and antimicrobial defense

in AD pathogenesis was initially hypothesized in 1952

[526]. Since the 1980’s, several groups proposed that AD

onset bears similarity to subacute sclerosing panencepha-

litis, caused by the lentiviral form of herpes simplex virus

(HSV) [527, 528]. Many studies have linked AD to a di-

verse variety of bacterial and viral pathogens [529–531].

Related pathogens include Helicobacter pylori, various

bacteria of the liver, gut, lungs (pneumonia) and mouth,

as well as viruses to include Epstein Barr virus, CMV,

HIV, oral herpes HSV-1, genital herpes HSV-2, human

herpesvirus (HHV)-6A/HHV-7 (recently reviewed in

[530]). These pathogens can infiltrate the CNS and dysre-

gulate AD-associated neurological function.

The role of HSV-1 has attracted much recent attention

in AD pathogenesis. HSV-1 is a neurotropic DNA virus,

and normally manifests latent infections in the trigemi-

nal ganglion with periodic reactivation. Meta-analysis

from various literature databases indicate that AD risk

increased 1.3 times with HSV in the brain, and risk in-

creased 2.7 times in concurrent HSV-1/APOE4 carriers

compared to controls [532]. In APOE4 carriers, latent

HSV-1 is intermittently reactivated by immunosuppres-

sion, peripheral infection and inflammation, followed by

neurological damage and AD onset [533]. Epidemio-

logical studies indicate that HSV-positive individuals fea-

ture markedly higher risk in developing AD compared to

seronegative subjects, and antiviral therapy reduced AD

onset [533]. In mice with recurrent HSV-1 infection,

HSV-1 was shown to spread and proliferate in different

brain regions following reactivation by thermal stress.

This was accompanied by the occurrence of pathological

events associated with AD including Aβ deposition, tau

hyperphosphorylation and neuroinflammation [534].

Additionally, chronic HSV-1 infection induced persistent

microglial activation, consequently inducing antiviral

IFN-β expression, while also generating neurotoxic fac-

tors, such as ROS, TNF and NO. ATP and MMP3 re-

leased from damaged neurons then acts to further

activate microglia. Together, chronic activation of micro-

glia mediated by HSV-1 infection triggers a vicious cycle

of CNS inflammation [535]. Of note, recent studies

showed that Aβ is an antimicrobial peptide that protects

the body from fungal and bacterial infections. oAβ binds

to herpesvirus surface glycoprotein and protects 5 × FAD

mice from HSV-1 by accelerating Aβ deposition [536]. A

recent multi-omic study identified an enrichment of

HHV-6A and HHV-7 in AD patients compared to con-

trols [529–531]. Significant overlap exists between the

expression of AD-associated genes and genomic viral

load in the CNS; for example, viral abundance may de-

termine AD progression through the regulation of genes

associated with APP processing [529–531].

Periodontal bacterial infection by pathogens such as

Porphyromonas gingivalis may also play a role in AD. Spe-

cific proteins and DNAs from P. gingivalis have been iden-

tified in AD brain. Oral P. gingivalis infection increases

Aβ42 generation, where Aβ42 can also be toxic to P. gingi-

valis [537]. In addition, inhibition of Gingipain, a virulence

factor produced by P. gingivalis can effectively reduce P.

gingivalis brain infection and the consequent toxic effects

in the hippocampus [537]. Although this study implies

that P. gingivalis may contribute to AD pathogenesis, fur-

ther evidence may be required to confirm the association

of P. gingivalis and AD.

Metal ions

Post-mortem analysis in AD patients reveals the accu-

mulation of metal ions such as copper, iron and zinc

(5.7, 2.8 and 3.1 times, respectively) over levels observed

in normal brain, demonstrating a close correlation be-

tween AD and redox metal dysregulation [538]. The dis-

tribution of these metals is closely related to Aβ and tau

metabolism. Copper, iron and zinc deposits are observed

within the core and periphery of senile plaques, and co-

localize with Aβ [539]. Copper overload increases APP

expression and Aβ generation, while overexpression of

CUTA (the mammalian CutA divalent cation tolerance

homolog of Escherichia coli), a BACE1 trafficking regula-

tor, attenuates Aβ production without affecting APP ex-

pression [540]. Use of Cu2+ chelators can inhibit ROS

production triggered by Cu-Aβ, and reversed episodic

memory impairment in non-transgenic AD mice [538,

541]. Accumulation of copper is also observed in the

NFTs [506]. Copper can bind to tau in vitro [542, 543],

and enhance tau phosphorylation by activating CDK5/

P25 in AD transgenic mice (APPswe, PS1, P301Ltau)
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[544, 545]. Iron can affect lipid peroxidation through in-

teractions with iron-dependent oxidases such as lipoxy-

genase, subsequently activating ferroptosis to accelerate

AD progression [541, 546, 547]. Zinc may aggravate AD

pathogenesis, as zinc can bind Aβ and promote Aβ accu-

mulation. In addition, the accumulation of zinc can cause

synaptic and memory defects [548]. Mechanistically, high

concentrations of Zinc released into the synaptic cleft can

induce neurotoxicity through NMDAR and AMPAR in-

hibition [548]. Of note, the presence of magnesium ions

in vivo may have protective effects in AD; studies have

shown that AD is associated with deficiencies in magne-

sium (Mg2+) in serum or brain [549, 550]. Reduced Mg2+

levels can decrease Ca2+ influx mediated by NMDAR and

damage-associated learning and long-term memory defi-

cits in Drosophila [482]. In addition, Mg2+ treatment can

reduce soluble Aβ by stabilizing BACE-1 expression, thus

reversing cognitive impairment and synaptic loss in AD

mice [551]. Together, restoration of metal ion balance in

the brain may be beneficial to AD.

Stress

Growing evidence suggests that long-term exposure to

stress is a risk factor for AD which may accelerate disease

progression. Vulnerability to stress and higher levels of

anxiety are significantly associated with the incidence of

dementia [552]. Environmental and external stress can

lead to psychological stress and the subsequent cellular

stress exacerbated by inflammation and oxidative damage

[553–555]. Psychological stress activates the

hypothalamic-pituitary-adrenocortical (HPA) axis, eventu-

ally leading to the secretion of glucocorticoid into the

bloodstream, where blood glucocorticoid enters the brain

through the BBB to activate the glucocorticoid receptor

(GR in human) and mineral corticosteroid receptor (MR

in mice) [556, 557]. Chronic stress causes long-term acti-

vation of the HPA axis [558], accompanied by permanent

depletion of receptors and loss of hippocampal neurons

[559]. The glucocorticoid cascade hypothesis suggests that

HPA axis dysfunction may be a sensitizing factor in the

pathogenesis of AD and other neurodegenerative diseases.

Lifestyle habits

Sleep

Sleep deprivation (SD) is a common health concern in

older people. Mounting evidence suggests that sleep dis-

orders increase AD risk [560–562], and about 15% of

AD cases may be attributed to sleep problems [560].

Sleep disorders may manifest at early stages of AD onset,

but seem to correlate more severely with cognitive de-

cline [563, 564]. The origin of SD in AD is unclear but is

considered to involve multiple factors.

SD may exacerbate cognitive deficits in AD through

impairment of sleep-dependent memory consolidation

[565, 566]. In addition, SD can affect both Aβ and tau

metabolism. SD is associated with fluctuations in CSF

Aβ, as well as Aβ deposition in the brain [567]. In

humans, SD increases CSF levels of Aβ38, Aβ40, and

Aβ42 through the enhancement of Aβ production [568,

569]. In animal models of AD, chronic mild sleep re-

striction aggravates contextual memory impairment, cor-

tical Aβ accumulation and tau hyperphosphorylation

[570, 571] A recent study shows that tau levels in mouse

ISF and human CSF are higher during normal wakeful-

ness versus sleep. Chronic SD increases pathological tau

spreading in mice. In addition, chemogenetic induction

of wake states in mice significantly increases both ISF

Aβ and tau [420]. Aβ clearance is thought to be en-

hanced during sleep [572], although how SD regulates

Aβ and tau metabolism remains unclear [419]. Using ad-

vanced neuroimaging, a recent study reveals that waves

of CSF flow appear during sleep in human brain. It is

possible that tau and Aβ clearance is enhanced by CSF

circulation, which may be impaired by SD [573]. In con-

trast to SD, enhancing normal sleep patterns may allevi-

ate AD pathogenesis, as extension of sleep duration

decreases plaque deposition in animal models [574].

Therefore, establishing and maintaining normal sleep

patterns and remediating SD may reduce AD risk.

The gut microbiota

The human gut microbiota comprises approximately 1014

microbes [575], which is 10 times greater than the num-

ber of non-microbial cells that make up the human body

[576]. Gut microbiota play a crucial role in maintaining

human health. Specifically, gut microbes synthesize and

release a number of functional co-enzymes and nutrients

including folates, biotin, B vitamins, amino acids and

other factors [577]. Human gut microbiota can also form

a protective barrier which inhibits colonization of patho-

genic bacteria and inhibits pathogens from adhering to

intestinal cells [578]. Recent studies have investigated the

impact of the gut microbiota on brain function and neu-

rodegenerative diseases such as AD and PD.

5-HT (serotonin) levels in blood from Germ-free (GF)

mice are decreased compared to mice with normal gut

microbiota; where serotonin levels are restored with re-

constitution of the gut microbiome [579]. As serotonin

can reduce Aβ plaque formation and AD risk [580], GF

conditions may modulate Aβ pathology through alter-

ations in serotonin. In addition, expression of NMDAR

and BDNF is significantly reduced in GF mice [572, 581,

582], suggesting that microbiota may affect brain func-

tion through these components in the CNS.

Broad-spectrum antibiotics can reduce the abundance

and diversity of gut microbiota, leading to an imbalanced

microbiome (dysbiosis). Dysbiosis in weaned rats leads

to impaired spatial memory and reduced NMDAR and
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BDNF levels in the brain [582, 583]. In addition,

long-term use of antibiotics in adult mice reduces

neuronal regeneration in the hippocampus and im-

pairs cognitive function [584]. However, antibiotics

can reduce Aβ deposition and plaque-associated glial

reactivity in an AD mouse model [585]. Therefore,

further study may be required to elucidate the effect

of different antibiotics on AD.

Intestinal bacteria can regulate brain function through

the production of toxins and metabolites. For instance,

cyanobacteria can produce neurotoxic-N-methylamino-

L-alanine, saxitoxin and anatoxin. These toxins have

been shown to exacerbate AD pathology [586, 587].

However, not all intestinal bacteria are deleterious; pro-

biotic microbial species such as Lactobacillus brevis and

Bifidobacterium dentium can produce GABA (the major

inhibitory neurotransmitter) to maintain normal brain

function [588].

Abnormal gut microbiota has been reported in several

AD mouse models [589, 590]. For example, gut micro-

biota from APP/PS1 mice differs significantly compared

to wild-type mice. The abundance of microbes such as

Helicobacteraceae, Desulfovibrionaceae, Odoribacter and

Helicobacter is elevated in APP/PS1 transgenic (Tg)

animals, whereas microbes such as Firmicutes, Verrucomi-

crobia, Proteobacteria, Actinobacteria are reduced in Tg

animals [591]. Interestingly, learning and memory in Tg

animals can be improved through probiotic transplant-

ation of microbiota from young control wild-type mice to

Tg animals. Microbial transplantation also restores deficits

in synaptic plasticity in Tg mice and decreases levels of

phosphorylated tau, Aβ40 and Aβ42 [592]. In ADLPAPT

transgenic mice which develop both amyloid and tau

pathologies, transplantation of fecal microbes from WT

mice into ADLPAPT mice ameliorates Aβ plaque and

neurofibrillary tangle formation, glial reactivity and cogni-

tive impairment [593]. Thus, fecal microbial transplant-

ation may be a potential therapeutic strategy for AD.

High dietary fat and sodium

Obesity and AD both have an alarmingly high prevalence

in Western society [594]. High fat diet is thought to con-

tribute directly to several key aspects of AD, including in-

creased accumulation of Aβ, tau hyperphosphorylation,

and inflammation of peripheral organs and brain [595–

597]. High dietary salt is a risk factor for dementia [598,

599]. A very recent study shows that high dietary salt leads

to cognitive dysfunction of mice in a manner dependent

on tau. Mechanistically, high salt intake induces tau

hyperphosphorylation through the activation of calpain

and CDK5, which may be a result of nitric oxide defi-

ciency [600]. Therefore, high salt diet may increase risk

for the onset of AD and other tauopathies.

CAA/stroke/vascular defects

Cerebral amyloid angiopathy(CAA)is a common cere-

brovascular disorder which is characterized by the de-

position of amyloid proteins such as Aβ in cerebral

vessels. CAA is not only a factor leading to stroke

(namely cerebral hemorrhage and ischemic brain le-

sions), but also an important risk factor for dementia

[601]. In AD, the prevalence of CAA can reach as high

as 80–90% [602], likely as a result in elevated patho-

logical levels of Aβ. Advanced stage CAA in AD patients

aggravates cognitive decline and enhances odds of trig-

gering dementia onset [603]. Cerebrovascular dysfunc-

tion is one of the earliest abnormalities detected in

CAA, which also manifests in early stages of AD onset

[604]. In addition, brain atrophy is a pathological feature

common to both disorders [605]. It has been suggested

that vascular damage associated with CAA disrupts vas-

cular drainage and homeostasis in the CNS, thereby

impairing Aβ clearance and aggravating AD pathogen-

esis [606]. Furthermore, dysregulation of astrocytic water

channels such as AQP4 in CAA may contribute to AD

pathogenesis [607]. AQP4 levels are reduced in CAA;

since AQP4 plays a vital role in glymphatic Aβ clearance

in AD brain parenchyma, this consequently impairs Aβ

clearance [606, 608]. Indeed, dysfunction of astrocytic

water and potassium channels is observed in AD patient

brain and AD mouse models.

In addition, some genetic risk factors are common to

both CAA and AD. For example, increased APP gene

dosage is associated with CAA and Down syndrome-AD

[609]. Several PSEN1 mutations are associated with AD

and correlates with pathological CAA severity [610].

Furthermore, APOE is the most potent risk factor for

sporadic CAA and AD onset [611, 612].

Others factors

In addition, there are other factors that affect the inci-

dence of AD, including non-coding RNAs, blood brain

barrier, high systolic blood pressure, education and gen-

der. Non-coding RNAs including microRNAs (miRNAs),

long non-coding RNAs (lncRNAs), and circular RNAs

(circRNAs) may be involved in AD pathogenesis. miR-

NAs are required to regulate gene expression and enact

phenotypic changes in human diseases. Most miRNAs

characterized so far are derived from human brain.

Many of these miRNAs are responsible for maintaining

normal synaptic formation and function, neurotransmit-

ter release, and neurite growth. Alterations in miRNA

levels have been observed in AD and other neurodegen-

erative disorders [613]. miRNAs may participate AD

pathogenesis by modulating amyloidogenic pathways: for

example, miR-346 can up-regulate APP translation and

Aβ production [614]. In addition, miRNAs can activate

PPAR-γ, thereby stimulating NF-κB pathways to induce
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cytokine release and consequent Aβ production [615].

However, how a particular neurodegenerative environ-

ment within pathological contexts can alter miRNA

levels, and consequential effects in modulating the

miRNA milieu requires further elucidation. Levels of

several lncRNAs species are increased in the brain of

LOAD patients [616]. LncRNAs may accelerate AD pro-

gression through various mechanisms. The lncRNA BC1

can induce spatial learning and memory impairment by

enhancing APP translation in AD mouse brain [617].

The lncRNA EBF3-AS is upregulated in the brain of AD

mice, and downregulation of EBF3-AS can reduce Aβ-

induced neuronal apoptosis [618]. In addition, the

lncRNA SOX21-AS1 is able to induce oxidative stress

injury in neurons by up-regulating Wnt signaling in an

AD mouse model [619]. CircRNAs primarily act as en-

dogenous anti-complementary miRNA “sponges”. A very

recent study has established an association between cir-

cRNA expression and AD [620]. AD-associated cir-

cRNAs correlate with the expression of several AD-

related genes, and may regulate AD-relevant pathways

through binding to miRNAs. For instance, circCDR1-AS

comprises multiple miRNA-7 binding sites. As decreased

circCDR1-AS levels lead to downregulation of mRNAs

targeted by miR-7 [621], and elevated miRNA-7 levels

can downregulate the expression of genes involved in

Aβ clearance [622], circCDR1-AS may affect Aβ metab-

olism. Nevertheless, the exact roles for circRNAs in AD

progression are almost unknown and this is an interest-

ing area that should be explored in future.

The BBB prevents neurotoxic plasma components,

pathogens, and blood cells from entering the brain, and

regulates the molecular transport of components into and

out of the CNS to homeostatically regulate the neuronal

extracellular environment [623, 624]. Growing evidence

indicates that BBB damage and early cerebrovascular dis-

ease increase risk of dementia and age-related disorders

such as AD [625–627]. Damage to the BBB can lead to

dysfunctional P-glycoprotein-1-mediated efflux, leading to

the accumulation of toxic exogenous substances in the

brain. Decreased cerebral blood flow, coupled with in-

creased Aβ levels induced by BBB deterioration can also

aggravate tau pathology [628, 629].

Hypertension is an additional AD risk factor:

epidemiological studies have shown that hypertension in

middle aged individuals (rather than seniors) is associ-

ated with an increased risk of AD and dementia. Inter-

estingly, higher education seems to be associated with a

protective role of preventing AD onset [630]. Meta-

analyses indicate that people with a higher education,

occupation of high societal status, and increased

intelligence or IQ feature a decreased risk of AD onset

[631]. This suggests that education and intellectual func-

tion may possibly confer resistance to pathological

changes associated with AD [632]. Women are at a

higher risk for developing AD compared to men. The ef-

fects of gender on AD risk have been attributed to vari-

ous factors including hormone levels, gene expression,

and brain development [633]. Some evidence suggests

that early menopause induced by oophorectomy are AD

risk factors specific to women [513]. In addition, a

higher life expectancy in women may also contribute to

higher AD incidence observed in females.

Lessons from the clinic

So far, the FDA has only approved five drugs for AD.

Significantly, these drugs merely modulate AD symp-

toms; no drugs have been shown to effectively prevent

or stop AD progression. Moreover, effects of these drugs

gradually dissipate over time, ultimately losing their effi-

cacy. No new drugs have been approved by the FDA for

AD since 2003. Recent efforts during the last few years

have seen a surge in the development in new AD drugs

in both academia and industry. While recent failures in

phase 3 clinical trials by Merck, Pfizer, J&J, Eli Lilly and

Roche have been rather discouraging, the most probable

explanation for these failures may be derived from the

inadequacy of animal models used, initiation of treat-

ment at late/irreversible stages during the course of AD

development, complications arising from drug dosage,

and targeting ineffective targets. These factors are due in

large part to an incomplete understanding of complex-

ities in AD pathophysiology [634].

Most AD models comprise transgenic mutants associ-

ated with familial early-onset AD, which may not be ideal

for sporadic AD research. Given that more than 95% of

all AD cases are sporadic [635], it is necessary, albeit diffi-

cult, to develop non-familial AD models may be more

relevant to human AD pathogenesis. Recent studies have

indicated that adult rhesus monkeys can effectively model

AD-related neurodegeneration in primate brain, and may

represent a more appropriate model for AD [636, 637].

Clinical trials targeting Aβ production have seen very

little success. For example, clinical trials for drugs target-

ing γ-secretase, including γ-secretase inhibitors such as

Semagacestat (Eli Lilly) and Avagacesta (Bristol-Myers

Squibb) programs have been terminated due to a lack in

efficacy and/or appearance of severe side effects. Since

the γ-secretase complex cleaves physiological substrates

other than APP such as Notch, γ-secretase inhibitors

may affect other physiological functions in addition to

APP processing. Similarly, inadequate efficacy and/or se-

vere side effects in clinical trials with BACE1 inhibitors

such as Verubecestat and Atabecestat [638–640] have

also been reported. Although inhibition of β-secretase

activity is predicted to reduce Aβ production, BACE1 in-

hibitors were seen to increase cleavage of APP by other

secretases, thereby enhancing the production of
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pathogenic APP metabolites [36]. In addition, BACE1

KO mice exhibit a variety of neurological defects [641–

643], indicating that BACE1 mediates many fundamental

functions in brain. In addition, conditional BACE1 dele-

tion in neurons feature axon guidance defects [644], sug-

gesting that BACE1 deletion may have additional non-

autonomous roles in neurons. Immunotherapeutic ap-

proaches targeting Aβ have also been subjected to clin-

ical testing. Aducanumab (Biogen/Eisai) is a human

monoclonal antibody targeting amyloid β fibrils and sol-

uble oligomers [645]. Recently, Biogen has announced

that higher dosages of Aducanumab show 23% improve-

ment in AD patients in one of two phase 3 trials.

BAN2401 is a monoclonal antibody targeting large and

soluble Aβ protofibrils. Phase 2 clinical results for

BAN2401 indicate that it can remove Aβ and slow cog-

nitive decline. Phase 3 clinical trials are currently on-

going to evaluate the efficacy of BAN2401 in patients

with mild AD. In these trials, BAN2401 is being tested

in asymptomatic individuals with Aβ plaques in very

early stages of disease onset [646, 647]. Considering fail-

ures in previous clinical trials, treatment at this stage

may also be too late to show adequate efficacy, as neuro-

degenerative synaptic damage and neuronal loss are irre-

versible pathogenic events [648]. Treatments that can be

administered at earlier stages of onset should be consid-

ered in future studies.

Tau is also a critical therapeutic target in AD. Methy-

lene blue and its derivatives have been tested for its abil-

ity to inhibit tau accumulation, but have yet to produce

positive effects in clinical trials. A possible explanation

for this may be derived from effects of methylene blue

on increasing granular tau oligomers which may trigger

neuronal death, despite concurrent effects in reducing

tau fibril formation [649]. Moreover, use of tau kinase

inhibitors such as the GSK-3 inhibitor Tideglusib to at-

tenuate pathological tau hyperphosphorylation also

showed little or no efficacy in Phase 2 trials, probably

due to the critical role of GSK-3 in multifunctional sig-

naling pathways [650, 651]. Despite these failures, hope

Fig. 1 A model for Aβ-induced neurotoxicity and glial response in AD. a APP processing and Aβ generation. Aβ is generated by APP cleavage in

acidified compartments such as late endosomes, and subsequently released from neurons. Extracellular Aβ sequentially assemble into Aβ

oligomer aggregates (oAβ), fibrils, and ultimately amyloid plaques. b Aβ-mediated neuronal dysfunction. oAβ can disrupt synaptic function

through LTP impairment and LTD enhancement. A variety of potential neuronal Aβ receptors such as EphA4, PrPc, EphB2, NMDAR, and LiLRB2

have been shown to bind Aβ and transduce synaptotoxicity. SORLA can inhibit EphA4-mediated synaptic and cognitive dysfunction with oAβ

exposure. Fyn kinase is an important regulator for NMDAR-mediated oAβ neurotoxicity. oAβ also can alter mitochondria function to induce

caspase-3 activation, ATP reduction and ROS upregulation, thereby aggravating synaptic dysfunction. c Effects of Aβ on microglia. oAβ may

activate microglia through binding to the putative Aβ receptors such as TREM2, LRP1, RAGE, TLR4 and CD36. Specifically, the binding of Aβ to

TREM2 activates SYK pathway through DAP12, an adaptor protein for TREM2, and leads to the degradation of Aβ. d Aβ-dependent microglia/

astrocyte interactions, and Aβ-mediated astrocyte dysfunction. APOE released from the astrocytes binds Aβ, which enhances Aβ/APOE

interactions with LRP1. Activated microglia release proinflammatory such as TNF-α, IL-1β, IL-6 and IL-8, which can activate astrocytes. In addition,

oAβ can potentially activate astrocytes directly through α7-nAchR, CaSR, CD36, CD47 and AQP4. Activated astrocytes may damage neurons

through extracellular glutamate dyshomeostasis/excitotoxicity, TNF-α, IL-1β and IL-6
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lingers in targeting tau in the clinic, with trials currently

testing the efficacy of tau-targeting monoclonal anti-

bodies in clinical trials [652].

Conclusions

AD pathogenesis involves pathogenic contributions from

multiple components and alterations in behavior of vari-

ous cell types within the CNS. Aβ is generated in neu-

rons and then released to the extracellular space, where

it can be degraded or cleared by microglia and astro-

cytes. Increased Aβ production or impaired Aβ degrad-

ation/clearance leads to Aβ accumulation. Tau is mainly

expressed in neurons, and highly modulated through

various PTMs. Abnormal PTMs, LLPS, and pathogenic

tau seeds can cause tau aggregation and accumulation

through different mechanisms. Tau pathology may be

propagated during disease progression, and glial cells

play an important role in the process of seeding and dis-

persion. oAβ and other forms of Aβ aggregates, together

with tau accumulation can cause neuronal dysfunction

and glial activation and the subsequent neuroinflamma-

tion; these events are regulated by various receptors

expressed in neurons, microglia and astrocytes (Figs. 1

and 2).

Genetic factors can cause or affect AD pathogenesis.

Early-onset AD is mainly due to mutations in APP and

PS1/2, which are involved in Aβ generation, while late-

onset AD is largely associated with a group of genes

enriched in glial cells, such as APOE and TREM2, which

are important for Aβ clearance and glial function.

Therefore, differential mechanisms may be involved in

different forms of AD. In addition, other factors such as

Fig. 2 A model for tau pathogenesis. a Tau is a microtubule-binding protein, which can undergo various types of post-translational modifications

(PTMs), such as phosphorylation and truncation. Under disease conditions, aberrant PTMs induces tau dissociation from microtubules, leading to

tau aggregation and oligomer formation. Tau oligomers can further aggregate to form PHFs and NFTs in neurons. Tau aggregates can induce

mitochondria fragmentation, impair synaptic vesicle mobility and release, thereby leading to presynaptic dysfunction. In addition, pathological tau

species such as truncated tau and tau oligomers can be released to the extracellular environment via exosomes or directly from the plasma

membrane. b Tau is normally distributed to compartments other than postsynaptic densities. Hyperphosphorylated and truncated tau species

may enter postsynaptic compartments to consequently impair LTP by modulating Fyn/NMDAR complexes. Extracellular pathogenic tau species

may be internalized in neurons through a HSPGs-mediated pathway to induce the aggregation of intracellular tau. c Extracellular tau can bind

CX3CR1 receptors, and subsequently internalized by microglia for degradation. Alternatively, tau released from neurons can enter microglia

through unknown mechanisms. Internalized tau may be modified and re-released from microglia to the extracellular space via exosomes, and

then taken up by adjacent neurons to induce tau propagation. In addition, pathological tau species can activate microglial NF-κB and NLRP3

inflammasome pathways, leading to pro-inflammatory cytokine release. Excessive pro-inflammatory cytokines can increase the activity of tau

kinases such as CDK5 and P38, thereby exacerbating tau hyperphosphorylation
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aging, metal ion, virus, and microbiota may also contrib-

ute to AD pathogenesis via various mechanisms. Despite

much knowledge that we have gained, no effective treat-

ment strategies for AD have been successfully developed.

Intervention for early-onset AD may require treatment

at a young age, as Aβ aggregation and accumulation

manifests early onset forms of the disease. Importantly,

there are no drugs targeting Aβ that have been proven

safe for clinical treatment for youths. Mechanisms for

late-onset/sporadic AD are complex and subtypes of

late-onset AD may exist. However, most of the available

AD animal models carrying early-onset AD-associated

mutations can only mimic early-onset AD. Development

of animal models to recapitulate pathogenesis of late-

onset AD may be beneficial to compare early and late

stage forms of AD. This may uncover mechanisms spe-

cific to late-onset AD which represents over 90% of AD

cases, and potentially provide new insights to therapeutic

targets for treatment.
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