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Induced pluripotent stem cells (iPSCs), and cells derived from them, have become key tools to 

model biological processes, particularly in cell types that are difficult to access from living donors. 

We present the first map of regulatory variants in iPSC-derived neurons, based on 123 

differentiations of iPSCs to a sensory neuronal fate. Gene expression was more variable across 

cultures than in primary dorsal root ganglion, particularly in genes related to nervous system 

development. Using single-cell RNA-sequencing, we found that the fraction of neuronal vs. 

contaminating cells was influenced by iPSC culture conditions prior to differentiation. Despite 

high differentiation-induced variability, using an allele-specific method we detected thousands of 

quantitative trait loci (QTLs) influencing gene expression, chromatin accessibility, and RNA 

splicing. Based on our QTLs, we estimate that recall-by-genotype studies using iPSC-derived cells 

will require at least 20-80 individuals to detect the effects of regulatory variants with moderately 

large effect sizes.

Introduction

Cellular disease models are critical for understanding the molecular mechanisms of disease 

and for the development of novel therapeutics. In principle, induced pluripotent stem cell 

(iPSC) technology enables the development of these models in any human cell type. Initial 

uses of iPSCs for disease modelling have focused mostly on highly penetrant, rare coding 

variants with large phenotypic effects1–5. However, there is growing interest in using iPSCs 

to model the effects of the common genetic variants of modest effect size that drive complex 

disease6. A key question is to what extent variability in directed differentiation is a barrier to 

studying the effects of common disease-associated variants in iPSC-derived cells. In 

addition, because cultured cells are imperfect models of primary tissues, not all common 

disease-associated genetic variants also alter cell phenotypes in iPSC-derived systems.

Here, we present the first large-scale study of common genetic effects in a neuronal cell type 

differentiated from human stem cells, iPSC-derived sensory neurons (IPSDSNs). Peripheral 

sensory nerve fibres innervate the skin and other organs and are brought together at the 

dorsal root ganglia (DRG) before synapsing with the spinal cord around the dorsal horn. The 

development of efficient protocols to differentiate iPSCs into nociceptive (pain-sensing) 

neurons7 provides the opportunity to model common genetic effects on human sensory 

neuron function, which may underlie individual differences in pain sensitivity and chronic 

pain. We investigate how power to detect common genetic effects is affected by the 

variability introduced by differentiation and demonstrate how initial iPSC growing 

conditions influence cell phenotypes in IPSDSNs. We identify quantitative trait loci (QTLs) 

for gene expression, RNA splicing, and chromatin accessibility and identify overlaps 

between molecular QTLs and common disease associations. In generating this gene 

regulatory map we establish effective techniques for using iPSC-derived neurons to model 

molecular phenotypes relevant to common diseases.
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Results

Sensory neuron differentiation and characterisation

We obtained 107 IPS cell lines derived from unrelated apparently healthy individuals by the 

HIPSCI resource8, and followed an established small molecule protocol7 to differentiate 

these into sensory neurons of a nociceptor phenotype (Figure 1a , Supplementary Tables 

1-3). We performed 123 differentiations; 13 using an early version of the protocol (P1) 

which was subsequently refined (P2) to reduce the number of differentiation failures. After 

QC exclusions (Supplementary Figure 1), we had gene expression data for 119 

differentiations from 100 unique iPSC donors; all analyses apart from QTL calling focused 

on the 106 P2 protocol samples only.

We clustered our gene expression data with 239 iPSC samples from the many of same 

donors, 28 post-mortem DRG tissue samples from 10 donors, and 44 primary tissues from 

the GTEx project9 (Figure 1b). Globally, IPSDSN samples showed greatest similarity to 

iPSCs (gene expression correlation Spearman ρ=0.89), followed by DRG (ρ=0.84). Because 

different gene expression quantitation methods were used in GTEx, we cannot be certain of 

relative similarities between GTEx tissues and the samples we uniformly processed 

(IPSDSNs, iPSCs, DRG). The similarity to iPSCs may reflect lack of maturity in IPSDSNs, 

which is a well-recognized problem with iPSC-derived cells10–13. We also note that 

because the same iPSCs were differentiated to IPSDSNs, both donor genetic background 

and cell culture effects may contribute to the observed similarity. Despite this, key sensory 

neuronal marker genes were highly expressed in IPSDSNs, while pluripotency genes were 

not (Figure 1c). Using Ca2+ flux measurements on a subset of differentiated cultures (n=31) 

we confirmed that the cells consistently responded to sodium ion channel modulators 

veratridine and tetrodotoxin (Supplementary Figure 2). Patch-clamp electrophysiology on 

616 individual neurons from 31 donors (Supplementary Figures 3,4) showed that the 

distribution of rheobases was comparable to those obtained from primary DRG cells, but 

with significant variation between donors (Supplementary Figure 5).

Quantifying differentiation variability using single-cell RNA-seq

In previous work we showed that not all individual cells express neuronal marker genes after 

differentiation7. Samples also appeared to differ visually in the fraction of cells with a 

neuronal morphology. To characterize this heterogeneity, we sequenced 177 IPSDSN cells 

from one individual and clustered them based on expression profiles using SC314. The data 

were best explained by two clusters (Figure 2a and Supplementary Figure 6), with 63% of 

cells forming a tight cluster expressing sensory-neuronal genes (e.g. SCN9A, CHRNB2), 

and the remaining 37% of cells forming a looser cluster expressing genes typical of 

fibroblasts (e.g. MSN, VIM). The two cell types also separated cleanly in a principal 

components plot (Supplementary Figure 7), indicating that the cells differentiated to distinct 

cell states. Gene expression in the neuronal cluster was most similar to DRG (Spearman’s 

ρ=0.654), followed by iPSCs (ρ=0.609) (Supplementary Figure 8) while the fibroblast-like 

cluster was most similar to GTEx fibroblasts (ρ=0.683), DRG (ρ=0.662), and iPSCs 

(ρ=0.653).
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Next, we used CIBERSORT15 to estimate the fraction of RNA from neuronal cells in our 

bulk RNA-seq samples, using the single-cell gene expression counts as signatures of 

neuronal or fibroblast-like expression. The estimated neuronal content correlated strongly 

(R2=0.75) with the first principal component of gene expression, and this corresponded well 

with a visual assessment of neuronal content from microscopy images (Figure 2b, 

Supplementary Figures 9,10). Although CIBERSORT estimated relatively high fibroblast-

like content for many samples (mean 49%), a factor contributing to this may be the greater 

RNA content (2.3-fold greater; Supplementary Figure 11) of fibroblast-like cells. Indeed 

when the single-cell counts were pooled, CIBERSORT estimated the fibroblast content of 

this “sample” as 60%, considerably higher than the 37% of single cells in the fibroblast-like 

cluster. Despite this, IPSDSN samples estimated to have high fibroblast content still showed 

greater similarity in genome-wide gene expression with DRG than with any GTEx tissue, 

including fibroblast cell lines (Supplementary Figure 12).

Heterogeneity in IPSDSN gene expression

A central issue for genetic studies in iPSC-derived cells is heterogeneity of cellular 

phenotypes. This heterogeneity could arise from donor genetic background, effects of clonal 

selection and effects of the cell culture environment during reprogramming and 

differentiation. Genome-wide gene expression was highly correlated within lines 

differentiated multiple times (median Spearman ρ=0.96) and reduced slightly between 

IPSDSNs from different donors (median ρ=0.93) (Supplementary Figure 13). However, 

differentiation replicates within donor cell lines did not consistently cluster together 

(Supplementary Figure 14), suggesting that variability due to differentiation was at least as 

large as that due to donor genetic background and iPSC reprogramming together. Indeed, we 

observed a high degree of heterogeneity in the expression levels of some genes compared 

with DRG (Figure 1c and Supplementary Figure 15). These observations were independent 

of sample size, and were robust when comparing with DRG samples from unique donors 

only (Supplementary Figure 16).

Next, we compared between-sample variability in global gene expression of IPSDSNs, 

measured as the coefficient of variation (CV) for each gene, to other somatic tissues and cell 

lines. The distribution of gene CVs in IPSDSNs (median CV=0.37) fell within the range of 

most GTEx tissues (Figure 3a), but was considerably higher than in DRG (median 

CV=0.23), indicating that IPSDSNs have greater between-sample variability in expression 

than the primary tissue they are intended to model. Highly variable genes in IPSDSNs were 

enriched for function in neuronal differentiation and development (Supplementary Table 4), 

whereas developmental genes were not highly variable in DRG, iPSCs, or GTEx nervous 

tissues (Supplementary Figure 17). Genes that were significantly upregulated between iPSCs 

and IPSDSNs, which includes those essential for sensory neuronal function, were also more 

variable than remaining genes (Supplementary Figure 18). These results highlight that 

expression of neuronal genes varies substantially more in IPSDSNs than in somatic nervous 

tissue, probably as a result of variability in differentiation. Consistent with this, variance 

components analysis (Figure 3b, Supplementary Figure 19) showed that more variation was 

explained by differentiation batch (median 24.7%) than donor/iPSC line of origin (median 

23.3%), which includes both donor and reprogramming effects.
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iPSC culture conditions influence cell fate

Our variance components analysis suggested that starting iPSC cell culture conditions 

influenced gene expression patterns in the IPSDSNs produced four weeks later (Figure 3). 

Of the 106 successful P2 protocol differentiations, 27 were from iPSCs maintained on 

mouse embryonic fibroblast (MEF) feeder cells (feeder-iPSCs), while the remaining 79 were 

grown in Essential 8 medium (E8-iPSCs). The first principal component (PC) of iPSC gene 

expression clearly differentiated feeder- and E8-iPSCs (Figure 3e), indicating that culture 

conditions are among the largest global effects on transcription. Similarly, PC1 of gene 

expression in IPSDSNs distinguished samples originating from feeder- and E8-iPSCs; 

moreover, IPSDSNs from E8-iPSCs had higher neuronal content (Figure 3f, 28% higher for 

E8-iPSCs, t-test p=1.84x10-5). A possible technical explanation for these results is that 

protocol implementation and batch effects changed subtly over the course of the project. 

However, the difference in neuronal content between IPSDSNs derived from E8 or feeder-

iPSCs remained when sample derivation date was included as an explanatory covariate 

(linear regression p=6.5x10-4, 36% higher for E8-iPSCs, Supplementary Figure 20).

Next, we determined genes that were differentially expressed between E8- and feeder-iPSCs 

(Figure 3c,d). Genes upregulated in feeder-iPSCs were strongly enriched for mesenchyme 

development, stem cell differentiation, and Wnt and TGF-β signalling (Supplementary 

Tables 5-7). Notably, inhibition of TGF-β/SMAD signalling is a key step in sensory 

neuronal differentiation. Top differentially expressed genes include early developmental 

regulators EMX1 (15-fold higher in E8-iPSCs), important for specific neuronal cell fates, 

and BMP2 (13-fold higher in feeders), which has been shown to suppress differentiation to 

sensory cell fates by antagonizing Wnt/beta-catenin16 (Figure 3e). In addition, sensory 

neuronal markers SCN9A and TAC1 were expressed at low levels in iPSCs, with 2.2-fold 

and 2.9-fold higher expression in E8-iPSCs. We also considered genes differentially 

expressed between IPSDSNs derived from E8- and feeder-iPSCs (Figure 3d). Genes 

upregulated in IPSDSN samples from feeder-iPSCs were overrepresented in extracellular 

matrix components, pattern specification, and Wnt signalling (Supplementary Tables 8-10, 

Figure 3f). Genes upregulated in IPSDSN samples from E8-iPSCs were overrepresented in 

ion channel complexes, peripheral nervous system development, and synapse organisation. 

These differences likely reflect the increased neuronal content of samples from E8-iPSCs. 

Together these results suggest that iPSCs are primed towards different cell fates depending 

on the iPSC culture medium.

Since iPSC culture conditions influenced differentiation outcomes, we examined gene 

expression variability within subsets of IPSDSN samples. IPSDSNs differentiated from 

feeder-iPSCs had somewhat higher global gene expression variability, yet those from E8-

iPSCs were still highly variable relative to DRG and iPSCs (Supplementary Figure 21), with 

neuronal and developmental gene sets enriched for highly variable genes (Supplementary 

Table 11).
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Genetic variants influence gene expression, splicing and chromatin accessibility in 

sensory neurons

Using a linear model (FastQTL17), we mapped 1,403 expression quantitative trait loci 

(eQTLs) at FDR 10%. This number of eQTLs was lower than in GTEx tissues of 

comparable sample size (Supplementary Figure 22), suggesting that we may have reduced 

power for eQTL discovery due to variability introduced by differentiation. Using an allele-

specific method18 we detected 3,778 genes with expression-modifying genetic variants, 

termed eGenes, at FDR 10% (Supplementary Table 12). Notably, the improvement in power 

from using allele-specific signals was greatest among genes with high variability across 

samples (Supplementary Figure 23).

We next compared our eQTLs with GTEx. When clustering tissues based on the pairwise 

correlation in eQTL effect sizes, IPSDSNs clustered most closely with GTEx brain tissues, 

while also showing elevated correlation with GTEx fibroblasts (Supplementary Figure 24). 

Of all 3,778 eGenes, 954 showed little or no association in GTEx v6p (Supplementary Table 

13), and these included genes with known involvement in pain or neuropathies, such as 

SCN9A, GRIN3A, and NTRK2, suggesting that these genes have regulatory variants with 

IPSDSN-specific function.

Variants affecting gene splicing (sQTLs) often change either protein structure or context-

dependent gene regulation, and may be more enriched for complex trait loci than are 

eQTLs19. Using the annotation-free method LeafCutter20 followed by FastQTL17 we 

discovered QTLs for 2,079 alternative splicing clusters at FDR 10% (Supplementary Table 

14). Notably, only 538 (26%) of the lead variants for these splicing associations were in 

linkage disequilibrium (LD) r2>=0.5 with an eQTL in our dataset, indicating that these 

sQTLs are not merely proxies for gene-level eQTLs (or vice versa).

We collected ATAC-seq data for 31 samples21 and used this to map 6,318 chromatin 

accessibility QTLs (caQTLs) at FDR 10% (Supplementary Table 15). Using the LOLA 

Bioconductor package22 we found strong enrichment of our tissue-specific lead QTL SNPs 

(relative to GTEx lead SNPs) within SMARCB1 and SMARCC2 peaks (odds ratios 5.8 and 

14.1; p < 5x10-5, Supplementary Tables 16,17), which are both members of the neuron-

specific chromatin remodeling (nBAF) complex23. IPSDSN eQTLs and ATAC-seq peaks 

were enriched for ELK1 and ELK4 bidning, as well as c-Fos, a target of ELK1 and ELK4 

which is widely expressed but is known to have specific functions in sensory neurons24,25 

(Supplementary Table 18).

Sensory neuron QTLs overlap with complex trait loci

While we were interested in comparing our QTLs with GWAS for pain, the largest such 

GWAS to date included just 1,308 samples and found no associations at genome-wide 

significance26. We therefore considered all GWAS catalog associations with p < 5x10-8 that 

were in high LD (r2 > 0.8) with a QTL in our dataset, to (a) determine whether any GWAS 

traits are enriched overall for overlap with sensory neuron QTLs, and (b) to find individual 

QTLs that were strong candidates to mediate a GWAS association. Overall, IPSDSN eQTLs 

were enriched for overlap with GWAS catalog SNPs (p<0.001) relative to 1000 random sets 
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of SNPs matched for minor allele frequency, distance to nearest gene, gene density, and 

LD27, and the overlap was consistent with that seen for eQTL studies in other tissues 

(Supplementary Figure 25). Although nociceptive neurons are specialized for sensing pain 

signals, we might expect enrichment for traits known to involve the nervous system more 

generally. However, among the 41 traits with at least 40 GWAS catalog associations, no trait 

had significantly greater overlap with our QTLs than other traits after correcting for multiple 

testing (Supplementary Table 19).

Across all traits, we found 156 eQTLs overlapping at least one GWAS association, and 

similarly 129 sQTLs and 172 caQTLs with GWAS overlap (Supplementary Tables 20-22). 

Among overlapping associations we found a number that relate to neuronal diseases. One 

striking overlap is between an eQTL for SNCA, encoding alpha synuclein, and Parkinson’s 

disease, for which a likely causal variant was recently identified10. The lead GWAS SNP 

and our lead eQTL are both in perfect LD with rs356168, in an intron of SNCA. Soldner et 

al. used CRISPR/Cas9 genome editing in iPSC-derived neurons to show that rs356168 alters 

both SNCA expression and binding of brain-specific transcription factors10. In IPSDSN 

cells we found that the G allele of rs356168 increased SNCA expression 1.14-fold, in line 

with their report of 1.06- to 1.18-fold increases in neurons and neural precursors. Despite 

residing in a visible ATAC-seq peak in our data, rs356168 was not a caQTL (raw p=0.22). 

eQTLs for SNCA are reported in GTEx (v6p), but none of the tissue lead SNPs are in LD (r2 

> 0.2) with rs356168, suggesting that this SNP’s effect can be more readily detected in 

IPSDSNs and the frontal cortex tissue and iPSC-derived neurons studied by Soldner et al.

We also found multiple compelling overlaps between splice QTLs and GWAS associations 

(Figure 4). A strong sQTL for TNFRSF1A (p=9.9x10-29) has the same lead SNP 

(rs1800693) as a multiple sclerosis association. This SNP has been experimentally shown to 

cause skipping of exon 6, which results in a truncated, soluble form of TNFR1 that appears 

to reduce TNF28. TNFRSF1A is highly expressed (>15 FPKM) in both IPSDSNs and in 

DRG, as well as in cells of the immune system. TNF signalling has been shown to have both 

inflammatory and neuroprotective effects in the CNS and, despite a large body of research, 

the exact mechanisms and cell types responsible for the genetic risk associated with TNF 

receptor polymorphisms remain unclear29.

An sQTL for SIPA1L2 (rs16857578) is in LD with associations for both Parkinson’s disease 

(rs10797576, r2=0.93) and blood pressure (rs11589828, r2=0.94). An unannotated 

noncoding exon (chr1:232533490-232533583) between alternative SIPA1L2 promoters is 

included in nearly 50% of transcripts in individuals with the reference genotype, but splicing 

in of the exon is abolished by the variant (Figure 4b). SIPA1L2, also known as SPAR2, is a 

Rap GTPase-activating protein expressed in the brain and enriched at synaptic spines30 

though its function is not yet clear. Interestingly, the related protein SIPA1L1 exhibits an 

alternative isoform with an N-terminal extension that is regulated post-translationally to 

influence neurite outgrowth31.

A complex sQTL for APOPT1 (rs4906337) is in near-perfect LD with a schizophrenia 

association (rs12887734). The splicing events involve skipping either of exon 3 only or both 

exons 2 and 3 (Figure 4c). At least 20 variants are in high LD (r2 > 0.9), including 
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rs4906337, 40 bp from the exon 3 acceptor splice site, and rs2403197, 63 bp from the exon 4 

donor splice site. APOPT1 is localized to mitochondria, and homozygous loss-of-function 

mutations lead to Cytochrome c oxidase deficiency, with affected individuals having variable 

motor and cognitive impairments and peripheral neuropathy32.

Recall-by-genotype studies in iPSC-derived cells will require large sample sizes

One attractive use of iPSCs is to experimentally characterise GWAS loci using a “recall-by-

genotype” approach. Here, iPSC lines with specific genotypes are chosen from a large bank 

and differentiated into target cell types (for example, see ref.12). Our observations suggested 

that the cellular heterogeneity introduced by differentiation could impact the power of these 

studies to detect the effects of common genetic variants. Importantly, our large set of 

differentiations gave us accurate genome-wide estimates of effect size and expression 

variability in an iPSC-derived cell type. We investigated the performance of iPSC-based 

recall-by-genotype studies by bootstrap resampling from a stringent (FDR 1%) IPSDSN 

eQTL call set. For each eGene we sampled expression counts from an equal number of 

major and minor homozygotes for the lead SNP, sampling with replacement to achieve a 

specific sample size. We then estimated power as the fraction of 100 bootstrap replicates 

with a significant difference (p<0.05, two-tailed Wilcoxon rank sum test) in expression 

between homozygotes.

Our results illustrate important trends. First, recall-by-genotype studies in iPSC-derived cells 

are likely to require relatively large sample sizes, typically 20-80 unrelated individuals, for 

variants with a 1.5 to 2-fold allelic fold change (Figure 5a). Second, highly variable genes 

are more challenging, with power below 40% in a sample size of 20 for even moderately 

variable genes (CV 0.5 - 0.75). While expression noise will not typically be known 

accurately a priori, an estimate of effect size may be available from previous eQTL studies, 

in principle enabling estimation of the sample size required to achieve a desired power.

Note that these power estimates assume that a single gene is being tested, which implies a 

very strong prior belief in the causal gene in the region. Where multiple genes are tested, 

power will be further reduced. Large sample sizes will likely also be required when using 

genome editing to identify causal GWAS-associated variants: although genetic background 

can be controlled in such an experiment, differentiation noise will continue to be a major 

contributor to gene expression variability.

Discussion

iPSC-derived cells enable the molecular mechanisms of disease to be studied in relevant 

human cell types, including those which are inaccessible as primary tissue samples. Because 

the effect sizes of common disease-associated risk alleles tend to be small, observing their 

effects in cellular models is challenging10,11. In an iPSC-based system, this difficulty is 

compounded by variability between samples in the success of differentiation, as described 

for hepatocytes33, hematopoietic progenitors34, and neurons35,36.

Our study is the first that we are aware of to perform iPSC differentiation to a neuronal cell 

type and functionally characterise the resulting cells at scale. Sample-to-sample variability in 
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gene expression in the iPSC-derived cells was greater than in DRGs, with highly variable 

genes enriched in processes relating to neuronal differentiation and development. This 

highlights that genes likely to be of particular interest and relevance for the function of these 

cells are also among the most variable, a challenge which may be broadly true of iPSC-

derived cells. We detected thousands of eQTLs, sQTLs, and caQTLs in IPSDSNs, using a 

model that combines allele-specific and between individual differences in expression to 

improve power for association mapping. Some of these overlap known expression-

modifying variants associated with disease, such as an eQTL for SNCA associated with 

Parkinson’s disease. However, for most of these disease overlaps the causal variants are not 

known, and await in-depth dissection of individual loci in iPSC-derived neurons.

Our study highlights the potential power of iPSC-derived cells for studying human genetic 

variation, but also illustrates the limitations of this approach. First, despite expressing key 

marker genes and exhibiting neuronal morphology and electrophysiology, IPSDSNs are 

transcriptionally distinct from DRG. This reflects a limitation of existing in vitro 

differentiation protocols, which produce cells that are not as functionally or transcriptionally 

mature as primary tissues. Second, our differentiations did not produce pure populations of 

neurons. Although we used single-cell RNA-seq to estimate neuronal content in bulk 

IPSDSN samples, we could not measure the purity of the resulting cultures precisely. Some 

of the sample-to-sample variability that we observed is likely due to this mixture of cell 

types, which varied across differentiations. Mature neurons can be labeled for marker genes, 

but are not easily sorted by automated systems, which limits the high-throughput options 

available for purifying neuronal populations. As a result, our QTLs do not represent those of 

a pure sensory neuronal cell type. For many cell types, sorting could provide one solution to 

the heterogeneity of differentiated cell populations.

The similarity of the fibroblast-like single cells to DRG raises the question of whether these 

cells are immature sensory neurons. Single-cell sequencing at multiple time points during 

MYOD-mediated myogenic reprogramming has suggested that some cells traverse a desired 

course, while others terminate at incomplete or aberrant reprogramming outcomes37. Such 

an approach in IPSDSNs could reveal determinants of neuronal differentiation trajectories, 

and may yield insights for protocol changes to improve the purity of differentiated neurons, 

or to specify more precise neuronal subtypes. More generally, replacing bulk RNA-seq with 

single-cell sequencing across many samples could enable in silico sorting of cells based on 

their transcriptome, and better characterisation of the sources of variation within a 

differentiated population of cells. Further, culturing cells from multiple donors in a pool, 

along with an scRNA-seq readout, could reduce differentiation-related batch effects while 

retaining the ability to identify donor-specific genetic effects on gene expression. These 

advantages suggest to us that a move towards scRNA-seq will be extremely useful in iPSC-

derived cell models.

For iPSC models of common disease-associated variants to be used effectively, it is critical 

to know which variants exhibit a detectable cellular phenotype in vitro. We estimated the 

sample sizes needed to detect the effects of regulatory variants in iPSC-derived cells using a 

recall-by-genotype design. Power above 80% is only achieved with surprisingly large (40+) 

samples, even for alleles with a fold change of 1.5 to 2. Even larger samples will be needed 
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when multiple genes in a GWAS interval are tested. These observations are consistent with a 

recent genome-editing experiment that required 136 differentiations in hepatocyte-like cells 

to discover an effect of rs12740374 on SORT1 gene expression12. Notably, the modest 

effect of this variant on expression in hepatocyte-like cells (1.3-fold increase) stands in 

contrast to the large effect of the variant (>=4-fold increase) observed previously in primary 

liver38. Protocol changes that Where it is possible to use a coding SNP to assess the allele-

specific effect of a genome edit, as done for SNCA10, this may prove a more efficient 

approach to detecting causal effects of individual regulatory variants. In the future, improved 

differentiation protocols that show reduced variability will also enhance the ability to detect 

regulatory variant effects.

In summary, our catalog of QTLs reveals a large set of common variants and target genes 

with detectable effects in iPSC-derived neurons. These associations provide promising 

targets for functional studies to fine-map causal disease-associated alleles, such as by allelic 

replacement using CRISPR-Cas9, and our study describes the importance of considering 

differentiation-induced variability when planning these studies in iPSC-derived cells.

Online methods

IPS cell lines

A summary of iPSC lines used is available in Supplementary Table 2, and details of 

processes and assays for these iPSCs generated by the HIPSCI project are available at 

www.hipsci.org. Briefly, 107 human iPSCs from 103 healthy donors were obtained from 

HIPSCI8. Of these, 38 were initially grown in feeder-dependent medium and the remainder 

were grown in feeder-free E8 medium. All HIPSCI samples were collected from consented 

research volunteers recruited from the NIHR Cambridge BioResource (http://

www.cambridgebioresource.org.uk), initially under existing ethics for iPSC derivation (REC 

Ref: 09/H0304/77, V2 04/01/2013), with later samples collected under a revised consent 

(REC Ref: 09/H0304/77, V3 15/03/2013).

Sensory neuron differentiation

All differentiations in this study were performed by a single individual, and a summary of 

the IPSDSN cell lines is in Supplementary Table 1. Two protocols were used, named P1 (13 

differentiations) and P2 (110 differentiations). P1 protocol samples were included for QTL 

calling, and other analyses used P2 protocol samples exclusively. The P1 protocol (described 

in7) involved the addition of “2i” inhibitors (LDN193189 and SB-431542) for 5 days, 

followed by “5i” inhibitors (LDN193189, SB-431542, CHIR99021, DAPT, SU5402) for 6 

days. When applying this protocol to a larger number of samples we observed excessive cell 

death prior to obtaining neural progenitors (days 9-12). We altered the protocol to make it 

more similar to that of Chambers et al.39, by:

• using E8 rather than mTeSR1 media when maintaining iPSCs prior to 

differentiation;

• phasing in neurobasal media beginning at day 4, and gradually increasing this to 

100% by day 11;
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• beginning addition of inhibitors 5i at day 3 rather than day 5;

• stopping addition of small molecule inhibitors LDN193189 and SB-431542 

beginning at day 7 rather than day 11, referred to as “3i” for the 3 inhibitors that 

continued to be added.

Functional assays (Ca2+ flux, response to Veratridine) confirmed that response of the 

sensory neurons produced by each protocol was equivalent; however, the P2 protocol 

performed more consistently across cell lines and culture parameters.

P2 protocol—All reagents were from Life Technologies unless otherwise indicated. 

Clump-passaged iPSCs were single-cell seeded in E8 media on growth factor-reduced 

Matrigel (BD Biosciences) 48 hours prior to neural induction (day 0). KSR Media was 

prepared as 500ml DMEM-KO 130 ml Knockout Serum Replacement Xeno-Free, 1x 

NEAA, 1x Glutamax, 0.01 mM β-mercaptoethanol (Sigma). KSR media containing small 

molecule inhibitors LDN193189 (100 nM) and SB-431542 (10 µM) was added to cells from 

day 0 to 3 to drive anterior neuroectoderm specification. From day 3, CHIR99021 (3 µM), 

DAPT (10 µM) and SU5402 (10 µM) were also added to further promote neural crest 

phenotypes. N2B27 media was progressively phased in every two days from D4. N2B27 

Media was prepared as 500 ml Neurobasal medium, 5 ml N2 supplement, 10 ml B27 

supplement without vitamin A, 0.01mM β-mercaptoethanol (Sigma) and 1x Glutamax. On 

day 7, inhibitors LDN193189 and SB-431542 were no longer used, while CHIR99021, 

DAPT, and SU5402 continued to be added. On day 11 cells were reseeded at 150,000 

cells/cm2 in maturation media containing N2B27 media with human-b-NGF, BDNF, NT3 

and GDNF (each at 25 ng/ml). Mitomycin-C treatment (1 µg/ml) was used once at day 14 

for 2 hrs to reduce the non-neuronal population. Cells were differentiated in T25 flasks for 

RNA and nuclei isolation, and onto coverslips and 96-well plates for electrophysiology and 

Ca2+-flux assays.

P1 protocol—All reagents and concentrations used were identical to the P2 protocol; the 

difference was timing of addition. Clump-passaged iPSCs were single-cell seeded in 

mTeSR1 iPSC (StemCell Technologies, Vancouver) media on growth factor-reduced 

Matrigel (BD Biosciences) 48 hours prior to neural induction (day 0). KSR media 

containing LDN193189 and SB-431542 was added to cells from day 0 to 5. From day 5, 

CHIR99021, DAPT and SU5402 were also added. As for the P2 protocol, cells were 

reseeded on day 11, and treated with Mitomycin-C on day 14.

Single-cell RNA sequencing

Full details are in the Supplementary Note. Briefly, blood-derived iPSCs from a single 

individual, who was not a HIPSCI donor, were differentiated to IPSDSNs in 3 batches using 

the P2 protocol, and were matured for 8 weeks. This differed from the bulk RNA-seq 

samples, which were matured for 4 weeks. Although gene expression changes are minor 

after 4 weeks maturation7, this difference in maturity may have influenced our estimates of 

neuronal content in bulk samples. Dissociated cells were prepared using a Fluidigm C1 and 

the Illumina Nextera XT kit, and sequenced by Illumina Nextseq500 (2x75bp). Reads were 

aligned to GRCh38 and Ensembl 80 transcript annotations using STAR v2.4.0d with default 
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parameters. We excluded 9 cells expressing fewer than 20% of the ~56,000 quantified genes, 

and then used SC314 to cluster the remaining 177 cells based on expression counts. We 

examined alternative numbers of clusters from k=2 to 5 (Supplementary Figure 6). With two 

clusters, marker genes clearly identified one cluster (111 cells) as neuronal, whereas the 

other cluster (66 cells) had high expression of extracellular matrix genes reminiscent of 

fibroblasts. With 3 and 4 clusters, the sensory-neuronal cell cluster remained unchanged, and 

the fibroblast-like cluster became further subdivided. This suggests that a majority of the 

cells in this sample were terminally differentiated into sensory neurons, whereas the 

remaining cells were more heterogeneous in their gene expression.

Genotypes

We obtained imputed genotypes for all of the samples from the HIPSCI project. We used 

CrossMap (http://crossmap.sourceforge.net/) to convert variant coordinates from GRCh37 to 

GRCh38, and used bcftools (http://samtools.github.io/bcftools/) to retain only bi-allelic 

variants (SNPs and indels) with INFO > 0.8 and MAF > 0.05 in the 97 samples used for 

QTL calling.

RNA sequencing

The 131 RNA samples corresponded with 103 unique HIPSCI donors, as some samples 

were differentiation or RNA-extraction replicates. One sample failed in sequencing and was 

excluded. For QTL analyses, reads for each sample were aligned to GRCh38 and Ensembl 

79 transcript annotations using STAR v2.4.0j with default parameters. Using VerifyBamID 

v1.1.2 40 we identified 5 mislabeled RNA samples for which the matching genotypes could 

be determined, as well as two samples with no matching genotypes and which were thus 

excluded. For comparisons among tissues, reads were aligned to the 1000 Genomes 

GRCh37d5 reference with Gencode v19 transcript annotations using STAR 2.5.3a.

Gene expression quantification, quality control and exclusions

Gencode Basic transcript annotations, GRCh38 release 79, were downloaded from 

www.gencodegenes.org. Gene expression was counted for uniquely mapping reads using 

featureCounts (v1.5.0)41 with options (-s 2 -p -C -D 2000 -d 25). A median of 45 million 

reads were generated per sample, with median 32.8 million reads (72%) uniquely mapping 

and assigned to genes. After excluding short RNAs and pseudogenes, we normalised 

expression counts for 35,033 genes using the R package cqn v5.0.242.

We determined pairwise correlation between samples using normalized counts for 14,215 

expressed genes (CQN > 1) and the first five principal components of gene expression 

against each other. We excluded four outlier samples from subsequent analyses 

(Supplementary Figure 1), leaving 126 samples from 97 donors. For QTL calling, replicate 

BAM files from same donor were merged together using samtools.

To assess gene expression replicability, we determined the spearman correlation coefficient 

of CQN-normalized expression between samples across all genes for (a) extraction 

replicates, (b) differentiation replicates, and (c) all possible pairs of samples from different 

donors, and plotted the histogram of correlation coefficients in Supplementary Figure 13.
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DRG samples and sequencing

Human tissue acquisition and handling was performed at Pfizer Neuroscience and Pain 

Research Unit in accordance with regulatory guidelines and ethical board approval. 

Postmortem human DRG were obtained in dissected form from Anabios or as an 

encapsulated sheath together with sensory/afferent axons from National Disease Research 

Interchange and were subsequently dissected to isolate the cell-body rich ganglion. The 

tissue was homogenised in QIAzol Lysis Reagent according to weight and processed 

according to the manufacturer's instructions for the Qiagen RNeasy Plus lipid-rich kit. RNA 

was prepared with the Illumina TruSeq Stranded mRNA Library Prep Kit and sequenced 

(2x100 bp reads) on Illumina HiSeq 2500. Reads were aligned to GRCh37 using STAR and 

gene counts and FPKMs obtained using featureCounts and Ensembl v75 gene annotations.

Highly variable genes in IPSDSNs and GTEx

For each of the 44 GTEx tissues, as well as IPSDSNs, DRG, and HIPSCI iPSCs, we 

calculated the coefficient of variation (CV) of each gene’s RPKM expression among 

samples of the same tissue (SMTSD in GTEx metadata). In each tissue, we subsetted the 

genes considered to those expressed at RPKM > 1. We plotted the distribution of CVs across 

all genes for each tissue as Figure 3a.

We used GeneTrail2 (https://genetrail2.bioinf.uni-sb.de) to do a gene set over-representation 

analysis for the top 1000 most variable genes in IPSDSNs by CV (Supplementary Table 4). 

Similarly, gene set over-representation analysis in E8-IPSDSN subsets was done using 

Genetrail2 and the top 1000 most variable genes with RPKM > 1 (Supplementary Table 11).

Variance components analysis

For Figure 3b, we selected the 106 P2 protocol IPSDSN samples after QC exclusions, and 

used DESeq2 to get FPKM values for each gene after size factor normalization. We included 

all genes with mean FPKM > 1, and input log2-transformed counts per sample into the 

variancePartition R package, with design formula (1|donor) + (1|differentiation) + (1|gender) 

+ (1|wasFeeder). We plotted the distribution of variance explained for each gene across the 

four above factors, with unexplained variance shown as “residuals”. For Supplementary 

Figure 19a, we included 119 QC-passed samples, and used variancePartition as above, but 

with protocol in the design formula. For Supplementary Figure 19b, we used 18 samples, for 

which we had 3 differentiation replicates from each of 6 donor cell lines; all 6 iPSC lines 

were from females and had been cultured in E8 medium. We therefore included only donor 

and differentiation in the design formula.

Estimation of neuronal purity

We used CIBERSORT15 to estimate the fraction of RNA from neuronal cells in our bulk 

RNA-seq samples. We used the 14,786 genes with mean CQN expression > 0 in bulk RNA 

samples, and retrieved raw counts for these genes in our scRNA-seq data. We labeled the 

single-cell counts as “neuron” or “fibroblast-like” based on the SC3 clustering, and used 

these as reference samples for CIBERSORT to generate custom signature genes. We used 

raw expression counts for the same genes for our 126 bulk RNA-seq samples as the mixture 
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file for CIBERSORT to use in estimating the relative fractions of neuron and fibroblast-like 

cell RNA.

Correlation of iPSC and IPSDSN gene expression with cell culture conditions

We selected the 106 IPSDSN samples differentiated with the P2 protocol, as well as the 87 

iPSC samples these were derived from and for which we had RNA-seq data, and we used 

DESeq2’s variance stabilising transformation on the raw gene expression counts. We 

computed the first 5 principal components of gene expression separately in iPSC and 

IPSDSNs, and used corrplot to compute pairwise correlations among these PCs and sample 

metadata: gender, iPSC passage number, iPSC culture conditions (wasFeeder), iPSC 

PluriTest score, IPSDSN fibroblast content, and IPSDSN processing date.

We determined differentially expressed genes between feeder-iPSCs and E8-iPSCs using 

DESeq2, using expression counts for genes with median FPKM > 0.1 across iPSC samples 

(Supplementary Table 5). We removed associations driven by outliers, defined as a 

maximum Cook’s distance >= 5. Similarly, we determined differentially expressed genes in 

IPSDSNs derived from either feeder-iPSCs or E8-iPSCs (Supplementary Table 8), again for 

genes with median FPKM > 0.1. We used GeneTrail2 (https://genetrail2.bioinf.uni-sb.de) to 

do a gene set over-representation analysis for the 717 genes with expression at least 2-fold 

higher in feeder-iPSCs than E8-iPSCs, and similarly for the 631 genes at least 2-fold higher 

in E8-iPSCs (Supplementary Tables 6, 7). We did an equivalent gene set over-representation 

analysis for the 1,159 genes with expression at least 2-fold higher in IPSDSNs differentiated 

from feeder-iPSCs, and also for the 958 genes at least 2-fold higher in IPSDSNs from E8-

iPSCs (Supplementary Tables 9, 10).

To determine genes upregulated on differentiation from iPSCs to IPSDSNs, we first selected 

the 19,658 genes with expression FPKM > 1 in at least two samples (iPSC or IPSDSN). We 

used DESeq2 as before, removing genes with maximum Cook’s distance > 5, identifying 

4,246 differentially expressed genes at FDR 1%.

QTL calling

Full details of QTL calling are provided in the Supplementary Note. Briefly, to call cis-

eQTLs, we first determined allele-specific read counts for each SNP within gene exons 

using GATK’s ASEReadCounter43. We used RASQUAL’s makeCovariates.R to identify 12 

gene expression PCs to use as covariates. We ran RASQUAL18 with option --no-posterior-

update for each of 35,033 genes, testing SNPs and indels (MAF > 0.05, INFO > 0.8) within 

500 kb of the gene transcription start site. For each gene we applied Bonferroni correction to 

the p values based on the number of independent tests estimated by EigenMT44. We ran 

RASQUAL with option --random-permutation call QTLs after permuting sample labels, and 

noted the minimum EigenMT-corrected p value per gene. To determine the FDR for eQTL 

discovery at a given gene, we computed (#permuted data min pvalues < p) / (#real data min 

p values < p), where p is the minimum p value among SNPs for the gene in question. For 

QTL calling with FastQTL, we used CQN-transformed gene expression (cqn v5.0.242) with 

a cis-window of 500 kb, including 20 PCs as covariates. We determined tissue-specific 

IPSDSN genes (not in GTEx) using a protocol described for the HIPSCI project8.
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To call ATAC-seq QTLs, we used featureCounts v1.5.0 to count fragments overlapping 

consensus ATAC-seq peaks and ASEReadCounter to count allele-specific reads at SNPs 

within peaks. We ran RASQUAL for each of 381,323 peaks, testing SNPs and indels within 

1 kb of the center of the peak. Since >99.9% of peaks were less than 2 kb in size, this meant 

that we tested effectively all SNPs within peaks. We used an equivalent procedure to 

determine FDR as for eQTLs.

Similarity of eQTLs with GTEx

Both GTEx samples and IPSDSNs had QTLs called using FastQTL. We selected lead eQTL 

variants in IPSDSNs for genes with expression >= 1 FPKM. We identified effect sizes for 

the same variants in each GTEx tissue, where these were available. We next determined the 

pairwise similarity between tissues in effect sizes for these variants (in R, cor() with 

“pairwise.complete.obs”). IPSDSNs were a significant outlier, having lower pairwise 

similarity with all GTEx tissues than they had with each other, likely due to the different 

expression quantification methods used in the two projects. We therefore determined the 

relative similarity of effect sizes across tissues by Z-scaling each row of the tissue 

correlation matrix, and plotted the result in Supplementary Figure 24.

Motif enrichment analyses

We used the R package LOLA22 to identify enrichments in transcription factor binding sites 

(TFBS) and motifs. We defined three sets of loci to consider for enrichment: 1) tissue-

specific eQTL SNPs with a window of 50 bp (+/- 25) around the SNP position, 2) all eQTL 

SNPs (50 bp window), and 3) all ATAC-seq peaks. For the QTLs we used all GTEx eQTL 

lead SNPs as the “universe” set against which we tested TFBS for enrichment. For this 

loaded GTEx eQTLs in R and used the liftOver function from rtracklayer to convert their 

coordinates to GRCh38. We tested for enrichment against the LOLA core database 

considering only ENCODE TFBS enrichments (Supplementary Tables 16 and 17). We also 

tested ATAC-seq peaks for enrichment relative to DNaseHS for many tissues from 

Sheffield45, which are available in the LOLA catalog. Motif enrichments in ATAC-seq 

peaks are reported in Supplementary Table 18.

Power simulations

Gene expression values were normalized to counts per million. We selected the 544 eGenes 

discovered by RASQUAL at FDR 1% where:

• at least 10 P2-protocol samples homozygous for each allele of the lead eQTL 

variant,

• mean expression among homozygous carriers was consistent with RASQUAL’s 

reported direction of effect, and

• CV < 2.

For each gene we resampled the normalized expression values, with replacement, from 

IPSDSN samples to achieve a specified number of samples (N ∈ {4,6,10,20,40}) with each 

homozygous genotype. From 100 such resamplings, we defined the power to discover a 

given variant’s effect as the fraction of cases with p < 0.05 from a Wilcoxon rank sum test 
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comparing expression in each genotype category. We determined the allelic fold change 

between genotypes using RASQUAL’s effect size (pi), as:

QTL overlap with GWAS catalog

Full details of the method to determine QTL overlap are in the Supplementary Note. Briefly, 

we used vcftools v0.1.1446 to compute the genotype correlation R2 across our samples 

between GWAS catalog variants and lead eQTL, sQTL, caQTL variants within 500 kb of 

each other, and retained only overlaps with R2 > 0.8. We report all overlaps with GWAS 

associations having p < 5x10-8 in Supplementary Tables 20-22. To determine whether our 

QTLs were enriched in specific GWAS catalog traits, we grouped related traits and 

accounted for duplicate overlaps (see Supplementary Note), and counted the number of 

unique GWAS-QTL overlaps for eQTLs, sQTLs, and caQTLs (Table 1). For 41 traits with at 

least 40 GWAS catalog associations, we then considered the binomial probability of the 

observed overlap, with the expected frequency being the proportion of QTL overlaps among 

all trait associations (6.2%). After correcting for multiple testing, no traits showed 

significantly greater overlap with our QTL catalog than other traits.

To test for overall enrichment of QTLs overlapping with GWAS catalog SNPs, we used 

vcftools to identify 1000 Genomes SNPs in LD R2 > 0.8 with a GWAS catalog SNP. We 

used our IPSDSN eQTL lead SNPs as input to SNPsnap (https://data.broadinstitute.org/mpg/

snpsnap/), and computed 1000 random sets of SNPs matched for LD partners, MAF, gene 

density, and distance to nearest gene. IPSDSN eQTL lead SNPs had more overlaps (92) with 

GWAS catalog + R2>0.8 SNPs than did any of the matched sets (median: 58, range 37-87).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Characterization of molecular phenotypes in iPSC-derived sensory neurons.

(a) Schematic of IPSDSN differentiation and assays. iPSCs were received in Essential 8 

(E8) medium (N=82) or on mouse embryonic fibroblasts (MEFs, N=49), and transferred to 

KSR-XF medium. Over 11 days, different inhibitor combinations were added (2i, 5i, 3i, see 

Methods), and N2B27 medium phased in, followed by transfer to growth factor medium at 

day 11 for neuronal maturation. (b) PCA plot projecting IPSDSN, iPSC, and DRG samples 

onto the first two principal components defined based on RNA-seq FPKMs in GTEx tissues. 

Some GTEx tissues are unlabelled due to overlapping labels. (c) Expression of sensory 

neuronal marker genes (SCN9A, DRGX) and key iPSC genes (NANOG, POU5F1).
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Figure 2. Single-cell sequencing of IPSDSN cells.

(a) A heatmap of RNA-seq data for ten marker genes of the two cell clusters identified by 

SC3. Color scale denotes normalised gene expression levels. (b) The first two principal 

components (PCs) of IPSDSN gene expression, with estimated fibroblast-like percentage 

from CIBERSORT, from samples derived using protocols 1 and 2 (P1 and P2).
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Figure 3. Gene expression variability in IPSDSNs is influenced by differentiation conditions.

(a) Density plot of the coefficient of variation of genes across samples, separately for each 

GTEx tissue, IPSDSN samples (n=106, P2 protocol only), iPSC (n=239), and DRG (n=28). 

(b) Violin plot showing, for each gene, the estimated fraction of total expression variability 

across samples due to differentiation batch, donor genetics or iPSC reprogramming, culture 

conditions (“wasFeeder”: feeder-dependent vs. E8 medium), and gender. (c) Differentially 

expressed genes (FDR 1%, blue and red points) between iPSC samples grown on feeders 

(n=68) vs. E8 medium (n=171). (d) Differentially expressed genes (FDR 1%) between 

IPSDSNs from feeder- (n=27) and E8-iPSCs (n=79). Neuronal differentiation genes, such as 
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RET and L1CAM, are more highly expressed in samples from E8-iPSCs. (e) Left boxplot: 

global gene expression differences between feeder- and E8-iPSCs are captured in PC1. Right 

two boxplots: selected differentially expressed genes. (f) Left boxplot: estimated neural 

fraction of samples differs in IPSDSNs derived from feeder- and E8-iPSCs. Right two 

boxplots: selected differentially expressed genes. Boxplots show the median, 25th and 75th 

percentiles, with whiskers extending 1.5 times the interquartile range.
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Figure 4. Splicing QTLs overlapping GWAS.

(a) An sQTL for TNFRSF1A leads to skipping of exon 6, and overlaps with a multiple 

sclerosis association. (b) An sQTL for SIPA1L2 leads to increased skipping of an 

unannotated exon between alternative promoters, and overlaps with a Parkinson’s disease 

association. (c) An sQTL for APOPT1 alters skipping of exons 2 and 3, and overlaps with a 

schizophrenia association. P values are from the FastQTL beta approximation based on 

10,000 permutations. Boxplots show the median, 25th and 75th percentiles, with whiskers 

extending 1.5 times the interquartile range.
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Figure 5. Power to detect a genetic effect in a single-variant single-gene test depends on sample 
size, allelic effect size, and gene expression variability.

(a) TPR as a function of allelic fold change for five different numbers of replicates (half the 

total sample size). (b) TPR as a function of CV for five bins of allelic fold change, with 10 

samples of each genotype.
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Table 1

QTL associations. Columns show the number of associations and the number of unique overlaps (r2 > 0.8) 

between lead QTL SNPs and GWAS catalog SNPs after removing duplicates for each GWAS trait.

Number GWAS overlap

eQTLs 3778 156

sQTLs 2079 129

ATAC QTLs 6318 172

Joint ATAC/eQTLs 177 14

Nat Genet. Author manuscript; available in PMC 2018 June 11.


	Abstract
	Introduction
	Results
	Sensory neuron differentiation and characterisation
	Quantifying differentiation variability using single-cell RNA-seq
	Heterogeneity in IPSDSN gene expression
	iPSC culture conditions influence cell fate
	Genetic variants influence gene expression, splicing and chromatin accessibility in sensory neurons
	Sensory neuron QTLs overlap with complex trait loci
	Recall-by-genotype studies in iPSC-derived cells will require large sample sizes

	Discussion
	Online methods
	IPS cell lines
	Sensory neuron differentiation
	P2 protocol
	P1 protocol

	Single-cell RNA sequencing
	Genotypes
	RNA sequencing
	Gene expression quantification, quality control and exclusions
	DRG samples and sequencing
	Highly variable genes in IPSDSNs and GTEx
	Variance components analysis
	Estimation of neuronal purity
	Correlation of iPSC and IPSDSN gene expression with cell culture conditions
	QTL calling
	Similarity of eQTLs with GTEx
	Motif enrichment analyses
	Power simulations
	QTL overlap with GWAS catalog

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1

