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Abstract

We introduce quanTIseq, a method to quantify the fractions of ten immune cell types from bulk RNA-sequencing

data. quanTIseq was extensively validated in blood and tumor samples using simulated, flow cytometry, and

immunohistochemistry data.

quanTIseq analysis of 8000 tumor samples revealed that cytotoxic T cell infiltration is more strongly associated

with the activation of the CXCR3/CXCL9 axis than with mutational load and that deconvolution-based cell scores

have prognostic value in several solid cancers. Finally, we used quanTIseq to show how kinase inhibitors

modulate the immune contexture and to reveal immune-cell types that underlie differential patients’ responses

to checkpoint blockers.

Availability: quanTIseq is available at http://icbi.at/quantiseq.
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Background

Cancer immunotherapy with antibodies targeting immune

checkpoints has shown durable benefit and even curative

potential in various cancers [1, 2]. As only a fraction of pa-

tients respond to immune checkpoint blockers, efforts are

underway to identify predictive markers for cancer

immunotherapy and mechanistic rationale for combination

therapies. We have previously shown that the immune

contexture—the type and density of tumor-infiltrating im-

mune cells—has a prognostic value in colorectal cancer

(CRC) [3]. Later, the association between the densities of

tumor-infiltrating immune cells and patient overall survival

was confirmed in different primary and metastatic cancers

[4]. In particular, cytotoxic CD8+ T cells, which can

specifically recognize and kill tumor cells, are associated

with a good clinical outcome in different cancer types [5]

and have a pivotal role in anti-PD1 immunotherapy [1].

Therefore, the quantification of the immune contexture of

human tumors can not only unveil prognostic markers,

but also provide relevant information for the prediction of

response to checkpoint blockade.

Moreover, the quantification of the immune contexture

of archived tumor samples holds the promise to identify

drugs having additive or synergistic potential with immune

checkpoint blockers. For example, since certain chemother-

apeutic drugs induce immunogenic cell death [6], the ana-

lysis of a large number of samples could pinpoint patient

subgroups that would benefit from the combination with

immune checkpoint blockers. Similarly, as a number of tar-

geted anticancer agents exhibit immunostimulatory activity

[6], the quantification of the immune contexture could pro-

vide mechanistic rationale for the design of combination
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therapies. However, comprehensive and quantitative im-

munological characterization of tumors in a large number

of clinical samples is currently hampered by the lack of sim-

ple and efficient methods. Cutting-edge technologies like

single-cell RNA sequencing and multi-parametric flow or

mass cytometry are technically and logistically challenging

and cannot be applied to archived samples. Multiplexed im-

munohistochemistry (IHC) [7] or immunofluorescence (IF)

assays can be performed only in specialized labs and require

sophisticated equipment and extensive optimization of pro-

tocols for specific cancer entities. Moreover, manual and

semi-automatic image analysis is required, which is highly

time consuming and laborious. For an overview of imaging

techniques for quantitative analysis of the tumor micro-

environment, we refer to two recent reviews [8, 9].

Computational methods for quantitative immunopheno-

typing of tumors from bulk RNA sequencing (RNA-seq)

data hold potential for efficient and low-cost profiling of a

large number of samples, but currently suffer from several

limitations. Bioinformatics methods based on immune-

cell-specific markers like MCPcounter [10], xCell [11], or

other approaches based on gene set enrichment analysis

(GSEA) [12–14] compute only semi-quantitative scores

that predict the enrichment of specific immune cell types

in a sample, but that cannot be neither interpreted as cell

fractions nor compared between cell types [15]. Deconvolu-

tion algorithms (reviewed in [16]) enable to quantitatively

estimate the proportions of the cell types of interest. How-

ever, currently available deconvolution algorithms for

immune cell quantification have several drawbacks [16].

For instance, CIBERSORT, a popular method based on

support-vector regression for the deconvolution of 22 im-

mune cell phenotypes, can only infer cell fractions relative

to the total immune cell population and has been devel-

oped and validated using microarray data [17]. TIMER per-

forms deconvolution of six immune cell types, but the

results cannot be interpreted directly as cell fractions, nor

compared across different immune cell types and data sets

[18]. EPIC, a deconvolution method recently developed

using RNA-seq data, estimates absolute fractions referred

to the whole cell mixture, but does not consider immune

cells relevant for cancer immunology like regulatory T cells

(Treg) cells, dendritic cells, and classically (M1) and alterna-

tively (M2) activated macrophages [19]. Hence, there is a

need for a validated deconvolution-based algorithm that es-

timates absolute proportions of relevant immune cell types

from RNA-seq data, thereby enabling inter-sample as well

as intra-sample comparisons.

We therefore developed quanTIseq, a computational

pipeline for the characterization of the tumor immune

contexture using bulk RNA-seq data and imaging data

from whole tissue slides. quanTIseq can quantify the abso-

lute fractions of immune cells using a novel deconvolution

approach and performs in silico multiplexed

immunodetection of the same cell types by integrating the

deconvolution results with total cell densities extracted

from images of IF, IHC, or hematoxylin and eosin (H&E)-

stained tissue slides. We performed extensive validation

using simulated data, published data sets, and de novo

generated flow cytometry data. In addition, we validated

quanTIseq using RNA-seq data and histological images

from IHC/IF-stained slides from three independent cancer

data sets. We then applied quanTIseq to analyze over

8000 solid tumors of The Cancer Genome Atlas (TCGA)

[20] and show that the activation of the CXCR3/CXCL9

axis, rather than the mutational load, is associated with

the infiltration of intratumoral cytotoxic T cells. Moreover,

we observe highly heterogeneous immune contextures

across and within tumors and show that the immunoscore

and a T cell/B cell score computed from quanTIseq de-

convolution results have prognostic values in several solid

cancers. Finally, we demonstrate that the immune contex-

ture of human tumors is pharmacologically modulated by

kinase inhibitors and show that quanTIseq can be used to

shed light on the features of the tumor immune contex-

ture that underlie differential patients’ responses to check-

point blockade.

Methods
Collection of RNA-seq data from immune cell types and

tumor cell lines

To build the signature matrix, we collected 51 data sets

generated from paired-end Illumina RNA-seq of

blood-derived immune cells (Additional file 1). In addition,

we downloaded from the Cancer Genomics Hub (CGHub,

accessed on February 2016) RNA-seq data from a breast

(G41726.MCF7.5) and a colorectal (G27202.SW480.1) can-

cer cell line. BAM files of mapped reads gathered from the

CGHub were converted to FASTQ with samtools [21],

whereas SRA files downloaded from the Sequence Read

Archive (SRA, https://www.ncbi.nlm.nih.gov/sra/) were

converted to FASTQ with the “fastq-dump” function of the

SRAToolkit.

RNA-seq data pre-processing

FASTQ files of RNA-seq reads were pre-processed with

Trimmomatic [22] to remove adapter sequences and

read ends with Phred quality scores lower than 20, to

discard reads shorter than 36 bp, and to trim long reads

to a maximum length of 50 bp. This analysis is imple-

mented in the “Preprocessing” module of quanTIseq

(step 1 in Fig. 1c), which also allows selecting different

parameters for data preprocessing.

Quantification of gene expression and normalization

The pre-processed RNA-seq reads were analyzed with Kal-

listo [23] to generate gene counts and transcripts per mil-

lions (TPM) using the “hg19_M_rCRS” human reference.
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For single-end data, the following Kallisto options were

used: “--single -l 50 -s 20”. After gene expression quantifica-

tion, gene names were re-annotated to updated gene sym-

bols defined by the HUGO Gene Nomenclature

Committee (http://www.genenames.org, annotations down-

loaded on April 2017). In case of duplicates, the median

expression per gene symbol was considered. The final ex-

pression value xgl for each gene g in library l was

computed from TPM with the following formula:

xgl ¼
TPMgl ∙10

6

P

iTPMil

ð1Þ

For microarray data, before the normalization of Eq. 1,

expression data were transformed from logarithmic to

natural scale (when needed) and quantile-normalized.

TPM can be computed from RNA-seq reads with the

“Gene Expression Quantification” module of quanTIseq

(step 2 in Fig. 1c). Gene re-annotation and expression

normalization are performed by the quanTIseq “Deconvo-

lution” module before deconvolution (step 3 in Fig. 1c),

and quantile normalization is performed if the “--arrays”

option is set to “TRUE”.

Generation of the simulated data sets

We simulated RNA-seq data from breast tumors with

different purity values and immune infiltrates by mixing

pre-processed reads from immune cell types and from a

tumor cell line (G41726.MCF7.5) of the RNA-seq com-

pendium. We simulated 100 different immune cell mix-

tures by sampling the cell fractions from a uniform

distribution in the [0–1] interval. The cell fractions were

combined with 11 different tumor purity scenarios:

0:10:100% tumor purity, defined as the fraction of read

a b c

d e

Fig. 1 quanTIseq method and validation based on blood-cell mixtures. a quanTIseq characterizes the immune contexture of human tumors from

expression and imaging data. Cell fractions are estimated from expression data and then scaled to cell densities (cells/mm2) using total cell densities

extracted from imaging data. b Heatmap of quanTIseq signature matrix, with z scores computed from log2(TPM+1) expression values of the signature

genes. c The quanTIseq pipeline consists of three modules that perform (1) pre-processing of paired- or single-end RNA-seq reads in FASTQ format; (2)

quantification of gene expression as transcripts-per-millions (TPM) and gene counts; and (3) deconvolution of cell fractions and scaling to cell densities

considering total cells per mm2 derived from imaging data. The analysis can be initiated at any step. Optional files are shown in grey. Validation of

quanTIseq with RNA-seq data from blood-derived immune cell mixtures generated in [46] (d) and in this study (e). Deconvolution performance was

assessed with Pearson’s correlation (r) and root-mean-square error (RMSE) using flow cytometry estimates as ground truth. The grey and blue lines

represent the linear fit and the “x = y” line, respectively. B, B cells; CD4, non-regulatory CD4+ T cells; CD8, CD8+ T cells; DC, dendritic cells; M1, classically

activated macrophages; M2, alternatively activated macrophages; Mono, monocytes; Neu, neutrophils; NK, natural killer cells; T, T cells; Treg, regulatory

T cells
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pairs from the tumor cell line over total read pairs. Each

simulated data set consisted of one million paired-end

reads. In addition, for the data set with 60% purity

(which is the minimum value considered by the TCGA

consortium for tumor specimen inclusion [24]), we

simulated different sequencing depths, namely, 1, 2, 5,

10, 20, 50, and 100 million read pairs. In total, we gener-

ated 1700 simulated RNA-seq data sets.

Generation of the TIL10 signature matrix

An expression matrix was generated from the compendium

of RNA-seq data as described in “RNA-seq data pre-pro-

cessing” and “Quantification of gene expression and

normalization” and consisted in 19,423 genes and 53 im-

mune and tumor cell libraries. From this matrix, we filtered

out the genes that were not detected in at least two im-

mune libraries and selected the genes specific for each cell

type considering the criteria described in the following.

Gene expression is here considered in terms of normalized

values xgl (Eq. 1) on a natural scale, if not differently stated.

Cell-specific expression

We quantized the expression of each gene into three

bins representing low, medium, and high expression,

computed as in [25]. For each immune cell type, we se-

lected the genes having (i) high quantized expression in

all libraries belonging to the considered immune cell

type and (ii) low or medium quantized expression in all

other libraries.

Expression in tumors

We filtered the signature genes that were highly expressed

also in tumor cells by discarding the genes having a me-

dian log2 expression larger than 7 in all non-hematopoietic

cancer cell lines assayed in the Cancer Cell Line

Encyclopedia (CCLE) [26], as done in [17]. Moreover,

RNA-seq data from 8243 TCGA solid tumors were used

to remove genes that provide little support for bulk-tissue

deconvolution because their expression in tumor samples

is generally low or null. More precisely, we discarded the

genes having an average expression across all TCGA sam-

ples lower than 1 TPM.

Specificity of marker genes

Since signature genes specific for a certain cell type

should not be associated to another cell type, we consid-

ered a compendium of 489 gene sets specific for 64 cell

types recently proposed in [11] and removed the signa-

ture genes that were listed in a gene set specific for an-

other cell type. CD4+ T cell gene sets were not used to

filter Treg cell signature genes, as the CD4+ T cell popu-

lation may contain bona fide Treg cell expression

markers such like the forkhead box P3 (FOXP3).

Range of expression

As genes with high expression can bias deconvolution re-

sults, we excluded the genes whose expression exceeded

700 TPM.

Correlation with true cell fractions

The 1700 simulated RNA-seq data sets (see the “Gener-

ation of the simulated data sets” section) were then used to

identify the signature genes that provide valuable informa-

tion over cell fractions and are more robust to the sequen-

cing depth and unknown tumor content. For each cell type,

we selected the genes whose expression levels had a correl-

ation with the true cell fractions equal or greater than 0.6.

Restricted expression

We considered four external expression data sets from

enriched/purified immune cells: two microarray data sets

(GEO accession: GSE28490 and GSE2849) [27], an

RNA-seq data set [28], and a microarray compendium that

was used to build the CIBERSORT LM22 signature matrix

[17]. All data sets were preprocessed and normalized as ex-

plained in the previous paragraphs. For each gene g specific

for a cell type c in the signature matrix, we computed the

ratio Rgd between the median expression across all libraries

in data set d belonging to the cell type c and the median ex-

pression across all libraries in data set d not belonging to

the cell type c. For each cell type, the top 30 ranked signa-

ture genes (or less, when not available) with mediand(Rgd) ≥

2 were selected for the final signature matrix. When pro-

cessing the Treg signature genes, the data sets belonging to

CD4+ T cells were not considered. Treg signature genes

were further filtered with a similar approach, but consider-

ing the RNA-seq data of circulating CD4+ T and Treg cells

from and selecting only the genes with mediand(Rgd) ≥ 1.

The final signature matrix TIL10 (Additional file 1) was

built considering the 170 genes satisfying all the criteria re-

ported above. The expression profile of each cell type c was

computed as the median of the expression values xgl over

all libraries belonging to that cell type:

xgc ¼ medianlϵc xgl
� �

For the analysis of RNA-seq data, quanTIseq further re-

duces this signature matrix by removing a manually curated

list of genes that showed a variable expression in the con-

sidered data sets: CD36, CSTA, NRGN, C5AR2, CEP19,

CYP4F3, DOCK5, HAL, LRRK2, LY96, NINJ2, PPP1R3B,

TECPR2, TLR1, TLR4, TMEM154, and CD248. This default

signature considered by quanTIseq for the analysis of

RNA-seq data consists of 153 genes and has a lower condi-

tion number than the full TIL10 signature (6.73 compared

to 7.45), confirming its higher cell specificity. We advise

using the full TIL10 matrix (--rmgenes=“none”) for the

analysis of microarray data, as they often lack some
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signature genes, and the reduced matrix (--rmgenes= “de-

fault”) for RNA-seq data. Alternatively, the “rmgenes” op-

tion allows specifying a custom list of signature genes to be

disregarded (see quanTIseq manual).

Deconvolution

The quanTIseq deconvolution module takes as input:

� A mixture matrix Mgj of expression values over g =

1,… , I genes and j = 1,… , J samples

� A signature matrix Sgc of expression values over g =

1,… , G signature genes and c = 1,… , C cell types

After re-annotation of gene symbols and normalization

of the mixture matrix (see the “Quantification of gene

expression and normalization” section), quanTIseq per-

forms deconvolution of the unknown cell fractions Fcj
over C immune cell types and J samples. For each sam-

ple j, the following system of equations is solved to esti-

mate the cell fractions Fc (the subscript j is omitted):

Mgjg∈G� ¼ Sgjg∈G� � Fc

where G∗ is the set of signature genes that are present in

the mixture matrix. quanTIseq solves this inverse prob-

lem using constrained least squares regression, i.e., by

minimizing the formula ‖S × F −M‖
2, imposing the

constraints:

Fc≥0 for c ¼ 1;…;C

X

C

c¼1

Fc≤1

To account for the differences in the average mRNA

content per cell type, which might otherwise bias decon-

volution results [19, 29–31], the estimated cell fractions

are normalized by a cell-type-specific scaling factor nc:

F 0
c ¼

Fc

nc

Then, the cell fractions are scaled so to sum up to the

original percentage of total cells, as:

Fc″ ¼
F 0
c � f

f 0

where

f ¼
X

C

c¼1

Fc

f 0 ¼
X

C

c¼1

F 0
c

Finally, the proportion of “other” (uncharacterized)

cells is estimated as:

Fother ¼ 1−
X

C

c¼1

Fc″

As the population of other cells might include different

types of malignant and normal cells with various mRNA

contents [32] depending on the sample under investigation,

quanTIseq does not scale these estimates. The scaling

factors nc were computed as the median expression of the

Proteasome Subunit Beta 2 (PSMB2) housekeeping gene

[33] across the immune cell types of the RNA-seq

compendium and were highly correlated with

experimentally-derived scaling factors used in the EPIC ap-

proach [19] (Pearson’s correlation r = 0.86 considering the

immune cells in common). In the analysis of the simulated

RNA-seq data, where the true fractions represented mRNA

fractions and not cell fractions, deconvolution was

performed without mRNA-content normalization

(Additional file 2: Table S3).

The deconvolution of Treg cells and CD4+ T cells is in-

herently hampered by the high correlation of their ex-

pression signatures (namely, multi-collinearity [17]) and

can result in the underestimation of Treg cells present in

low fractions. Thus, we adopted a heuristic strategy to

specifically address the issue of Treg cell underestima-

tion. First, quanTIseq estimates the Treg cell fractions

F1
reg considering all cell types together. Then, for the

samples with F1
reg < 0:02 , quanTIseq re-estimates the

Treg cell fractions F2
reg removing from the signature

matrix the expression profiles of the CD4+ T cells. The

final Treg cell fractions are then estimated by averaging

the results:

F reg ¼ mean F1
reg; F

2
reg

� �

whereas CD4+ T cell fractions are scaled to:

FCD4 ¼ max F1
CD4−F reg; 0

� �

Finally, all cell fractions are normalized to sum up to 1.

The analysis described in this section is implemented

in the “Deconvolution” module of quanTIseq (step 3 in

Fig. 1c).

The full quanTIseq pipeline can be applied to single or

multiple samples and can be initiated at any step. For

instance, pre-computed expression matrices can be ana-

lyzed directly with the deconvolution module (step 3 in

Fig. 1c), although particular care must be taken when
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performing data pre-processing and annotation of signa-

ture genes.

Deconvolution of bulk tumor expression data

Aberrant de-methylation and sequence duplication can

lead to over-expression of immune signature genes.

Tumor RNA-seq data can be analyzed with quanTIseq

setting the “--tumor” option to “TRUE”. This setting dis-

cards the signature genes whose log2(xgl + 1) expression

in the TCGA RNA-seq data exceeds 11 TPM, which are

NUPR1, CD36, CSTA, HPGD, CFB, ECM1, FCGBP,

PLTP, FXYD6, HOPX, SERPING1, ENPP2, GATM,

PDPN, ADAM6, FCRLA, and SLC1A3. All tumor data

sets presented in this work have been analyzed with this

parameter setting (Additional file 2: Table S3).

Publicly available validation data sets

To benchmark quanTIseq, we considered the expression

data sets listed in Additional file 2: Table S1, using the

options reported in Additional file 2: Table S3. Normal-

ized microarray data were downloaded from the Gene

Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.

gov/geo) with the GEOquery R package [34]. Probes

were mapped to gene symbols with the biomaRt R pack-

age [35]. In case of multiple probes mapping to the same

gene symbol, the probe with the highest average expres-

sion across all samples was selected. Immune cell frac-

tions estimated with flow cytometry, Coulter Counter, or

from images of stained tissue slides were used as ground

truth to validate quanTIseq. Where necessary, different

functional states of an immune cell type were aggregated

by summing up the corresponding cell fractions (e.g., for

the Newman’s data set [17], B cells were quantified sum-

ming up the fractions of naïve and memory B cells).

Generation of flow cytometry and RNA-seq data from

blood-derived immune cell mixtures

Blood samples from healthy human donors were ob-

tained from the Blood Bank Innsbruck under approval

of the local ethics committee. Peripheral blood mono-

nuclear cells (PBMC) were isolated from human whole

blood by density centrifugation using Lymphocyte Separ-

ation Medium (Capricorn, Ebsdorfergrund, Germany).

The PBMC fraction was collected and washed three

times with Dulbecco’s phosphate buffered saline. To iso-

late polymorphonuclear (PMN) cells, the cells on top of

the erythrocytes were collected and contaminating red

blood cells were removed by two rounds of lysis with

0.2% NaCl solution at 4 °C. PMN were added to the

PBMC fractions in low abundance (3–6% of total cells),

and aliquots were taken for RNA extraction and flow cy-

tometry analysis. Total RNA was extracted with the Qia-

gen RNeasy mini kit (Qiagen GmbH, Hilden, Austria),

including on-column DNAse I treatment. INVIEW

polyA RNA library preparation, and Illumina 50 bp SR

sequencing at > 60 Million reads per library, was ob-

tained from an external provider (GATC Biotech, Kon-

stanz, Germany).

The fractions of the following cell types in the immune

cell mixtures were determined by flow cytometry using spe-

cific marker combinations: CD4+ T cells (CD3+CD4+),

CD8+ T cells (CD3+CD8+), Treg cells (CD3+CD4+CD25+

CD127−), B cells (CD19+), NK cells (CD3−CD16+CD56+),

myeloid dendritic cells (Lin−HLA-DR+CD11c+), monocytes

(CD14+), and neutrophils (CD15+CD16+). Labeled anti-

bodies specific for the following antigens were purchased

from BD Biosciences (San Jose, CA, USA) and Biolegend

(San Diego, CA, USA): CD3 (UCHT1), CD4 (RPA-T4),

CD8 (HIT8a), CD11c (3.9), CD14 (M5E2), CD15 (W6D3),

CD16 (3G8), CD19 (HIB19), CD20 (2H7), CD25 (BC96),

CD56 (B159), CD127 (A019D5), HLA-DR (L243), Lin:

CD3, CD14, CD19, CD20, CD56. The measurements were

performed on a BD LSRFortessa flow cytometer, and the

data were evaluated with FlowLogic 7.1 software (Inivai

Technologies, Melbourne, Australia).

Leiden validation data set

Fresh frozen and formalin-fixed material was available

from 19 colorectal cancer patients (Additional file 3).

Their usage was approved by the local ethics committee

(P15.282). All the specimens were anonymized and han-

dled according to the ethical guidelines described in the

Code for Proper Secondary Use of Human Tissue in the

Netherlands of the Dutch Federation of Medical Scientific

Societies. RNA was isolated with the NucleoSpin RNA kit

(Macherey-Nagel, Düren, Germany) including on-column

DNAse I treatment. Library preparation was preceded by

rRNA depletion with the NEBNext rRNA depletion kit

(New England Biolabs, MA, USA). PE 150 bp sequencing

was performed at GenomeScan (Leiden, The Netherlands)

on a HiSeq 4000 (Illumina, San Diego, CA, USA).

Four-micrometer sections of formalin-fixed paraffin-em-

bedded tissues were deparaffinized and underwent

heat-mediated antigen retrieval in 10mmol/L citrate buffer

solution (pH 6). Unspecific antibody binding was pre-

vented with the SuperBlock PBS buffer (Thermo Fisher

Scientific, Waltham, MA, USA) according to the manufac-

turer’s instructions. Immunofluorescence detection was

performed using two panels. Firstly, the T cell panel con-

tains the following antibodies: pan-cytokeratin (AE1/AE3,

Thermofisher scientific and C11, Cell Signalling Technol-

ogy), anti-CD3 (D7A6E), and anti-CD8 (4B11, DAKO).

Secondly, the myeloid panel contains the following anti-

bodies: pan-cytokeratin (AE1/AE3, Novusbio and C11,

Biolegend), anti-HLA-DR (TAL1B5, Thermo Fisher Scien-

tific), anti-CD68 (D4B9C, Cell Signalling Technology), and

anti-CD163 (10D6, Thermo Fisher Scientific). Immuno-

fluorescent detection was performed directly and indirectly
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with Alexa488, Alexa594, Alexa647, Alexa680, CF555, and

CF633 using an in-house methodology [36].

For immunohistochemical detection, 4-μm sections

were deparaffinized after which endogenous peroxidase

was blocked with a 0.3% hydrogen peroxide/methanol

solution. Following heat-mediated antigen retrieval in

10 mmol/L citrate buffer solution (pH 6), overnight

labeling was performed with anti-CD4 (EPR68551,

Abcam), anti-FOXP3 (236A/E7), and CD20 (L26, Dako)

respectively. After washing in PBS, Tissue sections were

incubated for 1 h with Poly-horseradish peroxidase solu-

tion (Immunologic Duiven, The Netherlands) at room

temperature. The slides were developed with the DAB+

chromogen (DAKO, Agilent Technologies, Santa Clara,

CA, USA) solution and counterstained with hematoxylin

(Thermo Fisher Scientific).

Image analysis for both immunofluorescence and im-

munohistochemistry was performed with the Vectra 3.0

Automated Quantitative Pathology Imaging System and

the inFORM Cell Analysis software (Perkin Elmer,

Waltham, MA, USA) including spectral separation of

dyes, tissue, and cell segmentation, and automated cell

counting of immune phenotypes.

Low-quality samples/images due to excessive IF back-

ground due to formalin fixation or loss of tissue integrity

during the experimental procedures were discarded from

the automated cell quantification analysis.

Vanderbilt validation data sets

Seventy melanoma and 8 lung cancer patient samples

were procured based on the availability of tissue and

were not collected according to a pre-specified power

analysis (Additional file 3). Included in these, 42 melan-

oma samples and 7 lung cancer samples were baseline

pre-anti-PD1 therapy. Remaining patients were treated

with either anti-CTLA-4 alone or combinations of

anti-PD-1 and anti-CTLA-4. Finally, 10 samples were

obtained from progressing tumors in patients experien-

cing an initial response. Clinical characteristics and ob-

jective response data were obtained by retrospective

review of the electronic medical record. Patients were

classified in responders (complete response and partial

response) and non-responders (progressive disease,

mixed response, and stable disease) according to

investigator assessed, RECIST defined responses. All pa-

tients provided informed written consent on

IRB-approved protocols (Vanderbilt IRB # 030220 and

100178).

Total RNA quality was assessed using the 2200

Tapestation (Agilent). At least 20 ng of DNase-treated

total RNA having at least 30% of the RNA fragments

with a size > 200 nt (DV200) was used to generate

RNA Access libraries (Illumina) following the manu-

facturer’s recommendations. Library quality was

assessed using the 2100 Bioanalyzer (Agilent), and li-

braries were quantitated using KAPA Library Quanti-

fication Kits (KAPA Biosystems). Pooled libraries were

subjected to 75 bp paired-end sequencing according

to the manufacturer’s protocol (Illumina HiSeq3000).

Bcl2fastq2 Conversion Software (Illumina) was used

to generate de-multiplexed Fastq files.

For FOXP3, CD4, and CD8 IHC staining, slides

were placed on a Leica Bond Max IHC stainer. All

steps besides dehydration, clearing, and coverslipping

were performed on the Bond Max. Heat-induced anti-

gen retrieval was performed on the Bond Max using

their Epitope Retrieval 2 solution for 20 min. Slides

were incubated with anti-CD4 (PA0427, Leica, Buffalo

Grove, IL), FOXP3 (14-4777-82, eBiosciences), or

anti-CD8 (MS-457-R7, ThermoScientific, Kalamazoo,

MI) for 1 h.

Analysis of IHC images with IHCount

We considered 75 bright-field immunohistochemistry

images from 33 melanoma patients and 16 images

from 8 lung cancer patients (Vanderbilt cohorts).

However, 3 melanoma patients had to be excluded

from the analysis due to the low quality of the stain-

ing or poor tissue preservation. In total, we analyzed

72 images stained for CD4, CD8, and FoxP3 from 32

melanoma patients and 16 images stained for CD4

and CD8 from 8 lung cancer patients. To quantify

both the number of total cells and tumor-infiltrating

immune cells from the melanoma and lung cancer

IHC images, we implemented a computational work-

flow, called IHCount, using free open-source software

tools. In this workflow different analytical tasks were

performed, including image pre-processing, training of

pixel classifiers, image segmentation, and analysis, to-

gether with cell counting and additional measure-

ments of the tumor-covered area. The methodology

of the analysis is described as follows.

To prepare the IHC images for further analysis, we

used the script collection (bftools) from the consortium

of Open Microscopy Environment (OME) [37]. First, the

bright-field images were extracted as TIF files with the

highest resolution from the image containers, available

in Leica (SCN) format. Each of these high-resolution im-

ages (0.5 μm/pixel, × 20 magnification) was then subdi-

vided into equally sized, non-overlapping image tiles

(2000 × 2000 pixels) in order to limit the computational

costs of the subsequent analytical tasks. The open-

source software ilastik [38] and its “Pixel Classification”

module were used to manually annotate objects of inter-

est and generate classifiers that distinguish positively

stained cells and nuclei from background and stromal

tissue. For each sample, a set of 3 to 5 representative

image tiles was randomly selected for training,
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considering the diverse nature of the obtained images

(caused, for instance, by the presence of artifacts, differ-

ences in illumination, and staining intensities). As a re-

sult, we obtained two classifiers, one to classify pixels

belonging to positively stained cells and the other to

classify pixels belonging to nuclei. In addition, both

could classify background and stromal tissue. The classi-

fiers were subsequently used in a batch process to obtain

two sets of probability maps for each tile. Both sets were

exported as multichannel TIF (32-bit float), where each

channel represented the probabilities of one of the given

classes (positively stained cells or nuclei, together with

stromal tissue and background). Finally, we developed a

Cellprofiler [39] pipeline (IHCount.cppipe) that runs in-

tensity-based operations to segment and identify posi-

tively stained cells, nuclei, and the area of total tissue

using the previously generated probability maps together

with the original image tiles as input files. The overall

results for each image were obtained by summing up the

results of the single image tiles.

All previously described steps of the analysis were im-

plemented in a python script (runCP.py) and can be run

from the command line. The pipeline, together with a

description of the workflow, is publicly available at

https://github.com/mui-icbi/IHCount. IHCount results

for the Vanderbilt cohorts are reported in Additional file

3. Total cell densities per tumor sample to be used to

scale quanTIseq cell fractions were estimated as the

median number of nuclei per mm2 across all images

generated from that tumor.

IHCount analysis of IHC images from CRC patients

(Leiden cohort) was performed using the same approach

adopted for the Vanderbilt cohorts.

Benchmarking of deconvolution and marker-based

methods

All methods were run in R using their original code or R

package, except TIMER, which was run from the web inter-

face (https://cistrome.shinyapps.io/timer). All methods were

run with their default parameter settings. EPIC was run

with the “BRef” signature on PBMC data and with the

“Tref” signature on the tumor data. TIMER signatures for

COAD, LUAD, and SKCM were used to analyze tumor

data from CRC, lung, and melanoma patients, respectively;

TIMER was not applied to PBMC data as the web interface

only allows the analysis of tumor data. CIBERSORT

estimates were aggregated across the major subtypes

considered in the benchmarking (e.g., naïve and mem-

ory B cells were summed up to obtain total B cell

estimates). For EPIC and xCell, T cell estimates were

obtained by summing up CD4+ and CD8+ T cells.

xCell “DC” scores were considered for dendritic cells,

whereas the MCPcounter estimates from the “Mono-

cytic lineage” were used to quantify monocytes.

Computation of the deconvolution-based immunoscore

and TB score from quanTIseq cell fractions

For the calculation of the deconvolution-derived immuno-

score, we considered the fractions of CD8+ T cells and

CD3+ T cells, where the latter was computed as the sum of

CD8+ T cell, CD4+ T cell, and Treg cell fractions. CD3
+ and

CD8+ T cell fractions were dichotomized considering their

median across all patients, computed separately for each

cell type and cancer type, and used to identify two groups

of patients: (1) “Lo-Lo” patients, with both CD3+ and CD8+

T cell fractions lower or equal to the median; (2) “Hi-Hi”

patients, with both CD3+ and CD8+ T cell fractions higher

than the median. The “Hi-Hi” and “Lo-Lo” classes for the T

and B cell (TB score) were derived in an analogous manner,

but considering the fractions of B cells and CD8+ T cell es-

timated by quanTIseq.

t-SNE plots

t-SNE plots of the TCGA solid cancers were generated with

“Rtsne” R package. The t-SNE algorithm was run on the

immune cell fractions estimated by quanTIseq, excluding

the fraction of uncharacterized cells. We retrieved the an-

notation about microsatellite instability (MSI) from a recent

paper [40], considering both the MSI categories of the

TCGA consortium and the MSI/MSS classes predicted at a

confidence level of 0.75. Unambiguous predictions were

used to identify the MSI or MSS samples, whereas ambigu-

ous predictions (MSI:1 and MSS:1), null predictions (MSI:0

and MSS:0), or unavailable samples were assigned to the

“unknown” MSI state. Gene expression represented as z

scores of log2(TPM+1). Before plotting, z scores higher

than 3 (or lower than − 3) were saturated to 3 (or − 3).

Statistical analysis

Correlation between numeric variables was assessed with

Pearson’s correlation. The area under the receiver operating

characteristic curve (AUROC) for multi-class classification

was computed with the “multiclass.roc” function of the

pROC R package. Constrained least squares regression was

performed with the “lsei” function from the “limSolve” R

package. The root-mean-squared error was computed as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

meanððXestimated−X trueÞ
2Þ

q

. Statistically signifi-

cant differences between two groups were tested with

two-sided Wilcoxon’s test. For comparisons across multiple

groups, Kruskal-Wallis test followed by two-sided Dunn’s

pairwise post hoc was used. Normality of the data distribu-

tion was tested with Shapiro-Wilk test. Overall survival

analyses were performed using the R package survival on

TCGA survival data (“vital_status”, “days_to_death”, and

“days_to_last_followup”). For each cancer type, patients

were dichotomized in two groups according to the

deconvolution-based immunoscore or TB score. The

Kaplan-Meier estimator was used to generate survival
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curves and logrank tests (corresponding to two sided z test)

were applied.

Results
Development of quanTIseq deconvolution algorithm

We developed quanTIseq, a computational pipeline for

the analysis of raw RNA-seq and tissue imaging data

that quantifies the fractions and densities of ten different

immune cell types relevant for cancer immunology

(Fig. 1a). We first designed a novel signature matrix

using RNA-seq data (Fig. 1b and Additional file 1). To

this end, we collected a compendium of 51 publicly

available RNA-seq data sets (Additional file 1) from ten

different immune cell types: B cells, M1 and M2 macro-

phages, monocytes (Mono), neutrophils (Neu), natural

killer (NK) cells, non-regulatory CD4+ T cells, CD8+ T

cells, Treg cells, and myeloid dendritic cells (DC). These

data were integrated with additional large-scale data re-

sources from immune and non-immune cells and used

to select the signature genes with the highest specificity

and discriminative power to construct the immune cell

signature matrix (details in the “Methods” section).

We then developed a deconvolution algorithm to esti-

mate the absolute proportions (i.e., cell fractions referred

to the total cells in the sample under investigation) of

ten different immune cell types from bulk RNA-seq data.

quanTIseq performs deconvolution using constrained

least squares regression [41] to force the cell fractions to

be non-negative and their sum not to exceed 1. By

allowing this sum to be lower than 1, quanTIseq esti-

mates also the proportion of uncharacterized cells (re-

ferred to as “other” cells from here on), namely cells that

are present in the cell mixture of interest but that are

not represented in the signature matrix (e.g., cancer

cells). After regression, quanTIseq normalizes the im-

mune cell fractions by a scaling factor in order to cor-

rect for differences in total mRNA content per cell. The

deconvolution of closely related cell types (e.g., Treg cells

and non-regulatory CD4+ T cells) is inherently hampered

by the high correlation of their expression signatures

(multicollinearity) and can result in the underestimation

or “dropout” of low-abundance Treg cells [17]. As there

is currently no consensus on whether regularization

methods can overcome multicollinearity in regression-

based deconvolution [42, 43], we adopted a heuristic

strategy to specifically address the issue of Treg cell drop-

outs. Further details on quanTIseq algorithm are

reported in the “Methods” section.

Deconvolution methods usually take as input a matrix

summarizing the gene expression levels of the mixtures of

interest [15] computed from raw expression data. These

data can be profoundly different from the signature matrix

used for deconvolution, both in terms of gene annotation

and normalization of gene expression values. To avoid

issues arising from missing signature genes and different

data-normalization procedures, quanTIseq implements a

full pipeline for the analysis of raw RNA-seq data that

builds the mixture matrix using the same approach

employed for the signature matrix (described in the

“Methods” section). The quanTIseq pipeline consists of

three analytical steps, as depicted in Fig. 1c: (1)

pre-processing of raw RNA-seq reads (single- or

paired-ends) to remove adapter sequences, trim low-qual-

ity read ends, crop long reads to a maximum length, and

remove short reads; (2) quantification of gene expression

as transcripts per millions (TPM) [44]—which are suitable

for expression deconvolution based on linear regression

[45]—and raw counts; and (3) expression normalization,

gene re-annotation, and deconvolution of cell fractions. A

unique feature of quanTIseq is the possibility to perform

in silico multiplexed immunoprofiling by complementing

the deconvolution results with information from image

analysis of IHC, IF, or H&E tissue slides. If total cell dens-

ities estimated from images are available, they are used by

quanTIseq to scale the fractions of all the deconvoluted

immune cell types to cell densities (step 3 in Fig. 1c).

quanTIseq was containerized using Docker (https://

www.docker.com) and Singularity (https://www.sylabs.

io/singularity) to simplify the installation and usage of

all tools and dependencies, thereby standardizing data

analysis and making it easily accessible by a broader

audience. quanTIseq can be run on Mac OS X and

Linux systems and is available at http://icbi.at/quantiseq.

Validation of quanTIseq using simulated RNA-seq data

and published data sets

To benchmark quanTIseq on well-defined cell mixtures,

we simulated 1700 RNA-seq data sets of human breast

tumors characterized by different immune infiltrate sce-

narios. The data were generated by mixing different pro-

portions of RNA-seq reads from tumor and immune

cells and by simulating different sequencing depths (de-

tails in the “Methods” section). In order to avoid the use

of the same data set for the mixture and signature

matrix in the benchmarking, we adopted a leave-K-out

cross-validation approach. Briefly, for each simulated

mixture to be deconvoluted, a signature matrix was built

excluding the K RNA-seq data sets included in the simu-

lated mixture. quanTIseq obtained a high correlation be-

tween the true and the estimated fractions and

accurately quantified tumor content, measured by the

fraction of “other” cells (Additional file 2: Figure S1).

We then validated quanTIseq using experimental data

from a previous study [46], in which peripheral blood

mononuclear cell (PBMC) mixtures were subjected to

both RNA-seq and flow cytometry. A high accuracy of

the quanTIseq estimates was also observed for this data

set (Fig. 1d and Additional file 2: Figure S2).
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Additionally, we tested quanTIseq on two published

microarray data sets used to validate previous deconvo-

lution methods [17, 47]. Although quanTIseq is designed

for RNA-seq data and might show lower accuracy on

pre-computed expression data due to the lack of import-

ant signature genes and due to the different dynamic

range of hybridization-based and RNA-seq technologies,

it showed good deconvolution performance also on

these data sets (Additional file 2: Figures S3 and S4).

We then applied quanTIseq to over 8000 TCGA sam-

ples across 19 solid malignancies. As no gold-standard

measures were available for these samples, we consid-

ered previous estimates of lymphocytic infiltration [48]

and tumor purity [24] available for a subset of the TCGA

patients to further assess the validity of quanTIseq re-

sults. First, we compared the fraction of lymphocytes es-

timated by quanTIseq, computed by summing up the

cell fractions of B cells, NK cells, CD4+ and CD8+ T

cells, and Treg cells, with the “lymphocyte score”, a semi-

quantitative measure of the number of tumor-infiltrating

lymphocytes estimated previously from H&E-stained sec-

tion slides of melanoma tumors (n = 468) [48]. Although

the two approaches were based on different features of the

immune contexture, i.e., molecular vs. morphological, and

sequencing data and images are usually generated from

different tumor portions, their estimates showed a high

agreement (Additional file 2: Figure S5a).

Second, we considered TCGA tumor purity values es-

timated in a previous work with a consensus approach

integrating four computational methods based on

RNA-seq, methylation, and mutational data [24]. We

compared these purity values with the fraction of “other”

cells inferred by quanTIseq for all cancer types for which

both estimates were available for at least 100 patients.

Although the fraction of “other” cells does not directly

represent tumor purity as it can include different cell

types (e.g., stromal cells), we reasoned that a large pro-

portion of these cells are tumor cells and therefore a

positive correlation between these two variables in solid

tumors should be expected. Indeed, the fraction of

“other” cells estimated by quanTIseq had a significant

positive correlation with tumor purity in all cancer types,

with a correlation ranging from 0.29 in glioblastoma

(GBM) to 0.72 of skin cutaneous melanoma (SKCM)

(Additional file 2: Figure S5b).

Validation of quanTIseq with flow cytometry

immunoprofiling and IHC/IF data

As most of the validation data sets available in the litera-

ture are based on microarray data or consider a limited

number of phenotypes, we generated RNA-seq and flow

cytometry data from mixtures of circulating immune cells

collected from nine healthy donors. The mixtures were

generated by admixing low fractions of

polymorphonuclear (PMN) cells with PBMC extracted

from the same donor samples (see the “Methods” section).

Flow cytometry was used to quantify all the immune

sub-populations considered by quanTIseq except macro-

phages, which are not present in blood. Comparison of

quanTIseq estimates with the flow cytometry cell fractions

showed a high correlation for all the single cell types

(Fig. 1e and Additional file 2: Figure S6) and an overall

correlation of 0.87. In particular, quanTIseq accurately

quantified closely related cell types like non-regulatory

CD4+ T and Treg cells, as well as low-abundance dendritic

cells (Additional file 2: Figure S6).

Finally, we validated quanTIseq using three independ-

ent cancer data sets (Additional file 2: Table S1). The

first data set was generated from 70 tumor samples col-

lected from melanoma patients. We carried out

RNA-seq and, wherever possible, IHC staining for CD8+,

CD4+, or FOXP3+ cells from consecutive whole-tissue

slides. To quantify specific immune cells from the

scanned images, we developed an analysis pipeline

(available at https://github.com/mui-icbi/IHCount) to

perform semi-automatic cell counting. The second data

set was generated in an analogous manner using eight

lung cancer samples and IHC images stained for CD8+

and CD4+ T cells. The third data set was generated from

tumor samples of ten CRC patients. RNA-seq data,

IF-stained slides for CD8+ T cells and M2 macrophages

(CD68+HLA-DR−CD163+), and IHC slides for CD4+ T

and Treg cells were generated and analyzed, wherever

possible. Cell densities were then quantified with Perkin

Elmer (http://www.perkinelmer.com) proprietary soft-

ware for automated quantitative pathology (details in the

“Methods” section). For all the three cancer cohorts, the

cell fractions obtained with quanTIseq showed a good

agreement with the IF/IHC-based estimates, computed

both as cell fractions (i.e., ratio between positive cells

and total nuclei) (Fig. 2a–c) and cell densities (positive

cells per mm2) (Additional file 2: Figure S7). CD8+ T

cells were estimated robustly in all the three data sets

(r = 0.74–0.86, p ≤ 0.0012), whereas Treg cells, B cells,

and M2 macrophages showed a lower agreement, with

positive but non-significant correlations, likely due also

to the small sample size and limited dynamic range of

cell fractions. It is worth noting that these discrepancies

might be also due to the different tumor portions used

to generate images and RNA-seq data, as well as to the

intrinsic limitation of using 1-to-3 cell markers for iden-

tifying distinct cell types from IHC/IF images.

We also used the IHC images from CRC patients’ sam-

ples to benchmark our IHCount pipeline. We compared

the cell fractions and densities obtained with IHCount

for CD4+ T cells, Treg cells, and B cells with those ob-

tained using Perkin Elmer (http://www.perkinelmer.com,

details in the “Methods” section) proprietary software

Finotello et al. Genome Medicine           (2019) 11:34 Page 10 of 20

https://github.com/mui-icbi/IHCount
http://www.perkinelmer.com
http://www.perkinelmer.com


a

b

c

d

Fig. 2 (See legend on next page.)
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for automated quantitative pathology—used here as gold

standard for quanTIseq validation. The two approaches

showed a high positive correlation both for cell fractions

(Additional file 2: Figure S8a) and cell densities (Add-

itional file 2: Figure S8b), although with a slight lower

estimation of CD4+ T and B cells for IHCount.

Finally, we used the unique validation data set generated

in this study also to compare quanTIseq performance with

that of recent methods for the quantification of immune

cells from expression data: CIBERSORT [17], MCPcounter

[10], EPIC [19], xCell [11], and TIMER [18]; the latter was

applied only to tumor data (details in the “Methods”

section). Compared to deconvolution and marker-based

methods, quanTIseq robustly obtained positive correlations

across all cell types and data sets and scored amongst the

top performers in all the assessments (Fig. 2d, Additional

file 2: Figure S9 and Table S2). It is worth noting, however,

that comparison of different deconvolution methods

strongly depends on data type and pre-processing, on the

number and type of immune cells considered (e.g., rare and

similar cell types, considered by some methods but not by

others, are more difficult to quantify), and on whether the

estimates can be interpreted as cell fractions or not (see

also a recent review [16]). Overall, our extensive bench-

marking demonstrates the high accuracy and robustness of

quanTIseq for quantification of immune cells from blood

and tumor samples.

Activation of the CXCL9/CXCR3 axis is associated with

immune infiltration in solid cancers

A comprehensive inventory of the molecular determinants

that shape the tumor immune contexture has yet to be de-

termined. In an attempt to identify promising candidates,

we examined the association between the immune contex-

ture and a set of features describing the genotypes of hu-

man cancers. For this purpose, we used quanTIseq to

reconstruct the immune contexture of solid tumors from

RNA-seq data of more than 8000 TCGA samples across 19

solid malignancies, and we assessed the correlation between

absolute cell proportions and different genomic features:

mutational load, neoantigen load, tumor heterogeneity, and

fractions of mutations with clonal and subclonal origin.

Surprisingly, there was either low or no correlation between

these genetic correlates and the abundances of

tumor-infiltrating immune cells (Additional file 2: Figure

S10). Moreover, the overall lymphocytic infiltration and the

sum of all adaptive or innate immune cell fractions were

only weakly associated with the mutational features in our

pan-cancer and cancer-specific assessments.

We have previously used biomolecular-network recon-

struction to identify T cell homing factors associated

with survival in CRC and pinpointed specific chemo-

kines (CX3CL1, CXCL9, CXCL10) and adhesion mole-

cules (ICAM1, VCAM1, MADCAM1) associated with

high densities of intratumoral T cell subsets [49]. There-

fore, we assessed the association between the expression

of relevant chemokines, chemokine receptors, and adhe-

sion molecules and the abundances of individual im-

mune cell types (Additional file 2: Figure S11). We

observed a high correlation between CD8+ T cell frac-

tions and the expression of CXCL9 chemokine (Fig. 3a)

and chemokine receptor CXCR3 (Additional file 2: Fig-

ure S11b) and, for some cancer types, with CXCL10 ex-

pression (Additional file 2: Figure S11a). The CXCL9/

CXCR3 axis regulates immune cell migration, differenti-

ation, and activation and is therefore an important target

for cancer therapy [50].

In summary, our results obtained using quanTIseq on

bulk RNA-seq data from the TCGA suggests that the ac-

tivation of the CXCR3/CXCL9 axis, rather than the

genotype of the tumor, is associated with intratumoral

cytotoxic T cells infiltration, and challenges the previous

notion that the mutational burden is strongly associated

with an increased infiltration of immune cells [51].

Pan-cancer analysis reveals highly heterogeneous

immune contextures within and across solid cancers

We have previously shown that mutation and neoan-

tigen profiles are highly heterogeneous on a sample

by sample basis, being mostly characterized by pas-

senger alterations that are rarely shared between pa-

tients [13]. However, despite this huge variability in

their genotypes, tumors present common transcrip-

tional signatures describing few molecular subtypes.

For instance, analyses of a large number of samples

identified four CRC subtypes with clear biological in-

terpretability, called consensus molecular subtypes

(CMS) [52]. Similarly, the immune profiles of human

(See figure on previous page.)

Fig. 2 Validation of quanTIseq using tumor RNA-seq data and IF/IHC images. Comparison of quanTIseq cell fractions with those inferred for IF/IHC images

from melanoma (a), lung cancer (b), and colorectal cancer (c) patients. Deconvolution performance was assessed with Pearson’s correlation (r) and root-

mean-square error (RMSE) considering image cell fractions (ratio of positive cells to total nuclei) as ground truth. The line represents the linear fit.

d Performance of quanTIseq and previous computational methods obtained on the three validation cohorts: melanoma, lung cancer, and colorectal

cancer patients. Methods performance was quantified using Pearson’s correlation (r) considering image cell fractions as ground truth. Correlations for single

cell types are displayed as dots, together with whiskers and horizontal bands representing median and 95% confidence intervals. Missing cell types are

visualized as triangles at the bottom of the plots. Diamonds indicate the overall correlation obtained considering all cell types together; not shown for

marker-based methods, which do not allow intra-sample comparison. B, B cells. CD4, total CD4+ T cells (including also CD4+ regulatory T cells); CD8, CD8+

T cells; M2, M2 macrophages; T, Treg: regulatory T cells
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Fig. 3 quanTIseq analysis of RNA-seq data from 19 TCGA solid cancers. a Pearson’s correlation between cell proportions estimated by quanTIseq and

expression in TPM of the CXCL9 chemokine. t-SNE plot of the immune contextures of 8243 TCGA cancer patients, colored by: b cancer type or c

expression of immune-related genes and microsatellite instability state. The line in the t-SNE plots qualitatively indicates the separation of the putative

inflamed, immune-desert, and immune-excluded phenotypes. Adaptive, total adaptive immune cells; B, B cells; CD4, total CD4+ T cells (including also CD4+

regulatory T cells); CD8, CD8+ T cells; DC, dendritic cells; Innate, total innate immune cells; Lym, total lymphocytes; M1, classically activated macrophages;

M2, alternatively activated macrophages; Mono, monocytes; MSI, microsatellite instable; MSS, microsatellite stable; Neu, neutrophils; NK, natural killer cells;

Other, uncharacterized cells; T, T cells; Treg, regulatory T cells

Finotello et al. Genome Medicine           (2019) 11:34 Page 13 of 20



cancers can be grouped into three major phenotypes,

which are associated with response to PD1/PDL1

blockade: immune-inflamed, immune excluded, and

immune desert [2]. Hence, we hypothesized that des-

pite the genetic heterogeneity, human tumors con-

verge to a limited number of immunological states

quantified by the immune contextures. To test this hy-

pothesis, we used dimensionality reduction based on the

t-Distributed Stochastic Neighbor Embedding (t-SNE)

[53] approach to visualize the 8243 immune contextures

reconstructed by quanTIseq across 19 TCGA solid can-

cers (Fig. 3b and Additional file 2: Figure S12). Most of the

cancer types did not create clearly distinct clusters, indicat-

ing highly heterogeneous immune contextures within and

across cancers. Although some clusterization was visible

for subsets of melanoma (SKCM), thyroid cancer (THCA),

uterine cancer (UCEC), breast cancer (BRCA), and lung

adenocarcinoma (LUAD) patients, a large overlap is seen

for most of the cancer types. Visualization of gene expres-

sion (Fig. 3c) and immune cell fractions (Additional file 2:

Figure S13) revealed two major clusters that might identify

patients characterized by a high infiltration of cytotoxic

CD8+ T cells typical of the inflamed phenotype (right clus-

ter in Fig. 3c with high CD8B expression), opposed to the

immune-desert phenotype (left cluster in Fig. 3c with low

CD8B expression) [2]. The inflamed phenotype was further

associated with high expression of interferon gamma

(IFNG), as well as with upregulation of immune check-

points like PD1 and PDL1 and exhaustion markers like

LAG3 and TIM3. Intriguingly, the plot also shows a cluster

of patients characterized by high CD8B and VEGFA ex-

pression (top sub-cluster in Fig. 3c), which might corres-

pond to an immune-excluded phenotype [2].

Based on the results of a recent clinical study [54], cancers

with microsatellite instability (MSI) including CRC, uterine

cancer, and ovarian cancer can be now treated with PD1

blockers. We therefore analyzed the immune contextures of

MSI cancers from the TCGA cohorts (Fig. 3c). Similarly to

the pan-cancer analyses, we found no distinct clusters also

for this subgroup. Compared to their microsatellite stable

(MSS) counterparts, MSI cancers were characterized by a

significantly lower infiltration of M2 macrophages (p =

5.03·10−8) and neutrophils (p = 1.28·10−17) and by a signifi-

cantly higher infiltration of M1 macrophages (p = 3.66·10−3),

NK cells (p = 5.76·10−7), CD8+ T cells (p = 1.75·10−4), Treg

cells (p = 1.34·10−3), and dendritic cells (p = 3.67·10−3).

In summary, we could show that, for human solid tu-

mors, neither the classification according to the muta-

tional load (MSI vs. MSS) nor the classification according

to the anatomical site converges to a limited number of

immunological states quantified by the immune contex-

tures. However, it appears that some cancer subtypes ex-

hibit similar immune contextures associated with specific

genotypes as recently shown by us [13] and others [51].

Deconvolution-based immune scores are associated with

survival in solid cancers

The immunoscore, a scoring system defined to quantify

the immune infiltrates from tumor imaging data, has

been demonstrated to be a prognostic marker superior

to the TNM staging system in CRC [55]. The immuno-

score is based on the enumeration of two lymphocyte

populations (CD3+ and CD8+) in the tumor core and in-

vasive margin, and it can assume values from 0, when

low densities of both cell types are found in both re-

gions, to 4, when high densities are found in both re-

gions. Recently, it was shown that the immunoscore

and a newly proposed T and B cell score (TB score) were

the strongest predictors of disease-free survival and

overall survival in metastatic CRC [56].

We defined modified versions of the immunoscore

and TB score based on the absolute fractions of the re-

spective cell types deconvoluted by quanTIseq and

tested their association with survival in solid cancers

(see the “Methods” section). The results of the survival

analysis using the computed TCGA cell fractions

showed the prognostic value of the deconvolution-based

immunoscore and TB cell score in five (BRCA, cervical

squamous cell carcinoma [CESC], head and neck cancer

[HNSC], SKCM, and UCEC) and six solid cancers

(BRCA, CESC, HNSC, LUAD, and prostate adenocarcin-

oma [PRAD]), respectively (Fig. 4). The association was

not significant for CRC as expected, due to the fact that

spatial information of the immune cell distribution with

respect to the tumor core and invasive margin could not

be incorporated.

All quanTIseq results of the TCGA analysis have been

deposited in The Cancer Immunome Atlas (https://tcia.

at) [13] to make them available to the scientific commu-

nity and facilitate the generation of testable hypotheses.

Pharmacological modulation of the tumor immune

contexture

Beyond the extraction of prognostic markers, there is an

urgent need to identify predictive markers for cancer im-

munotherapy with immune checkpoint blockers, as well

as to determine the immunological effects of targeted

agents [6]. We therefore used quanTIseq to investigate

the pharmacological effects of targeted drugs on the im-

mune contexture. We analyzed recently published

RNA-seq data set from pre- and on-treatment tumor bi-

opsies from seven melanoma patients treated with a

BRAF inhibitors, MEK inhibitors, or a combination

thereof [57]. quanTIseq deconvolution results showed

large pharmacological remodeling of the immune con-

texture (Fig. 5a). Changes included a significant increase

in dendritic cell fractions during treatment (p = 0.043)

and, to a lesser extent, an infiltration of CD8+ T cells

(p = 0.19) and M2 macrophages (p = 0.07). Thus, BRAF
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and MEK inhibitors induce profound changes of the im-

mune contexture. However, our analysis showed also pa-

tient-specific effects, further highlighting the need to

develop immuno-oncology treatment strategies tailored

to the individual patient.

Finally, in order to show the value of quanTIseq for

informing cancer immunotherapy, we analyzed publicly

available RNA-seq data from 51 pre- and 58 on-treatment

samples collected from 65 melanoma patients treated with

anti-PD1 [58]. quanTIseq analysis of pre- (Fig. 5b) and

on-treatment samples (Fig. 5c) revealed higher B cell (p =

0.02) and CD8+ T cell (p = 0.03) fractions, respectively, in

responders compared to non-responders. Pre- and

on-treatment samples from responder patients also showed

higher M1 macrophage fractions, although the differences

with non-responders were not statistically significant.

To further assess the predictive potential of quanTI-

seq, we considered 21 pre-treatment samples from our

cohort of melanoma patients treated with anti-PD1 anti-

bodies (nivolumab, pembrolizumab) and quantified the

immune contexture using both bulk RNA-seq data and

H&E-stained slides. We first carried out deconvolution

using RNA-seq data and then scaled the fractions using

total cell densities extracted from images to perform in

silico multiplexed immunodetection. Total cell densities

to be considered by quanTIseq can be computed from

H&E-stained images (Fig. 1a). However, as H&E-stained

images were not available for this cohort, we computed

total cell densities as the median number of nuclei per

mm2 across all IHC images generated from a tumor.

The cell densities estimated by quanTIseq showed a

positive correlation with the image-derived densities

BLCA
BRCA
CESC
CRC
GBM
HNSC
KICH
KIRC
KIRP
LIHC
LUAD
LUSC
PAAD
PRAD
SKCM
STAD
THCA
UCEC

−3 −2 −1 0 1 2 3

log2 hazard ratio

**
**

*

***

*

CD3_CD8

−3 −2 −1 0 1 2 3

log2 hazard ratio

**
*

**

*

*

***

B_CD8

Time (months)

O
ve

ra
ll 

s
u
rv

iv
a
l 
(p

ro
b
a
b
ili

ty
)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

logrank p=0.004
HR=0.46 (0.28−0.79)

No. at risk
HIHI
LOLO

CESC CD3−CD8 score

119
121

29
27

10
7

4
2

2
0

Time (months)

O
ve

ra
ll 

s
u

rv
iv

a
l 
(p

ro
b

a
b

ili
ty

)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

logrank p=1.1x10
4

HR=0.53 (0.38−0.73)

No. at risk
HIHI
LOLO

SKCM B−CD8 score

157
157

76
54

40
30

20
11

8
6

a b

c

Fig. 4 Prognostic value of deconvolution-based immunoscore and T cell/ B cell score in solid cancers. Kaplan-Meier plots showing the survival of the

Hi-Hi and Lo-Lo classes defined considering the deconvolution-based immunoscore computed for cervical endometrial cancer (CESC) patients (a) and the

TB score computed for melanoma (SKCM) patients (b). The p value of the log-rank test, hazard ratio (HR) with 5% confidence intervals, and number of

patients at risk at the respective time points are reported. c Results of the overall survival analysis across 19 TCGA solid cancers. Log2 hazard ratio and its

95% confidence interval are visualized for the deconvolution-based immunoscore and TB score as forest plots. Significant p values are indicated as

***p < 0.001, **0.001≤ p < 0.01, and *0.01≤ p < 0.05
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(Additional file 2: Figure S14). The deconvoluted cell

densities of the ten immune cell types showed large het-

erogeneity across the patients and differences between

responders and non-responders. For example, the dens-

ities of M1 macrophages as well as of CD4+ and CD8+ T

cells were increased in responders compared to

non-responders, although differences were not statisti-

cally significant (p > 0.09), likely due to the limited num-

ber of samples (Fig. 5d). Further work with a larger

number of samples is necessary to determine which

immune cell type fractions or combined scores have pre-

dictive power for response to therapy with immune

checkpoint blockers.

Discussion

We developed quanTIseq, a computational pipeline for

the analysis of raw RNA-seq and tissue imaging data

that quantifies the absolute fractions and densities of ten

different immune cell types relevant for cancer immun-

ology. Unlike previous approaches, quanTIseq is specif-

ically designed for RNA-seq data, which is the current

reference technology for high-throughput quantification

of gene expression [59]. To simplify data analysis and

avoid inconsistencies between the mixture and the

signature matrix, we designed quanTIseq as a complete

analytical pipeline that performs pre-processing of raw

RNA-seq data, gene expression quantification and

normalization, gene re-annotation, and estimation of cell

fractions and densities. The results of our extensive val-

idation using RNA-seq data from simulations, previous

studies, blood cell mixtures, and three cancer patient co-

horts demonstrate that quanTIseq can faithfully and

quantitatively infer immune cell fractions from bulk

RNA-seq data. Additionally, application of the method

to publicly available data as well as data generated in this

study revealed several important biological insights.

First, by analyzing more than 8000 TCGA samples, we

showed that genomic features like mutational and neoan-

tigen load, tumor heterogeneity, and proportion of clonal

and subclonal mutations are only weakly associated with

CD8+ T cell fractions. In contrast, we found a stronger

correlation between the activation of the CXCL9/CXCR3

axis and CD8+ T cell infiltration in solid tumors, which

would support the notion that CD8+ T cells expressing the

chemokine receptor CXCR3 can migrate into tumors fol-

lowing CXCL9 gradients [60]. This finding suggests that

pharmacological modulation of the CXCL9/CXCR3 axis

could be a therapeutic strategy to boost T cell recruitment,

a b

c

d

Fig. 5 Pharmacological modulation of the tumor immune contexture and response to checkpoint blockers. a Changes in the immune contexture of

melanoma tumors during treatment with BRAF and/or MEK inhibitors, measured as “relative cell fraction variation”, i.e., ratio between the difference and

the mean of the on- and pre-treatment immune cell fractions estimated via deconvolution. Immune cell fractions (log scale) estimated with quanTIseq

from pre- (b) and on-treatment (c) samples collected from melanoma patients treated with anti-PD1 and stratified as responders (R) and non-responders

(NR) (data from [58]). d quanTIseq immune cell densities (log scale) from our cohort of melanoma patients, stratified as responders (R) and non-responders

(NR). Total cell densities used to scale quanTIseq immune cell fractions were estimated as the median number of nuclei per mm2 across all images

generated from each tumor. B, B cells; CD4, total CD4+ T cells (including also CD4+ regulatory T cells); CD8, CD8+ T cells; DC, dendritic cells; M1, classically

activated macrophages; M2, alternatively activated macrophages; Mono, monocytes; Neu, neutrophils; NK, natural killer cells; Treg, regulatory T cells; Other,

other uncharacterized cells

Finotello et al. Genome Medicine           (2019) 11:34 Page 16 of 20



thereby making also the immune-desert tumors [2] amen-

able to cancer immunotherapy. For instance, epigenetic

reprogramming of genes expressing T helper (TH)-1 che-

mokines like CXCL9 and CXCL11 might increase CD8+ T

cell infiltration into the tumor bed [60].

Second, our results indicate that the immune contexture

is highly heterogeneous across and within solid cancers.

This could partly explain the fact that the beneficial effects

of cancer immunotherapy are observed only in a small

fraction of patients. Furthermore, while the classification

of common cancers into the three major immunopheno-

types, namely immune inflamed, immune excluded, and

immune desert, is conceptually appealing, it might not be

sufficient to stratify the patients and thereby inform can-

cer immunotherapy. Our data suggest that the immune

contexture and, hence, the immunophenotypes represent

rather a continuous then a discrete variable, making it dif-

ficult to define cutoffs for precise stratification.

Third, the analysis with the deconvolution-based immu-

noscore and TB score supports the notion that combina-

tions of different immunological features can have a

stronger prognostic power than single markers. The lack of

a significant prognostic value for some indications might be

due to both, biological and technical reasons. For example,

analyses of 10,000 samples showed remarkable degree of

heterogeneity of the immune infiltrates across distinct

organ-specific malignancies [51], suggesting that the cellu-

lar context is of utmost importance. Moreover, the high

heterogeneity of the TCGA cohorts with respect to treat-

ment and staging could be a possible confounding factor.

Lastly, as we have previously shown that not only the dens-

ity but also the spatial localization of the infiltrating im-

mune cells plays a major role for the prognosis of tumor

recurrence [3]. Enumeration of the immune cells in the

core of the tumor and at the invasive margin markedly

enhances the performance of the immunoscore. However,

including this type of spatial information from the available

TCGA images is challenging due to the limited

performance of fully automated image analyses. Spatial

lymphocytic patterns obtained using recent developments

of deep learning tools [51, 61] might provide this missing

information.

Fourth, quanTIseq analysis of the transcriptomes of

patients treated with kinase inhibitors demonstrates pro-

found pharmacological remodeling of the immune con-

texture. The immunological effects of conventional and

targeted therapies came only recently into focus, foster-

ing numerous clinical trials on combinatorial regimens

of checkpoint blockers and targeted agents [62]. As bulk

RNA-seq is now widely applied to profile fresh-frozen

and archived tumor specimens, quanTIseq can be ap-

plied to effectively mine these data. Specifically, quanTI-

seq can be used to quantify the tumor immune

contexture from large collections of formalin-fixed

paraffin-embedded (FFPE) samples in order to identify

immunogenic effects of conventional and targeted drugs

and hereby gain mechanistic rationale for the design of

combination therapies.

Finally, our analysis of transcriptomics profiles from

patients treated with anti-PD1 antibodies, although lim-

ited in sample size, shows the potential of quanTIseq for

the extraction of immunological features that, alone or

in combination, might predict the response to check-

point blockade. Intriguingly, the higher infiltration of

CD8+ T cells in responder patients was not apparent

from baseline samples but revealed itself shortly after

the treatment start. This finding, also reported in a

previous study on melanoma patients treated with

CTLA4 and PD1 blockers [63], highlights the potential

of early monitoring of the changes in the tumor immune

contexture induced by checkpoint blockers. This could

possibly reveal the mechanisms of resistance and enable

identification of predictive markers for immunotherapy

[64]. As more and more RNA-seq data sets from pre-

and post-treatment samples of patients treated with

checkpoint blockers will become available, we envision

that quanTIseq will represent a useful resource to moni-

tor the modulating effects of immunotherapy on the

tumor immune contexture and extract candidate pre-

dictive markers.

We plan three lines of improvements of quanTIseq.

First, as the transcriptomes of other non-malignant cell

types from the tumor microenvironment will become

available using bulk RNA-seq or single-cell RNA-seq,

quanTIseq signature matrix can be extended to other

cell types (e.g., cancer-associated fibroblasts) and opti-

mized for specific cancer types. However, although im-

mune cell phenotypes are known to depend on the

specific tissue and disease context, to what extent ex-

pression signatures derived from the tumor microenvir-

onment instead than from blood improve deconvolution

performance remains to be clarified [19, 65, 66]. Second,

spatial information on the localization of the infiltrating

immune cells, i.e., localization in the center of the tumor

and at the invasive margin, can be incorporated using

annotation by a pathologist from images of H&E-stained

slides. Finally, complementary information on the func-

tional orientation of the infiltrating immune cells, in-

cluding T cell anergy, exhaustion, or differentiation

stage, can be derived from bulk RNA-seq data and in-

cluded into the algorithm. However, since these func-

tional states are not precisely defined in terms of unique

expression signatures, a community-based consensus is

required in order to include this type of information.

Conclusions
In summary, we developed and thoroughly validated quan-

TIseq, a method for the quantification of the tumor
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immune contexture using bulk RNA-seq data and histo-

logical images. Application of the tool to analyze thousands

of samples from patients treated with conventional, tar-

geted, or immunotherapeutic drugs revealed molecular and

pharmacological modulators of the tumor immune contex-

ture and immunological features underlying differential re-

sponses to immune checkpoint blockers. Hence, by

analyzing carefully selected and well-annotated samples,

our method holds promise to derive mechanistic rationale

for the design of combination therapies and the develop-

ment of predictive markers for immunotherapy. While

quanTIseq represents an important contribution to the

computational toolbox for dissecting tumor-immune cell

interactions from RNA-seq data [15], we envision that it

can be also applied to study autoimmune, inflammatory,

and infectious diseases.
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