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ABSTRACT 

 

MOLECULAR AND POPULATION LEVEL APPROACHES TO UNDERSTAND 

TAXUS METABOLISM IN CELL SUSPENSION CULTURES 

FEBRUARY 2013 

ROHAN A. PATIL 

B.Chem. Engg., THE INSTITUTE OF CHEMICAL TECHNOLOGY, MUMBAI  

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Susan C. Roberts 

 

Plant cell culture is an attractive platform technology for production and supply of 

important plant derived medicinals. A unique characteristic of plant cells is the ability to 

grow as multicellular aggregates in suspension. The presence of these non-uniform 

aggregates results in creation of distinct microenvironments, which can induce variations 

in cellular metabolism (e.g., growth, oxygen consumption and secondary metabolite 

synthesis). This heterogeneity can lead to unpredictable and suboptimal performance in 

large scale bioprocesses. One example is the Taxus cell culture system, which produces a 

widely used chemotherapeutic drug – paclitaxel (Taxol ®). Despite extensive process 

engineering efforts which have led to increased yields of paclitaxel, Taxus cells exhibit 

variability in productivity that is poorly understood. Elicitation of Taxus cultures with 

methyl jasmonate (MeJA) induces the accumulation of paclitaxel, but to varying extents 

in culture. A significant negative correlation was observed between paclitaxel level and 
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mean aggregate size of the culture, demonstrating the relevance of measuring, and 

potentially controlling aggregate size during long term subculture.  

 Understanding the regulation of gene expression can provide rational engineering 

strategies to control variability and optimize performance of Taxus cell cultures. 

Biosynthetic pathway gene analyses revealed upregulation of genes upon elicitation with 

MeJA; results also suggested additional molecular regulatory points outside of the 

biosynthetic pathway. In order to fully understand Taxus molecular regulation and the 

relationship to paclitaxel production variability, a transcriptome-wide analysis using next 

generation sequencing (454 and Illumina) methods was performed. Several pathways 

outside of paclitaxel biosynthesis were found active upon MeJA elicitation. Global 

comparison of gene expression amongst cultures accumulating different levels of 

paclitaxel is being performed to completely understand the interactions amongst the 

paclitaxel biosynthetic pathway and other complimentary and competing pathways to 

suggest effective targets for metabolic engineering. This work collectively represents the 

first molecular studies to understand metabolic regulation in Taxus cell cultures.  

Apart from inducing paclitaxel biosynthesis, MeJA decreases cell growth in 

Taxus cell cultures. The MeJA-mediated repression of cell growth was shown to correlate 

with inhibition of cell cycle progression as evident both at the culture level through flow 

cytometric analyses and at the transcriptional level by repression of key cell cycle-

associated genes. Results from this study provide valuable insight into the mechanisms 

governing MeJA perception and subsequent events leading to repression of Taxus cell 

growth. 



ix 
 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS .............................................................................................. v 

ABSTRACT ..................................................................................................................... vii 

LIST OF TABLES ......................................................................................................... xiii 

LIST OF FIGURES ......................................................................................................... xv 

CHAPTER  

1. INTRODUCTION AND BACKGROUND................................................................. 1 

 
1.1 Introduction ................................................................................................................... 1 

 
1.1.1 Production routes for plant-based products ........................................................... 1 
1.1.2 In vitro plant culture .............................................................................................. 3 
1.1.3 Challenges to in vitro plant culture ....................................................................... 4 
1.1.4 Aggregation and heterogeneity in plant cell suspension cultures ......................... 6 

 
1.1.4.1 Effect of aggregation on typical culture parameters ................................... 7 

 
1.1.4.1.1 Aggregation and growth ............................................................ 7 
1.1.4.1.2 Aggregation and oxygen consumption ...................................... 8 
1.1.4.1.3 Aggregation and secondary metabolite accumulation ............... 9 

 
1.1.5 Molecular approaches to understand the regulation of secondary metabolism .. 11 
1.1.6. Paclitaxel production in Taxus suspension cultures ........................................... 14 

 
1.1.6.1 Paclitaxel ................................................................................................... 14 
1.1.6.2. Paclitaxel supply and Taxus cell culture .................................................. 15 
1.1.6.3 Previous work on aggregation in Taxus cell cultures ............................... 17 
1.1.6.4 Molecular approaches to understand Taxus metabolism .......................... 18 

 
1.2 Research Objectives .................................................................................................... 19 

 

2. CELLULAR AGGREGATION IS A KEY PROCESS PARAMETER 

ASSOCIATED WITH LONG TERM VARIABILITY IN PACLITAXEL 

ACCUMULATION IN TAXUS SUSPENSION CULTURES .................................... 30 

 
2.1 Introduction ................................................................................................................. 30 
2.2 Materials and methods ................................................................................................ 34 



x 
 

 
2.2.1 Cell culture maintenance, elicitation and biomass measurements ...................... 34 
2.2.2 Glucose and sucrose measurements .................................................................... 35 
2.2.3 Isolation of intact nuclei for ploidy and nuclear DNA content analyses ............ 35 
2.2.4 Taxane analysis ................................................................................................... 36 

 
2.3 Results and Discussion ................................................................................................ 37 

 
2.3.1 Relationship between paclitaxel levels and mean aggregate size ....................... 37 
2.3.2 Relationship between sucrose consumption, paclitaxel levels and mean   

aggregate size ...................................................................................................... 39 
2.3.3 Cell cycle, DNA content and ploidy analyses ..................................................... 39 

 
2.4 Conclusions ................................................................................................................. 41 
2.5 Additional information ................................................................................................ 46 

 

3. CONTRIBUTION OF TAXANE BIOSYNTHETIC PATHWAY GENE 

EXPRESSION TO OBSERVED VARIABILITY IN PACLITAXEL 

ACCUMULATION IN TAXUS SUSPENSION CULTURES .................................... 54 

 
3.1 Introduction ................................................................................................................. 54 
3.2 Materials and methods ................................................................................................ 57 

 
3.2.1 Cell culture maintenance, elicitation and biomass measurements ...................... 57 
3.2.2 Initiation of cultures with different aggregate size distributions and sampling     

for growth, RNA and metabolite analyses .......................................................... 58 
3.2.3 Metabolite analysis .............................................................................................. 59 
3.2.4 Gene expression analysis .................................................................................... 59 

 
3.2.4.1 RNA isolation and reverse transcription ................................................... 59 
3.2.4.2 Primer design ............................................................................................ 60 
3.2.4.3 Quantitative real time RT-PCR (qRT-PCR) ............................................. 60 

 
3.3 Results and Discussion ................................................................................................ 61 

 
3.3.1 Analysis of paclitaxel/taxane biosynthetic pathway gene expression in    

unelicited and MeJA-elicited cultures ................................................................ 61 
3.3.2 Analysis of cultures that exhibit high variability in paclitaxel/taxane 

accumulation ....................................................................................................... 63 
3.3.3 Analysis of cultures with smaller differences in paclitaxel/taxane accumulation 

but higher levels of production ........................................................................... 65 
 
3.4 Conclusions ................................................................................................................. 67 
3.5 Additional information ................................................................................................ 75 



xi 
 

4. TRANSCRIPTOME ANALYSIS OF TAXUS CULTURES EXHIBITING 

METABOLIC AND MORPHOLOGICAL HETEROGENEITY ............................. 84 

4.1 Introduction ................................................................................................................. 84 
4.2 Materials and methods ................................................................................................ 87 

 
4.2.1 Cell culture maintenance, meja elicitation and coulter counter analysis ............ 87 
4.2.2 RNA isolation for 454 sequencing ...................................................................... 88 
4.2.3 Initiation of cultures with different aggregate size distributions and sampling    

for RNA isolation for Illumina sequencing ........................................................ 88 
4.2.4 Contig generation, annotation and expression analyses ...................................... 89 
4.2.5 Taxane analysis ................................................................................................... 89 
4.2.6 Lignin content analysis ....................................................................................... 89 
4.2.7 Estimation of total flavonoid content .................................................................. 90 

 
4.3 Results and Discussion ............................................................................................... 91 

 
4.3.1 Generation of a base transcriptome for Taxus cultured cells .............................. 91 
4.3.2 MeJA-mediated upregulation of taxane biosynthetic pathway ........................... 92 
4.3.3 MeJA-mediated upregulation of phenylpropanoid pathway ............................... 93 
4.3.4 Increased mean aggregate size upon MeJA elicitation potentially linked to 

upregulation of phenylpropanoid metabolism .................................................... 94 
4.3.5 Further analysis of transcriptional patterns in cultures with different 

morphological and metabolic patterns ................................................................ 95 
 
4.4 Conclusions ................................................................................................................. 96 

 

5. METHYL JASMONATE REPRESSES GROWTH AND AFFECTS CELL 

CYCLE PROGRESSION IN CULTURED TAXUS CELLS.................................... 106 

5.1 Introduction ............................................................................................................... 106 
5.2 Materials and methods .............................................................................................. 109 

 
5.2.1 Cell culture maintenance and MeJA elicitation ................................................ 109 
5.2.2 Biomass and taxane content measurements ...................................................... 109 
5.2.3 Viability analysis ............................................................................................... 110 
5.2.4 DNA laddering assay ........................................................................................ 111 
5.2.5 Isolation and fixation of intact nuclei ................................................................ 111 
5.2.6 Distribution of cells in different phases of the cell cycle .................................. 112 
5.2.7 EdU incorporation assay ................................................................................... 112 
5.2.8 Pulse labeling of MeJA-elicited and mock-elicited cultures ............................. 113 
5.2.9 Cumulative labeling of MeJA-elicited and mock-elicited cultures ................... 114 
5.2.10 Flow cytometry ............................................................................................... 114 
5.2.11Cell cycle-associated contig generation, annotation and expression analysis . 115 

 
5.3 Results ....................................................................................................................... 116 



xii 
 

5.3.1 MeJA represses cell growth without significant changes in necrosis and 
apoptosis ........................................................................................................... 116 

5.3.2 MeJA causes a transient increase in G2 phase cells and a decrease in S phase 
cells, followed by an arrest at G0/G1 in asynchronous Taxus suspension   
cultures .............................................................................................................. 117 

5.3.3 MeJA slows down the cell cycle ....................................................................... 118 
5.3.4 MeJA decreases the number of cycling cells .................................................... 119 
5.3.5 MeJA represses a number of genes participating in cell cycle progression ...... 119 

 
5.4 Discussion ................................................................................................................. 122 
5.5 Additional information .............................................................................................. 141 

 

6. IMPACT AND FUTURE WORK ........................................................................... 161 

6.1 Impact ........................................................................................................................ 161 
6.2 Recommendations for future work............................................................................ 163 

 
6.2.1 Process engineering strategies to control aggregate size .................................. 163 
6.2.2 Multiparameter flow cytometry to determine the relationship between   

paclitaxel-accumulating and noncycling cells in Taxus cell culture ................ 164 
6.2.3 Metabolic engineering of Taxus cell cultures ................................................... 167 

 
6.2.3.1 Further characterization of global molecular-genetic regulatory     

networks to enable metabolic engineering .............................................. 167 
6.2.3.2 Agrobacterium-mediated stable transformation method ........................ 168 

 

BIBLIOGRAPHY ......................................................................................................... 169 

 

 

 

 

 

 

 

 

 



xiii 
 

LIST OF TABLES 

Table                                                                                                                 Page 

1.1 A comparison of key characteristics of microbial, mammalian and plant cells 

relevant to bioprocessing ................................................................................................... 21 

1.2 Relation between aggregate size and secondary metabolite accumulation in 

various plant cell culture systems ...................................................................................... 22 

2.1 Effect of Coulter counter solution on sample analyses ................................................ 51 

3.1 Sequences for forward and reverse primers of the paclitaxel biosynthetic pathway 

genes used in qRT-PCR ..................................................................................................... 68 

3.2 Effect of varying osmoticum sterilization conditions on single cell isolation 

procedure in T. cuspidata P93AF cell line......................................................................... 80 

3.3 Effect of removing dextran sulfate from the osmoticum solution on single cell 

isolation procedure in T. cuspidata P93AF cell line .......................................................... 81 

3.4 Effect of varying osmoticum pH on isolated single cells and aggregated cultures ..... 82 

5.1 Contigs expressed in Taxus cell cultures and annotated as cell cycle-related genes 

downregulated in MeJA-elicited cultures relative to mock-elicited cultures at 18 

hours post-elicitation. ....................................................................................................... 128 

5.2 Contigs expressed in Taxus cell cultures and annotated as cell cycle-related genes 

downregulated in MeJA-elicited cultures relative to mock-elicited cultures at 72 

hours post-elicitation. ....................................................................................................... 131 

5.3 Contigs expressed in Taxus cell cultures whose expression is downregulated 72 

hours post-elicitation as compared to 18 hours post-elicitation in MeJA-elicited 

cultures. ............................................................................................................................ 133 

5.4 Contigs expressed in Taxus cell cultures whose expression is upregulated 72 

hours post-elicitation as compared to 18 hours post-elicitation in MeJA-elicited 

cultures. ............................................................................................................................ 134 



xiv 
 

5.5 Complete list of 149 contigs expressed in Taxus cell cultures that are predicted to 

be cell cycle-related. ........................................................................................................ 145 

5.6 Contigs expressed in Taxus cell cultures that are predicted to encode histones and 

which are downregulated in MeJA-elicited cultures relative to mock-elicited cultures 

at 18 hours post-elicitation. .............................................................................................. 152 

5.7 Contigs expressed in Taxus cell cultures that are predicted to encode histones and 

which are downregulated in MeJA-elicited cultures relative to mock-elicited cultures 

at 72 hours post-elicitation. .............................................................................................. 157 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 
 

LIST OF FIGURES 

Figure                         Page 

1.1 Three different types of in vitro culture for Taxus. ...................................................... 24 

1.2 Chemical structure of paclitaxel .................................................................................. 25 

1.3 Overview of the paclitaxel biosynthetic pathway. ....................................................... 26 

1.4 Characteristic aggregates observed in T. cuspidata P93AF cell suspension 

cultures. .............................................................................................................................. 28 

1.5 Increase in cell biomass and mean aggregate size during exponential growth in 

Taxus cell cultures.............................................................................................................. 29 

2.1 Fluctuations in mean aggregate size and paclitaxel levels over subculture cycles. ..... 43 

2.2 Cell cycle analysis of T.cuspidata P93AF cell line over multiple subcultures. ........... 44 

2.3 Flow cytometric DNA histograms. .............................................................................. 45 

2.4 Fluctuations in mean aggregate size and extracellular sugar levels over subculture 

cycles.................................................................................................................................. 46 

2.5  Fluctuations in mean aggregate size over subculture cycles in T. cuspidata 

P991C cell line. .................................................................................................................. 47 

2.6 Effect of inoculation density on biomass and mean aggregate size of T. cuspidata 

P93AF cultures................................................................................................................... 53 

3.1 Effect of methyl jasmonate elicitation on taxane accumulation and expression of 

taxane biosynthetic pathway genes. ................................................................................... 69 

3.2 Profiles of aggregate size distributions, taxane accumulation and gene expression 

patterns in cultures exhibiting a large difference in paclitaxel accumulation .................... 71 

3.3 Profiles of aggregate size distributions, taxane accumulation and gene expression 

patterns in cultures accumulating high levels of paclitaxel with a relatively small 

difference in paclitaxel accumulation ................................................................................ 73 



xvi 
 

3.4 Denaturing gel electrophoresis of RNA isolated from Taxus cell cultures, single 

cells and protoplasts. .......................................................................................................... 78 

3.5 Viability staining of single cells and protoplasts isolated from Taxus cuspidata 

P93AF cell line .................................................................................................................. 79 

4.1 Time course of taxane accumulation after MeJA elicitation in T. cuspidata 

P93AF cultures................................................................................................................... 97 

4.2 Profiles of taxane accumulation in small and large aggregate cultures over a three 

week period post MeJA elicitation. ................................................................................... 98 

4.3 Heat map showing the hierarchical clustering of differentially expressed 

paclitaxel biosynthesis genes ............................................................................................. 99 

4.4 Outline of phenylpropanoid biosynthesis.pathways .................................................. 100 

4.5 Increased phenylpropanoids upon MeJA elicitation. ................................................. 101 

4.6 Effect of MeJA addition on mean aggregate size of the culture. ............................... 102 

4.7 Overview of paclitaxel biosynthesis and interacting pathways. ................................ 103 

4.8 Venn diagrams representing overlap between genes upregulated ............................. 105 

5.1 Effect of MeJA elicitation on T. cuspidata P93AF cultures growth, taxane 

production and viability. .................................................................................................. 135 

5.2 Effect of MeJA elicitation on induction of oligonucleosomal fragmentation in 

cultured T. cuspidata P93AF cells. .................................................................................. 136 

5.3 Cell cycle distribution in MeJA-elicited and mock-elicited T. cuspidata P93AF 

cultures. ............................................................................................................................ 137 

5.4 Progression of EdU pulse labeled cells in mock-elicited and MeJA-elicited 

cultures. ............................................................................................................................ 138 

5.5 Total EdU incorporation in mock-elicited and MeJA-elicited cultures. .................... 139 

5.6 Heat map showing expression patterns of significantly downregulated cell cycle 

related-genes in MeJA-elicited cultures as compared to mock-elicited cultures. ............ 140 



xvii 
 

5.7 Cell cycle distribution in MeJA-elicited and mock-elicited T. cuspidata P93AF 

cultures within 48 hours post elicitation. ......................................................................... 143 

 

 

 

 

 



1 
 

CHAPTER 1                                                                      

INTRODUCTION AND BACKGROUND 

1.1 Introduction 

1.1.1 Production routes for plant-based products 

Traditionally, valuable plant derived phytochemicals, also referred to as secondary 

metabolites, have been obtained either by natural harvestation or chemical synthesis. 

Natural harvestation necessitates destroying the whole plant or selectively harvesting 

specialized organs; this makes the process expensive, time-consuming and 

environmentally unfriendly (McCoy and O'Connor 2008). These issues are compounded 

further with slow growing, rare or endangered plants, as well as medicinal plants growing 

in remote areas (Hawkins 2008). Total or partial chemical synthesis is economically 

viable only for production of relatively simple structures such as aspirin and ephedrine 

(Li et al. 2010), but impractical for secondary metabolites with complex structures, such 

as multiple rings and chiral centers (Chemler and Koffas 2008). Over the past decade, 

genetic engineering approaches to transfer plant pathways into microbial hosts have 

provided a competitive alternative for production of certain plant natural products (e.g., 

artemisinin synthesis in E. coli (Martin et al. 2003) and S. cerevisiae (Ro et al. 2006). 

Microbial fermentation processes are well-established and offer the advantages of rapid 

doubling times, shorter production times, easier extraction of the final product, and 

inexpensive feed stocks for growth. While a number of plant proteins have been 

heterologously expressed in microbial hosts (Yesilirmak and Sayers 2009), only a 

handful of plant natural products have been completely produced in microbes (Alper et 

al. 2005; Ro et al. 2006). Production of a non-native compound in microbes requires 
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identification and successful transfer of all the relevant plant biosynthetic pathway genes. 

For a number of plant-derived natural products (e.g., paclitaxel), the metabolic pathways 

leading to product formation in planta are very complex, and are either partially or 

completely unknown (Croteau et al. 2006). Even after a complete pathway for a 

particular natural product has been identified, production in prokaryotic hosts is still 

complicated, as they lack cellular compartmentalization that may be necessary for spatial 

and temporal partitioning of intermediates en route to final product (Vongpaseuth and 

Roberts 2007; Wu et al. 2006). Technical drawbacks associated with functional 

expression of native plant enzymes such as cytochrome P450s (Chemler and Koffas 

2008) further impede efficient transfer of a complete biosynthetic pathway for production 

of a desired compound. Thus, despite the attractiveness of synthesis in microbial hosts, 

significant engineering challenges remain for more complex secondary metabolites.  

The use of plant based in vitro systems for production of specific secondary 

metabolites provides an attractive alternative to natural harvestation, chemistry-based 

routes, and microbial engineering (Rao and Ravishankar 2002; Kolewe et al. 2008; 

Wilson and Roberts 2011). In vitro culture of plant cells is a mature technology with 

several decades of success, and can be applied to almost any plant species (Wink et al. 

2005). As well as offering a realistic option for large scale production of secondary 

metabolites, in vitro plant cultures offer a controlled and regulated environment for 

studies of growth, metabolism, cell-environment interactions, and for establishment of 

superior plant varieties through genetic manipulation.  
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1.1.2 In vitro plant culture  

In vitro culture of plants or plant cells can involve various degrees of differentiation. 

Whole plants or seedlings, organ cultures, or dedifferentiated suspension cultures 

propagated from callus can be grown aseptically in a defined culture media. These 

different types of in vitro cultures (see Figure 1.1 for Taxus species) can be 

interconverted using established techniques, most of which rely on specific 

phytohormone concentrations. Differentiated plant cell cultures, specifically organ 

cultures such as roots and shoots, have been shown to accumulate significant levels of 

secondary metabolites, often comparable with levels quantified in the whole plant 

(Roberts and Wink 1998; Matkowski 2008). In particular, hairy root cultures, obtained by 

transforming root cultures with Agrobacterium rhizogenes, have been promising for 

increased capacity of secondary metabolite production (Srivastava and Srivastava 2007). 

Several medicinal compounds belonging to the alkaloid, terpenoid and phenolic families 

have been produced successfully in hairy root cultures. Examples include resveratrol in 

Arachis hypogaea, artemisinin in Artemisia annua, indole alkaloids in Catharanthus 

roseus, and camptothecin in Camptotheca acuminate and Ophiorrhiza pumila (Ono and 

Tian 2011). Although many promising reactor designs exist at the small scale, it has been 

difficult to scale-up differentiated cultures to large-sized bioreactors primarily due to 

issues with nutrient delivery, limiting the wide-spread commercial application of this 

technology (Mishra and Ranjan 2008; Georgiev et al. 2007).  

On the other hand, dedifferentiated suspension cultures can be maintained in 

batch, semi-continuous or continuous environments, and are more amenable to scale-up 

than hairy root cultures or other differentiated organ cultures (Kieran et al. 1997). Plant 
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cell suspension cultures under strictly controlled conditions provide a rapid and flexible 

means for production of desired compounds and a number of processes have been 

commercialized for the production of secondary metabolites (reviewed in (Eibl R 2002) 

and (Kolewe et al. 2008)) including ginseng, shikonin  and berberine . The bioprocessing 

principles applied to the culture of microbial and mammalian cells also apply to 

dedifferentiated plant suspension cells (Hellwig et al. 2004); although plant cell culture 

technology has lagged behind equivalent fermentation/culture systems for microbes, 

yeast  and animal cells (Evans et al. 2003; Hellwig et al. 2004).  

1.1.3 Challenges to in vitro plant culture 

Table 1.1 shows comparison of some of the characteristics of microbial, mammalian and 

plant cells of relevance to bioprocessing. Unlike other cell culture systems, 

dedifferentiated plant cells grow slower and are more easily damaged by traditional 

mechanisms for aeration and agitation that are required for culture maintenance and 

processing. Typically in microbial and mammalian systems, the growth phase and 

production phase are uncoupled, and hence optimal conditions for growth and production 

can be established and applied separately to maximize synthesis of the desired 

compound. For plant cell cultures, product accumulation is sometimes associated with the 

growth phase, and hence two-phase cultures are not always feasible (Roberts 2007). Plant 

cell cultures also tend to have poor genetic stability, which has been associated with 

aneuploidy and polyploidy, intra-chromosomal rearrangements, and single gene 

mutations (Cassells and Curry 2001; Phillips et al. 1994), hence affecting culture 

performance. In addition, many secondary metabolic pathways are only active in 

differentiated organs, leading to no or very low accumulation in dedifferentiated culture. 
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Even in cultures that successfully produce the compound of interest, yields are often low 

and variable (Ketchum and Gibson 1996; Roberts 2007). A number of strategies 

including strain improvement, selection of high-producing lines, medium optimization, 

elicitation with biotic or abiotic compounds, precursor addition, permeabilization, 

immobilization, and in situ extraction have been used with mixed success to increase 

metabolite yields to suitable levels for commercial production (reviewed in (Bourgaud et 

al. 2001; Dornenburg and Knorr 1995; Kolewe et al. 2008; Shuler 1999; Smetanska 

2008; Verpoorte et al. 1999)). Long term variability in product yield over successive 

subcultures has often been observed (Deusneumann and Zenk 1984; Kim et al. 2004; 

Ogino et al. 1978; Qu et al. 2005). Relatively little research has been done to understand 

and ultimately control this variability in secondary metabolite production, which can have 

a considerable impact on the success of a commercial plant cell culture process. Plant cell 

culture bioprocessing and metabolism are complicated by the natural tendency of plant 

cells to form aggregates (Kieran et al. 1997; Roberts 2007). The causes and effects of 

cellular aggregation in plant cell cultures and its contribution to heterogeneity of cultures 

are described herein (see section 1.1.4). 

Molecular approaches for engineering biosynthetic pathways within a plant cell 

offer great promise to enhance accumulation of constitutive compounds. However, such 

approaches are often infeasible due to i) lack of complete knowledge regarding secondary 

metabolic pathways and their regulation in most plant systems, ii) incomplete knowledge 

about global metabolism, such as product transport and degradation, and regulatory 

elements such as transcription factors for pathway genes or other signaling mechanisms, 

and iii) lack of metabolic engineering tools, such as reliable genetic transformation 
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methods. A brief overview on molecular approaches to understand secondary metabolism 

is described herein (see section 1.1.5). Understanding the reasons behind heterogeneity 

observed in plant cell cultures at a molecular level and applying targeted molecular 

approaches can lead to successful strategies to optimize and stabilize production, making 

plant cell culture a more attractive commercial technology for the supply of valuable 

plant-derived medicinal compounds.  

1.1.4 Aggregation and heterogeneity in plant cell suspension cultures 

Plant suspension cultures are initiated by placing pieces of dedifferentiated callus tissue 

in a liquid suspension, and maintained under suitable conditions of aeration, agitation, 

and other physical parameters. Depending on the friability of callus tissue, either single 

cells or small aggregates break off and start growing in the medium containing nutrients 

and growth hormones (Muir et al. 1954). During cell division, the dividing cells remain 

connected to each other via cell walls, and as a result, aggregates ranging from two to a 

few hundred cells exist in the culture.  

The presence of aggregates during large scale culture affects mixing, as they tend 

to sediment and/or stick to the reactor surface, forming extensive wall growth. Moreover, 

large aggregates cause rheological problems by creating dead zones in the culture vessel, 

blocking the opening and pipe line of the reactor, and affecting the operation of the 

probes to monitor culture condition during growth and product formation. Cellular 

aggregation has also been found to be the primary reason for the high viscosities 

observed in a number of plant cell suspension systems (Kato et al. 1978; Doran 1999). 

These problems are further compounded during the later stages of growth, as plant cells 
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become stickier due to secretion of cell wall extracellular polysaccharides, causing 

additional clumping of aggregates.  

In the context of morphological characteristics, cells within large aggregates are 

subject to different microenvironments with respect to light, oxygen and nutrient 

availability, cell to cell signaling, and applied surface shear forces. This often leads to 

biochemical and morphological heterogeneity in the cultures, with some aggregate 

populations exhibiting different characteristics. 

1.1.4.1 Effect of aggregation on typical culture parameters 

1.1.4.1.1 Aggregation and growth  

Plant cells grown in batch culture increase in biomass by cell division until the depletion 

of an essential nutrient sends them into a stationary phase. Multiple analyses of changes 

in aggregate size distribution in a batch culture indicate that aggregate size increases 

during the exponential phase of the growth, and decreases during the stationary phase 

(Capataz-Tafur et al. 2011; Kolewe et al. 2010; Mavituna and Park 1987; Ranch and 

Giles 1980; Scragg et al. 1987). Formation of aggregates occurs as a result of cell 

division, and hence aggregation increases during the period of maximal cell division (i.e. 

exponential phase). On the contrary, in the stationary phase, cells get released from the 

aggregates and there is reduced cell division, which leads to decrease in mean aggregate 

sizes.  

There is no clear trend in the relation between mean aggregate size in a culture 

and the growth rate, and is very much species dependent. (Yang et al. 1994) showed that 
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once separated through sieves, finer (less aggregated) wheat suspension cultures had a 

higher growth rate than their larger aggregate counterparts. A similar observation was 

seen with the cultures of Coffea arabica, where the growth of cultures inoculated with 

smaller aggregates was significantly superior to those of large aggregate cultures (Dubuis 

et al. 1995). In contrast, studies in celery (Watts et al. 1984) and safflower (Hanagata et 

al. 1993) suspension cultures show that some degree of aggregation was necessary for 

rapid growth and cell division, and finer suspensions had a slower growth rate as 

compared to aggregated suspensions. (King et al. 1973) demonstrate that highly dispersed 

cultures obtained by incubation with enzymes show a growth pattern similar to the 

aggregated suspensions; indicating that cell aggregation is not essential for high rates of 

growth and division in cell suspension cultures.  

1.1.4.1.2 Aggregation and oxygen consumption  

Oxygen requirements in plant cells (typically 1- 4 mmol l-1h-1) are comparatively lower 

than microorganisms (~ 5-90 mmol l-1h-1), due to their lower growth rates (Kobayashi et 

al. 1989; Taticek et al. 1990; Hellwig et al. 2004). Oxygen supply is known to affect both 

growth and production of metabolites (Huang and Chou 2000; Linden et al. 2001). A 

number of bioreactors have been designed to study aeration effects in plant cell cultures, 

with the primary focus on mass transfer coefficients at the gas-liquid boundary (kLa) 

(Kieran et al. 1997). However, it has also been suggested that the solid-liquid boundary 

between an aggregate and the medium is far more constraining for the delivery of oxygen 

to the cell than the gas-liquid boundary (Curtis and Tuerk 2006). Oxygen enrichment of 

the gas phase can be used to minimize the oxygen limitation at this solid-liquid interface. 

In addition, suspension cultured plant cells must have significant oxygen transport within 
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the aggregate, to maintain aerobic respiration and desired growth rates. Due to these 

constraints there exists a critical aggregate size, above which oxygen limitation to the 

centermost cells may result. Relatively few studies have been done to study oxygen 

transport within aggregates, primarily because experimental measurement within the 

shear sensitive aggregates is difficult. Most of the work has been based on theoretical 

models developed to calculate the critical size of the aggregate which use a simple mass 

balance of oxygen (Hulst et al. 1989; Pepin et al. 1999). These models also assume a zero 

order reaction with known oxygen uptake rate, diffusion coefficient and dissolved oxygen 

concentration to calculate the concentration profile within an aggregate. These studies 

suggest that diffusion of oxygen is moderately restricted in the interior of aggregates of 

1mm in diameter, and severe oxygen deficiencies are observed when the aggregates reach 

about 3 mm size. (Ananta et al. 1995) used diffusion-reaction theory to analyze the 

experimentally measured oxygen uptake rates in immobilized cultures of Solanum 

aviculare. Direct experimental measurement of the aggregate properties revealed that the 

critical aggregate size at which oxygen limitation actually occurs was much larger than 

that predicted by the theory.  It was hypothesized that the plasmodesmata which 

interconnect cells within aggregates and the negative pressures created by the gas-filled 

cavities within the porous aggregates aids and promotes oxygen transfer, factors which 

were not accounted for in the theoretical analysis. The effects of oxygen limitation seem 

to be species dependent, with both increased (Schlatmann et al. 1995) and decreased 

(Hulst et al. 1989) secondary metabolite synthesis reported in large aggregates.  

1.1.4.1.3 Aggregation and secondary metabolite accumulation 

For recombinant protein production, cellular aggregation in plant suspension cultures is 
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usually considered undesirable as it complicates bioreactor operation. However, certain 

degrees of cell aggregation and cell differentiation seem to be desirable for secondary 

metabolite production in plant cell cultures (Becker 1970; Zhao et al. 2001). Aggregation 

causes changes in environmental conditions experienced by each cell in an aggregate, 

altering cellular metabolism and inducing differential biochemical responses. Activation 

of certain genes or enzymes involved in biosynthesis, transport or storage of secondary 

metabolites is possible (Hsu et al. 1993; Lindsey and Yeoman 1983). In some suspension 

cultures, cells do not just clump together, but form sophisticated differentiated structures 

in the culture (Ellis et al. 1996; Hoekstra et al. 1990; Kuboi and Yamada 1978; Xu et al. 

1998; Zhao et al. 2001), which can often lead to higher levels of secondary metabolite 

accumulation. (Kuboi and Yamada 1978) showed that all the cells in tobacco suspension 

cultures had a uniform ability to form aggregates. However, the potential for tracheid 

differentiation in these studies was higher when the cells were located in the center of the 

aggregate, indicating that differentiation is a result of environmental circumstances, and 

not an inherited trait by particular cells.  

To date, a number of studies have been attempted to understand the effect of 

cellular aggregation on secondary metabolite accumulation in cell cultures. However, 

there is no consensus across plant species, and the results seem to vary depending on the 

particular species and secondary metabolite. Table 1.2 indicates the relation between 

secondary metabolite accumulation and aggregate size for some plant cell culture 

systems. Larger aggregates have been shown to have a positive effect on secondary 

metabolite production, a positive effect up to a critical size, or a negative effect. This lack 

of trend in metabolite accumulation with aggregate size is not unexpected, as 
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fundamental differences exist amongst distinct plant species, and their metabolic 

pathways may be differentially regulated with varying conditions.  

1.1.5 Molecular approaches to understand the regulation of secondary metabolism 

Research efforts have led to identification of several precursor pathways necessary for the 

biosynthesis of secondary metabolites, including the polyketide pathways (for synthesis 

of fatty acids and polyketides), mevalonate and DXP pathways (for synthesis of 

terpenes), shikimate pathway (for synthesis of aromatic alkaloids, lignins and 

phenylpropanoids), polyamine pathway (for synthesis of aliphatic alkaloids) and mixed 

pathways where intermediates of two or more pathways act as substrates for secondary 

metabolites (e.g., terpene indole alkaloids). However, complete information on all the 

biosynthetic steps involved in secondary metabolite synthesis, and fundamental 

understanding concerning the regulation of secondary metabolism is still lacking for the 

majority of complex biosynthetic pathways. Therefore, optimal design strategies for 

enhancing productivity through pathway manipulation are presently elusive for most 

medicinal plant systems.  

Genomics and post-genomics approaches can offer opportunities for 

understanding molecular regulation, ultimately leading to strategies to improve both yield 

and selectivity of secondary products. However, a lack of genome and transcriptome 

sequencing information for medicinal plants make the traditional metabolic engineering 

approaches infeasible for these systems. Efforts have been further thwarted by a lack of 

reliable transformation methods to introduce foreign genes, silence genes or overexpress 

constitutively-expressed genes. Nonetheless, progress has been made in recent years to 
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overcome some of these challenges (Verpoorte and Memelink 2002; Goossens et al. 

2003; DellaPenna 2001; Kumar and Gupta 2008).  

Identification of key metabolic targets (genes and enzymes) within a biochemical 

pathway is a prerequisite to manipulate the pathway and enhance constitutive levels of 

secondary metabolites. Several strategies including precursor feeding, elicitation to 

induce gene expression, application of metabolic inhibitors, analysis of a variety of 

strains, and quantification of mRNA expression, enzyme activities and metabolite 

profiles, have been used to identify unknown genes and characterize a number of 

secondary metabolic pathways. Recent molecular techniques such as cDNA-AFLP and 

differential display analysis have also been used to map unknown genes in key secondary 

pathways and correlate gene expression, enzyme function and metabolite production 

(Kumar and Gupta 2008). Integrating proteomics and metabolomics with genetic 

information will allow researchers to map, and subsequently better understand, these 

complex metabolic networks. Metabolic network information can be integrated into flux 

models to identify targeted metabolic engineering strategies (Verpoorte and Memelink 

2002, Libourel and Shachar-Hill 2008).  

Genetic engineering approaches for effective manipulation of secondary 

metabolite synthesis and accumulation in plants have been used effectively in several 

species, where stable transformation methods are readily available. Overexpression of 

genes encoding rate influencing pathway enzymes can improve the yields of native 

secondary metabolites. Successful examples include Agrobacterium-mediated 

transformation of several plant species to increase constitutive levels of alkaloids, 

phenylpropanoids and terpenoids (reviewed in (Gomez-Galera et al. 2007)). However, 
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single gene manipulation does not typically improve yield to appreciable levels, and 

several novel genetic engineering approaches such as redirecting carbon flux from a 

common precursor, targeting metabolites to specific cellular compartments, creation of 

metabolic sinks for storage of high yielding secondary metabolites, and RNA interference 

(RNAi) technology to silence competing pathway steps, have been developed (Kumar 

and Gupta 2008; Gomez-Galera et al. 2007). These approaches have been used to 

engineer a limited number of secondary metabolic pathways in a small number of 

medicinal plants. 

Transcription factors offer much promise for the manipulation of metabolic 

pathways because of their ability to control multiple pathway steps that are necessary for 

metabolite accumulation. Key transcription factors for secondary metabolite synthesis 

have been identified in Arabidopsis thaliana and Catharanthus roseus (Gigolashvili et al. 

2007; van der Fits and Memelink 2000); however, presence of such global transcription 

factor/s have not been identified for other significant medicinal plant species such as 

Taxus. Although manipulating the expression of specific transcription factors can 

modulate pathway flux, oftentimes it is important to increase either precursor availability 

or introduce multiple transcription factors (James 2003; Pierre 2004), indicating 

differential regulation on separate branches of the pathway.  

Sequencing of genomes and transcriptomes of model plant species (Arabidopsis) 

and major agricultural crops (rice, maize, sorghum, etc.) have considerably improved our 

understanding of primary metabolic processes of plants. However, these results have not 

been directly applicable to enhance our understanding of secondary metabolic pathways, 

primarily because these pathways are active in only a handful of specialized plant 
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species, and are not very well conserved across the plant kingdom. However, progress is 

being made to generate resources for understanding the genes, enzymes and complex 

processes responsible for the biosynthesis of important plant-derived drugs from fourteen 

medicinal plant species including Atropa belladonna, C. roseus, Digitalis purpurea, 

Hypericum perforatum, Rosmarinus officinalis, Camptotheca acuminata, Cannabis 

sativa, Ginkgo biloba, Dioscorea villosa, Echinacea purpurea, Hoodia gordonii, Panax 

quinquefolius, Rauvolfia serpentina and Valeriana officinalis                                                   

(http://medicinalplantgenomics.msu.edu/). Once available, the Medicinal Plant Genomic 

and Metabolomic Resource will provide a valuable resource of transcriptomes and 

associated metabolomes for key plant species. These data will ultimately advance our 

understanding on several species-specific metabolites and provide novel information 

about the genes and metabolites of medicinal compound synthesis. Even though these 

efforts have been initiated with a number of medicinal plant species, the Taxus species, 

which produces a pharmaceutically relevant drug – paclitaxel and which is the subject of 

the work in this thesis, is not included in this limited list.      

1.1.6. Paclitaxel production in Taxus suspension cultures  

1.1.6.1 Paclitaxel  

Paclitaxel, (Taxol®, Bristol-Myers-Squibb) (Figure 1.2) a diterpene found in various 

tissues of Taxus species belongs to a family of plant secondary metabolites known as 

taxoids. It was discovered during the massive bio-screening program initiated by the 

National Cancer Institute (NCI) in which more than 110,000 plant derived compounds 

were examined for anti-cancer activity (Horwitz 2004). In the 1960’s, Wall and Wani 
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isolated this highly substituted ring diterpenoid from extracts of Taxus brevifolia, a 

Pacific yew tree which had demonstrated anti-cancer activity. Subsequently, the chemical 

structure of paclitaxel was published (Wani et al. 1971). A few years later, the unique 

cytotoxic mechanism of action of paclitaxel was discovered, which paved the way for 

paclitaxel to move into clinical trials on humans. Early clinical trials were conducted by 

the NCI and results were very promising. After several phases of clinical trials, in 1994 

Bristol-Myers-Squibb entered into a collaborative arrangement with the NCI to 

commercialize paclitaxel. Thereafter, it has been used as a potent chemotherapeutic agent 

and the Food and Drug Administration (FDA) has approved its use in the treatment of 

breast, ovarian, non-small cell lung cancer and AIDS-related Kaposi’s sarcoma 

(www.fda.gov). It is also under evaluation for the treatment of Alzheimer’s and heart 

disease (Vongpaseuth and Roberts 2007; Kamath et al. 2006).  

1.1.6.2. Paclitaxel supply and Taxus cell culture 

Taxus suspension cell culture is an alternative to stripping bark from Taxus trees and 

extracting paclitaxel and precursors from needles, and has been commercialized by 

Phyton Biotech. Inc. (Germany) and Samyang Genex Corp. (Korea) for the supply of 

paclitaxel (Tabata 2004). Total synthesis of paclitaxel has been achieved (Borman 1994), 

however low yield and non-green chemistry has hindered efforts to produce paclitaxel 

synthetically. Genetic engineering of paclitaxel biosynthetic pathway into E. coli offers 

advantages such as green chemistry, cheaper sources and larger production scale (Chang 

et al., 2006). However, to date only two out of 19 paclitaxel biosynthetic enzymatic steps 

have been successfully engineered in E. coli (Ajikumar et al. 2010). A daunting task of 

transferring all the paclitaxel biosynthetic pathway steps (Figure 1.3), of which some 
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steps are partially undefined, still remains before this production route can be considered 

viable for large scale paclitaxel supply.  

With the commercial success of paclitaxel production using plant cell culture 

technology, the feasibility of large scale culture of plant cells for commercial supply of 

medicinal phytochemicals has been demonstrated. Different strategies have been used to 

enhance productivity of paclitaxel in plant cell cultures, including: precursor feeding 

(Fett-Neto et al. 1994), in situ extraction (Zhang and Xu 2001), media optimization 

(Verpoorte and Memelink 2002), and elicitation with biotic and abiotic elicitors (Wu and 

Lin 2003). In particular, methyl jasmonate (MeJA) elicitation has been particularly 

effective in enhancing paclitaxel yields in Taxus suspension cultures (Mirjalili and 

Linden 1996; Yukimune et al. 1996; Ketchum et al. 1997), and numerous secondary 

metabolites in a variety of other plant cell culture systems (Gundlach et al. 1992). 

However, along with high product yields, a high degree of biochemical and physiological 

stability is important for development of optimal plant cell culture processes (Morris et 

al. 1989). Although accumulation of some secondary metabolites has been found to be 

stable over time (Zenk et al. 1977), there are numerous occasions where variability in 

product accumulation has been observed (Kim et al. 2004; Qu et al. 2005). Taxane 

accumulation in Taxus cell cultures has been shown to be variable within different 

species (Kim et al. 2004), and over time within a single cell line (Ketchum and Gibson 

1996). Relatively little research has been done to understand and control this variability 

in secondary metabolite production in cell suspension cultures, which can have a 

considerable impact on the success of a plant cell-based bioprocess. 
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1.1.6.3 Previous work on aggregation in Taxus cell cultures 

Taxus cells like most other plant cell culture systems grow as aggregates in suspension 

cultures ranging from two to thousands of cells (less than 100 μm to well over 2 mm). 

Figure 1.4 shows typical aggregates found in Taxus suspension cultures. Several methods 

exist to measure the aggregate size distribution within the culture including, wet sieving 

and dry weight measurements, image analysis, focused beam reflectance method (FBRM) 

and coulter counter technique. A study was conducted that tested several different 

methods for characterizing aggregate size in Taxus suspension cell cultures, and it was 

found that the Coulter counter was just as accurate, if not more accurate at measuring size 

distributions and total biomass than filtration or image analysis (Kolewe et al. 2010). 

Over the course of a batch culture, the mean aggregate size of the Taxus culture increased 

during exponential growth phase, but this trend reversed once the culture reached 

stationary phase. Figure 1.5 shows the general changes in biomass and mean diameter of 

aggregates during the growth cycle of Taxus cuspidata cells in suspension culture.  

The majority of studies aimed at investigating the relationship between aggregate 

size and secondary metabolite accumulation separate differently sized aggregates using a 

series of sieves or filters, followed by measurement of secondary metabolites. In most 

cases the cultures were allowed to accumulate secondary metabolites (either by elicitation 

or through some stress mediated response) and then fractionated to measure cell-

associated metabolite levels. Though straightforward, this method of fractionation using 

sieves neglects the metabolites secreted in the medium. In contrast, some studies 

including one in Taxus cell cultures were done by altering the aggregate size distribution 

at the time of culture initiation (Kolewe et al. 2011; Hanagata et al. 1993; Kinnersley and 
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Dougall 1980). In these studies, cultures were fractionated on the day of inoculation and 

made to grow independently as small and large aggregates, followed by measurements of 

total metabolite accumulation (cell-associated and secreted in medium) as a function of 

aggregate size. The results from the Taxus suspension culture system indicated that 

cultures initiated from smaller aggregate cultures had higher levels of paclitaxel than their 

counterpart large aggregate cultures. The results from these studies thus suggest a 

possible process optimization strategy, in which rational manipulation of aggregate size 

at culture initiation can lead to high yielding cell lines, and in due course can facilitate 

economically viable sources for secondary metabolites. 

1.1.6.4 Molecular approaches to understand Taxus metabolism   

Significant early work to identify paclitaxel biosynthesis enzymes and pathway genes 

was initiated by Croteau and colleagues at Washington State University using precursor 

feeding experiments, cell-free enzymology, cDNA library construction and pathway gene 

cloning (Croteau et al. 2006). Further studies to identify cDNAs encoding the cytochrome 

P450s in the paclitaxel biosynthetic pathway were done using mRNA differential display 

methods by comparison of transcripts between MeJA-elicited and unelicited Taxus cells 

(Schoendorf et al. 2001). These studies were supplemented with a homology-based 

search of a cDNA library from MeJA-elicited cells, as well as random sequencing of the 

same induced library (Jennewein et al. 2004) to find potential paclitaxel pathway genes. 

A comprehensive review on the studies used to reveal the steps involved in the 

biosynthesis of paclitaxel is reported elsewhere (Croteau et al. 2006).   
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Efforts to understand regulation of the taxane biosynthetic pathway in Taxus 

cultures have been initiated in our laboratory, in collaboration with both the Walker and 

Normanly groups at UMass Amherst. Research indicates that regulation occurs at the 

level of mRNA, and upregulation of late pathway genes may be effective in enhancing 

paclitaxel accumulation in Taxus cell suspension cultures (Nims et al. 2006). However 

Taxus suspension cultures are highly heterogeneous, leading to significant variability in 

metabolite accumulation levels amongst cultures and over time. To fully understand how 

this variability is controlled, molecular information relevant to both the paclitaxel 

pathway and general Taxus primary and secondary metabolism are necessary. 

Comparison of gene expression amongst cultures that accumulate paclitaxel/taxanes to 

varying extents can aid in identification of key pathways responsible for regulating 

paclitaxel accumulation. Because regulation is likely to occur at least in part outside of 

the biosynthetic pathway, other metabolic events need to be considered. An integrated 

approach consisting of gene-to-gene and gene-to-metabolite networks, as developed for 

terpenoid indole alkaloid metabolism in C. roseus cell cultures (Rischer et al. 2006) will 

provide a basis for better understanding of paclitaxel metabolism in Taxus cell cultures.  

1.2 Research objectives 

The work presented in this dissertation aims to better understand metabolic heterogeneity 

in Taxus suspension cultures from both a molecular and cellular perspective, which can 

help uncover some of the underlying causes for variability in paclitaxel yields and better 

understand heterogeneity in Taxus cell cultures. Such information can ultimately be used 

to optimize performance (i.e., promote growth and enhance secondary metabolite 
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accumulation) of plant cell cultures. Research towards this overarching objective can be 

categorized as follows: 

 Long term paclitaxel production variability analysis in Taxus cell cultures 

(Chapter 2).  

 Molecular approaches to understand Taxus cell cultures exhibiting metabolic 

heterogeneity 

- Expression profiling of taxane biosynthetic pathway genes in Taxus cell 

cultures with different bulk paclitaxel accumulation patterns (Chapter 3).  

- Transcriptome analysis of Taxus cell cultures exhibiting differences in 

paclitaxel accumulation and aggregation patterns using next generation 

sequencing methods (Chapter 4). 

 Uncovering the link between primary and secondary metabolism in MeJA-elicited 

Taxus cell cultures by studying the effect of MeJA addition on metabolism and 

cell cycle progression (Chapter 5).  
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Table 1.1 A comparison of key characteristics of microbial, mammalian and plant cells 

relevant to bioprocessing. 

Characteristic Bacterial cells Mammalian cells Plant cells 

Size ~ 1 µm ~ 10 µm ~ 20-50 µm 

Doubling time < 1 hour ~ 1 day Several days 

Shear sensitivity Insensitive Sensitive Sensitive 

Oxygen demand High Low Medium 

Product accumulation Typically 
extracellular 

Typically 
extracellular 

Often cell-
associated 

Production phase Uncoupled with 
growth 

Uncoupled with 
growth 

Often growth 
associated 

Variability in 
accumulation 

Low Low High 

Contamination risk Low High Low 

Cell line stability High Low Medium 

Product yields High High Low 

Post translational 
processing 

Simple Advanced Advanced 

Compartmentalization None Compartmentalized Compartmentalized 

Cryopreservation 
techniques 

Well-developed Well-developed Immature 
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Table 1.2 Relationship between aggregate size and secondary metabolite accumulation in 

various plant cell culture systems. 

System 
2º 

Metabolite 

Effect of increasing 

aggregate size on 

metabolite 

accumulation 

Reference 

Fragaria 

ananassa 

(strawberry) 

Anthocyanin Increased (Edahiro and Seki 
2006) 

Apium graveolens 

L. (celery) 
Phthalides 

and 
Terpenoids 

Increased (Watts et al. 1984) 

Catharanthus 

roseus 

(periwinkle) 

Ajmalicine No clear trend (Kessler et al. 
1999) 

Salvia officinalis 

(sage) 
Ursolic acid Decreased (Bolta et al. 2003) 

Daucus carota  

(carrot) 
Anthocyanin Decreased (Kinnersley and 

Dougall 1980) 

Vaccinium 

pahalae (ohelo) 
Anthocyanin Decreased (Pepin et al. 1999) 

Carthamus 

tinctorius L. 
(safflower) 

Anthocyanin Decreased (Hanagata et al. 
1993) 

Taxus cuspidata  

(yew) 
Paclitaxel Decreased (Kolewe et al. 

2011) 
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Daucus carota  

(carrot) 
Anthocyanin Increased up to critical 

diameter,  then 
decreased 

(Madhusudhan and 
Ravishankar 1996) 

Saussurea 

medusa  (snow 
lotus) 

Jaceosidin Increased up to critical 
diameter,  then 

decreased 

(Zhao et al. 2003) 

Tagetes patula 

(marigold) 
Anthocyanin Increased up to critical 

diameter, then decreased 

(Hulst et al. 1989) 
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Figure 1.1 Three different types of in vitro culture for Taxus. (A) callus culture, (B) hairy 

root culture (Syklowska-Baranek et al. 2009), and (C) suspension culture.  
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Figure 1.2 Chemical structure of paclitaxel. 
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Figure 1.3 Overview of the paclitaxel biosynthetic pathway. Abbreviations indicate 

enzymes. TASY: taxadiene synthase; T5αH: taxadiene 5α-hydroxylase; T13αH: 

taxadiene 13α-hydroxylase; TDAT: taxadiene 5α-ol O-acetyltransferase; T2αH: taxane 
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2α-hydroxylase; T10βH: taxane 10β-hydroxylase; T7βH: taxane 7β-hydroxylase; DBBT: 

taxane 2α-O-benzoyltransferase; DBAT: 10-deacetylbaccatin III-10-O-acetyltransferase; 

PAM: phenylalanine aminomutase; BAPT: baccatin III 13-O-(3-amino-3-

phenylpropanoyl) transferase; DBTNBT: 3’-N-debenzoyl-2’-deoxytaxol-N-

benzoyltransferase. Question marks indicate incompletely known steps.  
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Figure 1.4 Characteristic aggregates observed in T. cuspidata P93AF cell suspension 

cultures. Arrow indicates typical morphology of cellular debris.  
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Figure 1.5 Increase in cell biomass and mean aggregate size during exponential growth 

in Taxus cell cultures (Adapted from (Kolewe et al. 2010)).  

 

 

 

 

 

 

 

 

 

 

 



30 
 

CHAPTER 2                                                                         

CELLULAR AGGREGATION IS A KEY PROCESS PARAMETER 

ASSOCIATED WITH LONG TERM VARIABILITY IN 

PACLITAXEL ACCUMULATION IN TAXUS SUSPENSION 

CULTURES 

2.1 Introduction 

In spite of the demonstrated effectiveness and past successes of plant-based natural 

products, particularly as chemotherapeutics (Cragg et al. 2009), pharmaceutical 

companies have had a declining interest in screening for natural products over the past 

couple of decades (McChesney et al. 2007; Harvey 2008). One of the primary reasons for 

this decline is the issue of drug product supply, including the economic considerations 

pertaining to commercialization of a particular supply route. Plant suspension cell culture 

technology has proven successful for the synthesis of natural products in a controlled 

environment, with several products supplied commercially at a large scale (Eibl and Eibl 

2002; Kolewe et al. 2008). Nevertheless, the use of plant cell suspension culture 

technology has been hampered by the periodic fluctuations in metabolite levels, often 

observed in suspension cultures over multiple passages (Roberts 2007; Lee et al. 2010). 

Inconsistent cell culture product titers and flask to flask variations over passages can 

complicate the development of an economically viable cell culture bioprocess. Freezing 

and regenerating high-producing plant cell lines using cryopreservation techniques can 

alleviate such issues created during culture passage, and this approach has been 

successfully demonstrated for several plant species (Reinhoud et al. 1995; Ishikawa et al. 

2006). However, cryopreservation of plant cells is not a widely established technique, 

because cryopreservation protocols and parameters such as pretreatment/preculture, 
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freezing and post-thaw/regeneration have to be adapted and optimized for each plant 

species and cell line (Mustafa et al. 2011). Even if an optimized cryopreservation 

protocol exists for a species, post-thaw viability, growth and performance, and the issue 

of preserved cell lines differing from original ones hinder application of such methods 

(Boisson et al. 2012; Zeliang et al. 2010). Elicitation using abiotic or biotic compounds, 

such as jasmonic acid, is often used to enhance accumulation of secondary metabolites in 

suspension cultures (Gundlach et al. 1992; Suzuki et al. 2005; Pauwels et al. 2008; 

Krzyzanowska et al. 2012). Though elicitation increases culture metabolite yields, 

fluctuations in metabolite levels of Taxus cultures over multiple passages post-elicitation 

are observed (Kim et al. 2004).  

Several studies in a variety of plant cell culture systems have reported fluctuations 

in secondary metabolite levels over culture passages (Callebaut et al. 1997; Qu et al. 

2005; Hirasuna et al. 1991; Morris et al. 1989; Deusneumann and Zenk 1984). Genetic 

and epigenetic instabilities have generally been suggested as the primary causes for such 

variability (Qu et al. 2005; Zhao and Verpoorte 2007). Several other hypotheses have 

emerged to explain the observed variability including, development of heterogeneous 

populations in cell culture, amongst which only certain productive cells accumulate 

secondary metabolites (Hall and Yeoman 1986), changes in inter- and intracellular 

communication amongst cells (Hall and Yeoman 1987), and the influence of 

environmental factors (e.g., light, temperature, pH) or process parameters (e.g., oxygen 

levels, agitation) (Yeoman and Yeoman 1996; Saito and Mizukami 2002). Variability in 

secondary metabolite yield may also be created by inadequate control of factors such as 

initial cell density and time of inoculation during routine culture passage (Morris et al. 
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1989; Kolewe et al. 2008). Understanding the factors that influence fluctuations in 

secondary metabolite levels can aid in the design of improved bioprocessing strategies.  

The tendency of plant cells to remain connected via cell walls and form 

aggregates has a considerable effect on bioprocess performance, including growth and 

metabolite levels (Patil et al. 2012; Capataz-Tafur et al. 2011). Taxus cell suspension 

cultures, which produce the valuable secondary metabolite paclitaxel, consist of 

aggregates ranging from 100 μm to over 2000 m (Kolewe et al. 2010) (Fig.1). Recent 

studies from our laboratory indicate that the degree of cellular aggregation in Taxus 

cultures affects the level of paclitaxel accumulation (Kolewe et al. 2011). These results 

demonstrated the relationship between aggregate size and paclitaxel accumulation within 

individual experiments (Kolewe et al. 2011, Patil et al. 2012), but did not address long-

term culture passage. Because plant cell cultures are typically maintained by non-

selective culture passage over extended periods of time, an explicit relationship between 

aggregation patterns and corresponding secondary metabolite levels over multiple 

passages is important and can be used to suggest strategies for superior culture 

performance. 

Inconsistencies during the culture passage procedure can cause changes in growth 

rate or affect the lag period such that cells in the next passage may be different 

metabolically with respect to both growth and metabolite production (Morris et al. 1989). 

Monitoring cell cycle distribution provides a useful means to understand the cell division 

potential of the cultures (Yanpaisan et al. 1999). Cultures with a high percentage of G2 

phase cells have higher frequency of cell division. Secondary metabolite synthesis is 

often associated with differentiation of plant cells, which occurs after arrest of cells at the 
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G1 or G2 phase (Bergounioux et al. 1992). Thus, monitoring cell cycle distributions over 

time can provide information on differentiation characteristics of the cultures. Instability 

of nuclear DNA content, which is often observed in terms of induced polyploidy or 

aneuploidy, is frequently observed in plant cell suspensions (Baebler et al. 2005; 

Creemers-Molenaar et al. 1992). Variable ploidy levels have also been shown to affect 

secondary metabolite production in seedlings of Hypericum perforatum (Kosuth et al. 

2003),hairy root cultures of Artemisia annua (De Jesus-Gonzalez and Weathers 2003) 

and Hyoscyamus muticus (Dehghan et al. 2012). Studies on genomic stability of Taxus 

cell cultures immediately following culture initiation (two-year timeframe) have been 

reported (Baebler et al. 2005) and indicate heterogeneity in genomic stability amongst 

cell lines; however, paclitaxel levels have not been correlated to nuclear DNA content or 

ploidy levels in well-established Taxus suspension cultures.  

 Here, the variation in aggregate size, extracellular sugar concentration, ploidy, 

and proportion of cells in particular phases of the cell cycle were quantified and 

correlated with paclitaxel accumulation over multiple passages (six months). Factors such 

as media composition, inoculation density, day of culture passage and cultivation 

temperature, which are known to influence secondary metabolite levels (Zhong et al. 

1995; Qu et al. 2006), were kept constant. Determining factors that correlate with 

variable paclitaxel yields over long-term passage can lead to the development of new 

bioprocessing strategies to favorably control paclitaxel accumulation in Taxus suspension 

cell cultures.  
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2.2 Materials and methods 

2.2.1 Cell culture maintenance, elicitation and biomass measurements  

Taxus cuspidata cell line P93AF  was provided by the U.S. Plant Soil and Nutrition 

Laboratory in Ithaca, NY, and maintained in our laboratory, as described previously 

(Naill and Roberts 2004). Suspensions were maintained in 250 mL Erlenmeyer flasks 

capped with Bellco (Vineland, NJ) foam closures at 23 oC and 125 RPM in gyratory 

shakers in the dark. For each culture passage, six replicate cultures were generated. Three 

cultures were sacrificed for analyses and three cultures were passaged to six new flasks 

for the next cycle. Culture passages were performed by transferring 20 mL of inocula 

(corresponding to a packed cell volume of 4-5 mL) originating from a 14-day old 

suspension culture into 80 mL of fresh medium. A Multisizer 3TM Coulter counter 

equipped with a 2,000 μm aperture (Beckman Coulter, Brea, CA) was used to measure 

biomass and culture aggregate size distributions, as described previously (Kolewe et al. 

2010). For Coulter counter analysis, two x 2 mL samples of well mixed culture broth 

from each of the three replicate flasks were collected on day 7. Samples for extracellular 

sucrose and glucose analyses and nuclei isolation were also taken on day 7 (described 

below). Post-sampling, cultures were treated with 150 M methyl jasmonate (MeJA), as 

described previously (Naill and Roberts 2004). Following MeJA elicitation, 1 mL 

samples of well mixed culture broth containing both cells and media were taken on day 7 

post-elicitation (day 14 in the cell culture passage) with a cut pipette tip and stored at -80 

oC prior to taxane analysis (described below). 
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2.2.2 Glucose and sucrose measurements  

The levels of extracellular sucrose and glucose were measured in cell culture media 

samples using a blood glucose analyzer (YSI 2700 Select Biochemistry Analyzer, YSI 

Life Sciences, Yellow Springs, OH). For analysis, 500 l of cell culture media was 

collected on day 7 post-transfer. Briefly, dextrose (D-glucose) diffuses across a 

membrane (that contains glucose oxidase) in the analyzer. This reaction oxidizes the 

dextrose to hydrogen peroxide and D-glucono-δ-lactone. The hydrogen peroxide is 

amperometrically detected at a platinum electrode surface. The current produced is 

directly proportional to the hydrogen peroxide and dextrose concentrations in the sample. 

Sucrose is indirectly measured through enzymatic hydrolysis.  

2.2.3 Isolation of intact nuclei for ploidy and nuclear DNA content analyses 

Approximately 3-4 mL of well mixed culture broth (corresponding to 0.5 g wet biomass) 

was filtered over Miracloth (Calbiochem, CA) and used for isolation of intact nuclei 

(Gaurav et. al 2010). Samples were taken after every two passages. Briefly, one mL of 

Galbraith buffer (45 mM MgCl2, 30 mM sodium citrate, 20 mM 3-(N-morpholino)-

propanesulfonic acid (MOPS), 0.5 % (w/v) Triton X-100, pH 7.0) at 4 oC was added to 

the biomass sample on a petri dish (50 mm x 12 mm), and the biomass was chopped with 

a sharp razor approximately 500 times to disrupt cell walls and allow for the release of 

intact nuclei. An additional 2 mL of Galbraith buffer was added to resuspend the chopped 

biomass, and this suspension was successively filtered over 80 μm and 30 μm nylon mesh 

(SmallParts, Inc., Miramar, FL).   
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For ploidy and cell cycle analysis, 50 l of 1 mg/mL RNAse and 50 l of 1 

mg/mL propidium iodide were added to 1 mL of the filtered nuclei solution. Samples 

were stained for 30-45 min. on ice before flow cytometric analysis (Becton Dickinson 

(San Jose, CA) LSRII analytical flow cytometer). Forward scatter and side scatter were 

collected on a logarithmic scale, and PI fluorescence was collected on a linear scale. A 

minimum of 5000 events was collected in the gated region of a forward scatter and side 

scatter plot corresponding to nuclei. For cell cycle analysis, Watson Pragmatic Model of 

FlowJo (v7.6) software (Tree Star, Inc.) was applied to the PI histogram to determine the 

percentage of cells in G0/G1, S and G2 phases.  For nuclear DNA content analysis, 1 mL 

of the filtered nuclei solution was aliquoted and approximately ten thousand chicken 

erythrocyte nuclei singlets (Biosure, Grass valley, CA) were added as an internal 

standard. The mixture of Taxus nuclei and chicken nuclei was incubated with 50 l of 1 

mg/mL RNAse and 50 µl of 1 mg/mL PI for 30 minutes on ice, before flow cytometric 

analysis, as described above, where forward scatter, side scatter and PI fluorescence were 

collected on a logarithmic scale.  

2.2.4 Taxane analysis 

Taxanes were identified and quantified using a Waters Acquity UPLC H-Class system. 

Separation on UPLC was performed using an Acquity (Waters, Milford, MA) BEH C18 

column (particle size 1.7 μm, 50 mm × 2.1 mm).  Samples were prepared for metabolite 

analysis, as described elsewhere (Naill and Roberts 2004). Paclitaxel and baccatin III 

authentic standards (Sigma-Aldrich, St. Louis, MO) were used to generate standard 
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curves for quantification of metabolite content, and as a reference for comparison of 

sample peak retention times and characteristic taxane UV absorption spectra.  

2.3 Results and discussion 

2.3.1 Relationship between paclitaxel levels and mean aggregate size  

Paclitaxel levels measured in each culture passage (on day 7 post-elicitation with MeJa, 

day 14 of the cell culture period) varied over the six-month experimental timeframe, 

showing a 6.9-fold difference between the highest and lowest levels of accumulation 

(Fig. 2a). Such batch-to-batch variations can have significant economic implications in 

large scale fermentation systems. As the mean size of the aggregates was shown to affect 

the level of paclitaxel accumulated in cultures in distinct experiments (Kolewe et al. 

2011), we measured the aggregate size distribution during each passage (Fig. 2a). Similar 

to paclitaxel levels in the culture, a saw-tooth pattern was observed for mean aggregate 

size when plotted against time (passage number). Both paclitaxel level and mean 

aggregate size in the cultures followed a distinct relationship: as the mean aggregate size 

of the culture decreased, the amount of paclitaxel accumulated in that culture passage 

increased. A significant negative correlation (r = 0.75, p < 0.01) was observed between 

mean aggregate size and paclitaxel accumulation (Fig. 2b). These results were consistent 

with previous observations (Kolewe et al. 2011), where in individual experiments, 

cultures initiated with smaller aggregate size distributions accumulated higher paclitaxel 

levels than their larger aggregate counterparts. However, the differences in paclitaxel 

levels observed in this study were over sequential multiple passages without any 

manipulation of aggregate sizes prior to inoculation. Interestingly, similar variations in 
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mean aggregate size were observed for cultures that do not accumulate paclitaxel post-

elicitation (data not shown),  

Since plant cell suspension cultures are inherently heterogeneous, it is not 

surprising that metabolite levels over time are not consistent. It is possible that 

unconscious selection of aggregates of a particular size class may occur during 

subculturing (Kinnersley and Dougall 1980), which in this case could contribute to the 

observed fluctuations in mean aggregate size, and hence paclitaxel yields. One of the 

reasons for inconsistent selection of aggregates of a particular size class could be due to 

the density difference between large and small aggregates present in the culture. Routine 

transfer of aggregated plant cells is performed by continuous gentle shaking of the parent 

flask while pipetting a desired volume of culture into fresh media using a wide-mouthed 

pipet. The tendency of large aggregates to sink faster could cause them to escape the 

pipette, potentially leading to unintentional exclusion of larger aggregates. In the case of 

suspension cultures where key secondary metabolites are pigments, the highly pigmented 

cultures are chosen via simple visualization for passage, which could lead to prolonged 

higher productivity (Yamada and Hashimoto 1990; Yeoman and Yeoman 1996). 

However, in suspension cell systems such as Taxus, secondary metabolites are not 

fluorescent or colored, preventing screening and selective subculturing via simple 

visualization. The data presented here suggest that selection of aggregates of a particular 

size class during subculturing could be a simple method for plant suspension systems 

such as Taxus to maintain high and stable producing cell lines.  
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2.3.2 Relationship between sucrose consumption, paclitaxel levels and mean 

aggregate size 

There may be differential utilization of sugars from the media amongst culture passages, 

which could influence growth, aggregate size distribution, and ultimately paclitaxel 

accumulation. During each passage, the concentration of both glucose and sucrose was 

measured in the extracellular medium on day 7 post-inoculation. Extracellular sugar 

concentration ranged from 8.5 to 5.6 g/L on day 7 (initial value on day 0 is 20 g/L) and 

did not correlate with either paclitaxel level or culture mean aggregate size (data not 

shown). Thus, by day 7, cells in each passage utilized similar levels of sugar, irrespective 

of the mean aggregate size of the culture. This result was not completely unexpected as a 

similar amount of inocula was used to initiate cultures in each passage to avoid the effect 

of varying inoculation density on metabolite levels (Morris 1986). This result also 

suggests that for the range of aggregate sizes in these Taxus cultures, diffusion limitations 

for simple sugars are likely not present, as sugar consumption normalized by biomass 

was found to be independent of aggregate size.  

2.3.3 Cell cycle, DNA content and ploidy analyses  

Flow cytometry offers a rapid and accurate method for determining ploidy content, 

assessing DNA content and analyzing cell cycle participation. Monitoring the pattern of 

cell cycle distribution over culture passages provides information on cell division 

potential and differentiation characteristics at each passage (Neumann et al. 2009; 

Yanpaisan et al. 1999). For example, an increased proportion of cells in G0/G1 phase 

would indicate potential differentiation of cells into organized tissues (Yanpaisan et al. 
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1999). To examine the cell cycle activity for Taxus cells during each passage, the 

proportion of cells in each phase of the cell cycle, G0/G1, S and G2 were determined 

using flow cytometry. A similar percentage of cells remained in each cell cycle phase on 

day 7 of each passage (Fig. 3). Throughout the study, on day 7 of each passage, 72-78% 

cells were found in G0/G1-phase, 14-17% cells in S-phase, and 7-11% cells in G2-phase. 

These results suggest that prior to MeJA elicitation, no cell cycle inhibition or arrest 

occurs with repeated culture passage. Nonetheless, it is important to realize that this 

analysis was uni-variate, and does not distinguish between non-cycling G0 cells and 

cycling G1 cells, as both have 2C DNA content. A multi-parametric analysis with a 

cellular marker such as RNA (Bergounioux et al. 1988) or protein content (Citterio et al. 

1992), or using thymidine analogs such as BrDU (Yanpaisan et al. 1998) or EdU 

(Kotogany et al. 2010), must be used to distinguish between cycling and non-cycling 

cells. Previous data illustrate that a significant portion of Taxus cells (~65 %) reside in 

G0 phase (Naill and Roberts 2005).  

Nuclear DNA content correlates with ploidy level, and its estimation in relative 

units can be used to detect changes in ploidy levels amongst passages (Dolezel et al. 

2007). Using chicken nuclei as a standard (2C DNA content = 2.33 picograms (pg)), the 

2C DNA content of the Taxus P93AF cell line measured with flow cytometry was found 

to be ~ 36 pg (Fig. 4a). The nuclear DNA content measured on day 7 (mid-exponential 

phase) did not vary from one passage to another. Previous work has shown heterogeneity 

in nuclear DNA content amongst cell lines over a two-year timeframe following culture 

initiation, where some cell lines exhibit stable genome size (four of nine evaluated) and 

others (five of nine evaluated) show variation. (Baebler et al. 2005). During each passage, 
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only two peaks were observed, corresponding most likely to 2C and 4C DNA (G1 and 

G2) content (Fig. 4b). Thus, no changes in ploidy and nuclear DNA content were 

detected throughout the six-month timeframe investigated here, implying orderly 

progression through mitosis. Changes in ploidy levels are often observed once suspension 

cultures are established (Maciejewska et al. 1999; Creemers-Molenaar et al. 1992), and in 

most cases an increased ploidy is seen as the culture ages. Varying the concentration of 

growth hormones has also been shown to induce changes in culture ploidy levels 

(Mishiba et al. 2001). However, the cell line examined here was maintained with the 

same concentration of growth hormones over time (Gibson et al. 1993). Constant ploidy 

levels and nuclear DNA content over the six-month timeframe indicate that ploidy levels 

in our mature Taxus cultures do not vary on the same time scale as metabolite production 

patterns, and are most likely not a cause of this relatively short term variability in yield. 

Other genetic factors such as structural changes in nuclear DNA, gene mutations and 

translocation of chromosomes to new segments, and/or epigenetic factors such as gene 

silencing by DNA methylation, may contribute to the observed differences in paclitaxel 

accumulation amongst passages, and require further study.  

2.4 Conclusions 

Uncertainty in product levels and limited success of plant cell cryopreservation 

techniques necessitates studies into understanding the reasons for variability in secondary 

metabolite accumulation in plant suspension cultures. Taxus cell cultures consist of a 

heterogeneous population of cells, with aggregates of varying sizes present in the culture. 

Here, we have shown that culture mean aggregate size is an important process parameter 

that correlates with variable paclitaxel accumulation during long term suspension culture 
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maintenance. Sugar utilization, nuclear DNA content (i.e., ploidy levels) and cell cycle 

participation did not differ significantly amongst passages. Information regarding 

aggregation size distributions during a batch culture could be incorporated into kinetic 

models to more accurately predict culture growth, metabolism and product formation 

(Kolewe et al. 2012). This study further emphasizes the importance of rational 

manipulation of aggregate sizes during routine culture passage for optimization of plant 

cell culture bioprocesses (Hanagata et al. 1993; Kinnersley and Dougall 1980; Kolewe et 

al. 2011). This is particularly relevant in suspension systems where major secondary 

metabolite products are often not pigmented, and a simple visual selection of high 

metabolite producing cells is not always possible.   
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Figure 2.1 Fluctuations in mean aggregate size and paclitaxel levels over multiple 

passages of T. cuspidata P93AF cell suspension cultures. Passage is done every 14 days. 

(A) Squares represent the mean aggregate size of the culture obtained through Coulter 

counter measurements. Circles represent paclitaxel content in the culture as measured 

through UPLC. (B) Relationship between culture mean aggregate size and paclitaxel 

level. The Pearson correlation coefficient (r) is -0.75 (p < 0.05 as determined using a two-

tailed test), indicating a statistically significant negative linear relationship. Data points 

represent three biological replicates. Horizontal bars represent standard errors of the 

mean aggregate size and vertical bars represent standard errors of the culture paclitaxel 

level. 
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Figure 2.2 Cell cycle analysis of T.cuspidata P93AF cell line over multiple subcultures. 

FlowJo (Treestar, Inc.) cell cycle analysis algorithm was applied to the propidium iodide 

histograms to differentiate cell cycle phases.  
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Figure 2.3 Flow cytometric DNA histograms. (A) Semi-log plot of DNA content in 

chicken nuclei (CN) singlets (2.33 pg 2C DNA content) and Taxus nuclei (TN), stained 

with 50 g/ml propidium iodide. The first peak is for chicken nuclei singlets (CN) and 

the next two peaks are for Taxus nuclei (TN). (B) Linear plot of DNA content for Taxus 

nuclei stained with 50 g/ ml propidium iodide. Cell cycle phase is indicated on the 

figure. Coefficients of variation were below 4% for all measurements.  
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2.5 Additional information (not included in paper) 

i) Relationship between aggregate size and extracellular sugar consumption 

The sucrose consumption data for P93AF cell line, which was not statistically 

significantly related to aggregate size, is shown in Figure 2.4.   

 

 

Figure 2.4 (A) Fluctuations in mean aggregate size and extracellular sugar levels over 

subculture cycles. (B) Relationship between mean aggregate size of the culture and 

extracellular sucrose level in the culture. The Pearson correlation coefficient (r) is -0.5 (p 

> 0.1) indicating a non-significant moderate negative linear relationship between mean 

aggregate size and extracellular sugar levels in the cultures. The level of significance was 

determined using a two-tailed test. Error bars represent SEM.  

 

ii) Long term study with T. cuspidata P991C cell line 

A similar experiment was performed with another cell line, T. cuspidata P991C by 

Martin Kolewe (Roberts Lab). Similar to the P93AF cell line, fluctuations in aggregate 
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size were observed over subcultures (Figure 2.5).  However, these cultures did not 

produce detectable levels of paclitaxel, as measured by HPLC. Hence a correlation 

between aggregate size and paclitaxel levels during the subculture period was not 

possible.  

 

Figure 2.5 Fluctuations in mean aggregate size over subculture cycles in T. cuspidata 

P991C cell line. Mean aggregate size of the culture was obtained using the Coulter 

counter.  

 

iii) Effect of dilution of Coulter counter solution    

For all the Coulter counter analysis in this dissertation and in previous studies in the 

Roberts laboratory, 2 x 2 mL samples of well-mixed culture broth from each culture flask 

were added to 380 mL of diluent consisting of 65:35 Isoton (1% NaCl with preservatives, 

Beckman Coulter):Glycerol. Following each set of samples, the diluent was vacuum 

filtered over a series of 3.5 and 2.0 m depth filters and recycled for further use (Kolewe 
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et al. 2010). However, the recycled diluent becomes diluted over time by the addition of 

cell culture media during sampling, and hence it becomes necessary to determine the 

reliability of data acquired from Coulter counter after a certain number of samples are 

analyzed.  

To quantify the effect of dilution, several different diluent concentrations were 

tested. Two 250 mL Taxus culture flasks were combined and samples of well-mixed 

culture broth were analyzed in each of the diluent solutions evaluated. Mean aggregate 

size, volume (measured by the Coulter counter), and the amount of diluent solution 

remaining in the Coulter counter flask after a 60 second analysis, were measured to 

compare different diluents; results are shown in Table 2.1. In each case, 2 x 2 mL of well-

mixed culture were added to 450 mL of Coulter counter solution. A higher volume (450 

mL) of diluent was used for these experiments as opposed to 380 mL, which was 

originally specified (Kolewe et al. 2010). If sufficient diluent is not present in the Coulter 

counter flask, air bubbles can pass through the Coulter counter aperture, adversely 

affecting the measurements. In a 60 second analysis with a constant flow rate of 5.1 mL/s 

(Kolewe et al., 2010), the Coulter counter will withdraw more solution if the diluent is of 

lower viscosity. As a variety of glycerol concentrations (i.e., diluents with different 

viscosity) were tested, a higher volume of diluent was used to avoid the potential 

formation of air bubbles.  

Results in Table 2.1 indicate that as the diluent becomes more diluted, or as the 

concentration of glycerol in the diluent decreases, both the mean cell aggregate size and 

culture biomass concentration increases. For example, when the glycerol concentration in 

the diluent was decreased from 35% to 15%, the mean aggregate size measured changed 
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from 349 m to 438 m. Similar results were observed over time (one month-old vs. five 

month-old vs. one year-old diluent). As the diluent gets recycled, it becomes more 

diluted, leading to increased aggregate size and biomass readings. Ideally, if there was no 

effect on diluent concentration over time, results for each diluent should have been 

identical, as samples were analyzed from the same culture. Also, the decrease in viscosity 

of the diluent (due to addition of media) leads to more solution being used for the 

analysis. This is evident from the amount of diluent remaining in the Coulter counter 

flask after each analysis (Table 2.1).  

This study illustrates that dilution of the Coulter counter solution over time affects 

aggregate and biomass readings and therefore diluents should be changed frequently to 

ensure reliable results. The basis for changing the diluent should be the number of 

samples that are analyzed with the same diluent or the number of times the diluent has 

been recycled. Further in depth studies to evaluate the approximate number of samples 

that can be analyzed with the same diluent need to be performed if the diluent recycle 

process is used. Results from such studies are especially important for collecting reliable 

data for long term studies, e.g., aggregate size fluctuations over time.  

As mentioned above, the total number of samples analyzed with the same diluent 

will influence the mean aggregate size and volume measured. If a small number of 

samples are analyzed over a certain time period, then the diluent properties would not 

change drastically and the Coulter counter data are very reliable. Accordingly, during the 

time frame where the Coulter counter data for this chapter were collected (Figure 2.1, Fig 

2.5), there was infrequent analysis of samples using the recycled Coulter counter diluent, 

indicating confidence in the collected data. The reliability of the data is also evident from 
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the results (Figure 2.1, 2.5), where the aggregate size fluctuated over time. If there were 

significant effects due to diluent dilution, then a steady increase in the aggregate size 

would have been observed.  
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Table 2.1 Effect of Coulter counter solution on sample analyses. Regular diluent (one 

month-old, freshly made, five-month old and one year-old) refers to 65:35 Isoton (1% 

NaCl with preservatives):Glycerol. Data represent the average of 2 x 2 mL samples for 

each “treatment.” Mean aggregate size and volume are the values obtained directly from 

the Coulter counter (without using conversion factors to provide a more accurate number 

for aggregate size)  

Solution Mean 

aggregate size  

m 

Volume * 10
9 m

3 Diluent 

remaining (mL) 

Freshly made diluent 
(65% NaCl-35% 

glycerol 

349 25.42 170 

75 % NaCl-25 % 
glycerol 

384 33.97 138 

85% NaCl-15% glycerol 438.3 54.13 110 

65% NaCl-35% glycerol 
+ 500 ml B5 media 

373.4 35.82 138 

One month-old diluent 354 28.89 150 

Five month-old diluent  419.7 40.72 122 

One year-old diluent 431.4 45.5 115 
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iv) Effect of inoculation density on mean aggregate size of the culture  

Process parameters such as inoculation density and day of subculture can affect 

secondary metabolite accumulation in plant cell cultures (Qu et al. 2006). To test the 

effect of inoculation density on aggregation patterns of Taxus cell cultures, triplicate 

flasks of control cultures (normal inoculation density, 1.4 g/L), low inoculation density 

cultures (0.6 g/L) and high inoculation density cultures (2.8 g/L) were made, and growth 

and aggregate size were measured over time using the Coulter counter method. Figures 

2.6A and 2.6B show the biomass content and mean aggregate size for high, normal and 

low inoculated cultures, respectively. Biomass was consistently higher in the high 

inoculation density cultures as compared to normal and low inoculation density cultures 

until day 14 of the culture period. High inoculation density cultures had consistently 

smaller aggregates than normal and low inoculation density cultures. Results from this 

experiment suggest altering inoculation density as a means of producing smaller 

aggregates, and potentially higher paclitaxel yields. However, additional experiments 

need to be conducted to investigate if these effects are observed over multiple subculture 

cycles and should be correlated to paclitaxel levels.    
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Figure 2.6 Effect of inoculation density on biomass and mean aggregate size of T. 

cuspidata P93AF cultures. (A) Biomass, (B) Mean aggregate size as measured by the 

Coulter counter method. Reported values are the average of three replicate flasks and 

error bars represent standard error of the mean. 
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CHAPTER 3                                                                         

CONTRIBUTION OF TAXANE BIOSYNTHETIC PATHWAY GENE 

EXPRESSION TO OBSERVED VARIABILITY IN PACLITAXEL 

ACCUMULATION IN TAXUS SUSPENSION CULTURES 

3.1 Introduction 

Natural products represent many of the most effective drugs currently available for the 

treatment of a variety of diseases, and are particularly useful as anti-cancer and anti-

infectious agents (Li and Vederas 2009). Paclitaxel (Taxol®), a taxane diterpenoid 

produced by Taxus genus is a potent chemotherapeutic widely used in the treatment of 

breast, ovarian and non-small cell lung cancers as well as AIDS-related Kaposi’s sarcoma 

(Colegate and Molyneux 2008). Paclitaxel is also being investigated for use in the 

treatment of neurological disorders, additional cancers and in post-surgery heart patients 

(Vongpaseuth and Roberts 2007). Large scale commercial synthesis of plant natural 

products via cell culture has proven to be challenging due to low yields and instability in 

productivities (Lee et al. 2010; Roberts 2007). Despite these limitations, plant cell culture 

has emerged as a sustainable source for paclitaxel supply, being commercially produced 

by Phyton Biotech Inc. and Samyang Genex Corp. using large scale fermentation. The 

successes of large scale industrial plant cell culture in the U.S. and world-wide with 

paclitaxel (Fett-Neto et al. 1992; Srinivasan et al. 1995; Yukimune et al. 1996; 

Wickremesinhe and Arteca 1994) and several other plant-derived compounds such as 

ginseng (Ushiyama 1991), shikonin (Fujita et al. 1982), and berberine (Sato and Yamada 

1984), have clearly demonstrated both the feasibility of this technology, and broad 

applicability across a range of plant species and products. 



55 
 

The primary difficulties associated with establishment of plant cell culture 

bioprocesses are the low and variable yields in secondary metabolite accumulation 

(Kolewe et al. 2008). To overcome low yields, a variety of traditional optimization 

strategies have been effective, including elicitation with methyl jasmonate (MeJA) 

(Yukimune et al. 1996; Gundlach et al. 1992; Mirjalili and Linden 1996).  By combining 

media and process optimization strategies with MeJA elicitation, paclitaxel accumulation 

of 110-120 mg/L have been reported in academic laboratories (Yukimune et al. 1996; 

Ketchum et al. 1999) and up to 295 mg/L (Tabata 2004) and 900 mg/L (Bringi et al. 

2007) have been achieved in industrial environments. Along with high product yields, 

development of cell lines and processes with a high degree of biochemical and 

physiological stability is critical for the ultimate success of this technology platform 

(Roberts 2007; Morris et al. 1989). Variability in product accumulation has been 

observed in suspension cultures that are maintained over long periods of time (Qu et al. 

2005; Deusneumann and Zenk 1984), including paclitaxel accumulation in Taxus cultures 

(Ketchum and Gibson 1996; Kim et al. 2004).  Though production instabilities have been 

attributed to epigenetic and/or genetic causes (Baebler et al. 2005; Bonfill et al. 2006), 

few molecular studies have been performed (Hefner et al. 1998; Nims et al. 2006) to gain 

a mechanistic understanding of paclitaxel accumulation variability in Taxus cell cultures, 

and hence no rational engineering strategies have emerged to control or leverage 

favorable variability to optimize performance. 

Understanding regulation of gene expression is critical to the design of targeted 

metabolic engineering approaches. To probe regulation of paclitaxel accumulation, 

expression patterns of known paclitaxel biosynthetic pathway genes can be quantified. 
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Paclitaxel biosynthesis consists of 19 putative enzymatic steps (Jennewein et al. 2004) 

and has only been partially elucidated (see Figure 1.3 for paclitaxel biosynthetic 

pathway). Regulation of paclitaxel/taxane biosynthetic pathway genes has been examined 

through RNA gel blot analysis and semi-quantitative RT-PCR in MeJA-elicited T. 

cuspidata suspension cultures (Nims et al. 2006). Similar studies using qRT-PCR have 

been reported for T. chinensis suspension cultures where the elicitation strategy focused 

on increasing Taxuyunnanine C, a 14-hydroxy taxoid, generated through an early 

branch of the paclitaxel biosynthetic pathway (Gao et al. 2011). For the majority of 

known pathway steps, mRNA abundance increased following elicitation, indicating 

substantial regulation of the pathway at the level of mRNA. . However, these studies 

focused on comparison of cultures with and without elicitation. Variability in paclitaxel 

accumulation is often observed amongst cultures elicited with MeJA (Kim et al. 2004). 

Therefore, to link variability fully to gene expression, comparison of multiple culture 

states with different biosynthetic capabilities is necessary. 

Plant cells in suspension culture remain connected to each other after cell 

division, resulting in the formation of cellular aggregates of various sizes. In Taxus 

suspension cultures, aggregates ranging from less than 100 μm to well over 2 mm have 

been observed (Kolewe et al. 2010). Cells within these aggregates are subject to different 

microenvironments, leading to cell-cell differences in morphology (Wallner and Nevins 

1973) and metabolism (Verma and Van Huystee 1970). Recently, we have developed an 

approach to assess the effect of aggregate size as a process variable on paclitaxel 

accumulation, and have demonstrated that cultures with smaller aggregates accumulate 

significantly more paclitaxel upon elicitation with MeJA than cultures with larger 
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aggregates (Kolewe et al. 2011). Using this approach, it is possible to predictably and 

rapidly obtain cultures with different biosynthetic capabilities upon MeJA elicitation.  

In this paper, we use this approach to quantify expression of paclitaxel 

biosynthetic pathway genes in cultures with varying levels of paclitaxel accumulation, to 

clarify the underlying causes of production variability that have been observed at the 

process scale. Using qRT-PCR, we first compared expression profiles in cultures elicited 

with MeJA that produce detectable levels of paclitaxel and unelicited cultures that do not 

produce detectable levels of paclitaxel, to elucidate the on/off state of paclitaxel 

accumulation. Next, we established cultures with small and large aggregate distributions 

(Kolewe et al. 2011) that exhibit variable paclitaxel accumulation patterns upon 

elicitation with MeJA, to enable comparison of gene expression between cultures in 

which taxane accumulation is positive but significantly different. Using this method we 

were able to examine cultures that had 15-fold and 2-fold differences in paclitaxel 

accumulation after MeJA elicitation, respectively. This is the first study to compare gene 

expression in cultures with variable levels of paclitaxel accumulation, providing valuable 

information regarding the regulation of paclitaxel synthesis.  

3.2 Materials and methods 

3.2.1 Cell culture maintenance, elicitation and biomass measurements 

The Taxus cuspidata P93AF cell line was provided by the United States Plant Soil and 

Nutrition Laboratory (Ithaca, NY) and was used in all experiments. All chemicals were 

obtained from Sigma-Aldrich Co. (St. Louis, MO), unless otherwise noted. Cell cultures 

were maintained, as described previously (Kolewe et al. 2011). For elicitation, 200 µM 
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methyl jasmonate (MeJA) was added on day 7 post-transfer during the mid-exponential 

phase of growth, as described previously (Naill and Roberts 2004). A Multisizer 3TM 

Coulter counter equipped with a 2,000 μm aperture (Beckman Coulter, Brea, CA) was 

used to measure culture aggregate size distributions, as described previously (Kolewe et 

al. 2010). As the total aggregate volume was previously shown to correlate directly with 

biomass (Kolewe et al. 2010), this measurement was also used to determine dry weight 

(DW), and all DW data presented here were based on this correlation. For analysis, two x 

2 mL samples of well-mixed culture broth from each flask were taken at each time point.  

3.2.2 Initiation of cultures with different aggregate size distributions and sampling 

for growth, RNA and metabolite analyses 

Three 14-day old suspension flasks were combined into one culture and its aggregate size 

distribution and mean aggregate size were determined using the Multisizer 3TM Coulter 

counter. This culture was aseptically separated into two cultures (one “small aggregate 

culture” and one “large aggregate culture”) using a filter corresponding to its mean 

aggregate size, based on correlations developed in previous work (Kolewe et al. 2010). 

Three biological replicates each of small aggregate culture and large aggregate culture 

were initiated and maintained as 200 mL cultures in 500 mL shake flasks, as described 

previously (Kolewe et al. 2011). Measurements for biomass were taken on the day of 

inoculation (day zero) and on the day of elicitation with MeJA (day seven). Prior to 

MeJA elicitation and 15 hours post-elicitation, samples for total RNA extraction were 

collected. Cell suspensions (3-4 mL of well mixed cultures) were filtered through 

Miracloth® (Calbiochem, La Jolla, CA) to yield ~500 mg fresh cell weight, thoroughly 

ground in liquid nitrogen and stored at -80 oC in polypropylene tubes prior to RNA 
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analysis (see below). Following MeJA elicitation, 1 mL samples of well mixed culture 

broth containing both cells and media were taken every 2-3 days with a cut pipette tip and 

stored at -80 oC prior to metabolite analysis (see below).   

3.2.3 Metabolite analysis  

Taxanes were identified and quantified using a Waters (Milford, MA) Alliance 2690 

HPLC with a 996 photodiode detector (Naill and Roberts 2004) or a Waters Acquity 

UPLC H-Class system. Separation on the HPLC was accomplished on a Taxsil (Varian, 

Inc., Torrance, CA) column (particle size 5 µm, 250 × 4.6 mm). The UPLC separation 

was performed using Acquity (Waters, Milford, MA) BEH C18 column (particle size 1.7 

μm, 50 × 2.1 mm). Samples were prepared for taxane analysis, as described elsewhere 

(Naill and Roberts 2004), and analyzed on either the HPLC or UPLC system. Baccatin III 

and paclitaxel authentic standards (Sigma-Aldrich, St. Louis, MO) were used to generate 

standard curves for quantification of taxane content.  

3.2.4 Gene expression analysis 

3.2.4.1 RNA isolation and reverse transcription 

Total RNA was extracted using RNeasy Plant Mini Kit (Qiagen, Valencia, CA) following 

the manufacturer’s instructions. Genomic DNA was eliminated by treating each sample 

with Ambion’s Turbo DNA-free DNase I (Applied Biosystems, Foster City, CA) 

according to the manufacturer’s instructions. The concentration of total RNA was 

estimated using a Nanodrop 1000 spectrophotometer (Thermo Scientific, Wilmington, 

DE). RNA quality was further assessed by denaturing gel electrophoresis. 1 µg of total 
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RNA was subjected to reverse transcription using the Affinity Script cDNA synthesis kit 

(Agilent Technologies, Santa Clara, CA) with oligo dTs as primers. Reactions were 

performed according to the manufacturer’s protocol in a total volume of 40 µL. For use 

as templates for qRT-PCR, cDNA samples were diluted five-fold in sterile water.  

3.2.4.2 Primer design  

Primer pairs for qRT-PCR amplification were designed based on selected sequences 

using Primer3 software (http://frodo.wi.mit.edu/primer3/) with the following criteria: 

melting temperature of 63 ± 3 °C, primer sequences of length between 20 – 25 bp, and 

GC content of 40 % to 60 %. Amplicon lengths were optimized to 100 – 250 bp to ensure 

maximal polymerization efficiency for qRT-PCR. Specificity of the primer pairs was 

evaluated by melting-curve analysis (Mx3000P real-time PCR instrument software, 

version 2.0) after 40 amplification cycles. Table 1 lists the primers used in this study. 

3.2.4.3 Quantitative real time RT-PCR (qRT-PCR) 

qRT-PCR reactions were performed in a 96-well plate with a Mx3000P Real-time PCR 

system (Stratagene, La Jolla, CA), using SYBR Green to monitor dsDNA synthesis. A 25 

μL PCR reaction was prepared containing 12.5 μL of Brilliant 2× SYBR green master 

mix (Agilent Technologies, Santa Clara, CA), 2 μL of template cDNA (or water for no 

template control), 100 nM of each primer, and 50 nM of diluted ROX dye (to compensate 

for non-PCR related variations in fluorescence, Agilent Technologies). The SYBR Green 

fluorescence data were collected with the following thermocycler conditions: initial 

denaturation at 95 °C for 10 min followed by 40 cycles at 95 °C for 30 s, 60 °C for 1 min, 

and 72 °C for 1 min. Melting-curve analysis was performed at the end of the 
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amplification procedure to check the specificity of the PCR reaction. Mean PCR 

efficiency for each gene was calculated by LinRegPCR (Ramakers et al. 2003) by using 4 

– 6 points and the best correlation coefficient. The reported fold induction is the 

geometric mean of the relative fold induction values for target genes normalized to each 

of the endogenous controls, actin (GenBank accession NO: JF735995) and GAPDH 

(GenBank accession NO: L26922). The use of actin and GAPDH as internal reference 

genes was validated by ensuring that the relative expression of each gene remained 

constant in both small aggregate cultures and large aggregate cultures before and after 

elicitation with MeJA. The expression ratio results were tested for significance by a 

randomization test using the Relative Expression Software Tool (REST©) (Pfaffl et al. 

2002). The statistical model used by this software is a pair-wise fixed reallocation 

randomization test. The software returns the probability of the alternative hypothesis 

(P(H1)), which is that the difference between sample and control groups is due only to 

chance. A P value of less than 0.05 was considered significant. 

3.3 Results and discussion 

3.3.1 Analysis of paclitaxel/taxane biosynthetic pathway gene expression in 

unelicited and MeJA-elicited cultures  

Cultures accumulated paclitaxel/taxanes only upon elicitation with MeJA (Figure 3.1A 

and 3.1B), and therefore this experiment was designed to investigate gene expression in 

the on/off state of paclitaxel/taxane accumulation. Expression of seven known taxane 

biosynthetic pathway genes was quantified and compared between MeJA-elicited and 

unelicited cultures (Figure 3.1C). Most genes were significantly up-regulated in MeJA-
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elicited cultures relative to unelicited cultures (1.5 – 160 fold). These data concur with 

previous reports on different Taxus cell lines that show increased steady state mRNA 

levels of biosynthetic pathway genes upon MeJA-elicitation using Northern gel blot 

analysis (Hefner et al. 1998; Nims et al. 2006; Hu et al. 2006; Kai et al. 2005), RT-PCR 

(Nims et al. 2006) and qRT-PCR (Gao et al. 2011; Exposito et al. 2010). In this study, the 

fold change in T5αH expression upon elicitation with MeJA was lower than that 

quantified for most other pathway genes, which agrees with previous results (Nims et al. 

2006; Wheeler et al. 2001). In a time course study using Northern gel blot analysis, T5αH 

expression was shown to be higher at 6h relative to 18h, after which transcripts were not 

detected (Nims et al. 2006). Figure 3.1C shows results at 15 hours post-elicitation, and 

therefore T5αH transcript abundance was significantly lower by this time point, resulting 

in a lower observed expression ratio. In addition, BAPT expression was relatively weakly 

induced with MeJA elicitation as compared to the other pathway genes, agreeing with 

previous data (Nims et al. 2006). Thus, these data again support the hypothesis that 

BAPT may be a critical rate influencing step in the paclitaxel biosynthetic pathway and a 

primary target for metabolic engineering. Once the qRT-PCR technique was successfully 

established and induction of gene expression was confirmed with MeJA elicitation, we 

examined cultures that produced paclitaxel at different levels, enabling a more detailed 

understanding of metabolic differences amongst Taxus cultures with varying bulk 

paclitaxel/taxane production capabilities.  
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3.3.2 Analysis of cultures that exhibit high variability in paclitaxel/taxane 

accumulation 

A comparison of gene expression in cultures that exhibit variations in paclitaxel/taxane 

accumulation after MeJA elicitation (i.e., higher-accumulating cultures vs. lower-

accumulating cultures) has not previously been reported, but since variability in product 

synthesis is common amongst cultures, such a comparison is therefore of great practical 

interest. To obtain such differences in paclitaxel/taxane accumulation, we initiated 

cultures with different aggregate size profiles but the same initial biomass, and analyzed 

paclitaxel/taxane accumulation as well as pathway gene expression. Size distributions 

taken from small aggregate cultures and large aggregate cultures following inoculation on 

day 0 and prior to elicitation on day 7 indicated that once established, cultures maintained 

disparate aggregate size profiles (Figure 3.2A, 3.2B). Growth is typically retarded upon 

elicitation with MeJA (Kim et al. 2004; Yukimune et al. 1996) and small and large 

aggregate cultures maintain similar growth patterns post-elicitation (Kolewe et al. 2011). 

Throughout the production period of the cell culture batch, small aggregate cultures 

accumulated higher levels of both baccatin III and paclitaxel in comparison to large 

aggregate cultures (Figure 3.2C, 3.2D). The total baccatin III and paclitaxel levels were 

up to 120-fold and 15-fold higher, respectively, in small aggregate cultures as compared 

to large aggregate cultures, indicating substantial difference in metabolite accumulation.  

Five of the seven genes investigated were up-regulated in MeJA-elicited small 

aggregate cultures as compared to MeJA-elicited large aggregate cultures (P < 0.05), but 

the level of up-regulation varied amongst the genes (Figure 3.2E). The relative transcript 

levels of early and middle pathway genes (T5αH, DBBT and DBAT) showed a minor 
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(1.4, 2 and 1.8 – fold, respectively) increase in small aggregate cultures relative to large 

aggregate cultures. A more substantial increase for the later pathway genes, PAM and 

DBTNBT (12-fold and 7-fold respectively), was observed in small aggregate cultures. 

The relative expression levels of TASY and BAPT were not significantly different 

between the cultures. One possibility for suppressed secondary metabolism in large 

aggregate cultures is that MeJA elicitation is not uniform in larger aggregates, where 

transport limitations exist, and therefore MeJA may not effectively penetrate into the 

interior of all aggregates (Yuan et al. 2002). These effects may be amplified since MeJA 

is produced endogenously by cells in response to external stimuli (Gundlach et al. 1992), 

as jasmonic acid biosynthesis is regulated by a positive feedback loop (Wasternack 2007; 

Pauwels et al. 2008). Overall, these data demonstrate some differences in pathway gene 

expression between cultures that accumulate substantially different paclitaxel levels (in 

this case 15-fold), but suggest there are additional factors that regulate paclitaxel 

accumulation. Interestingly, when the relative expression levels of the same pathway 

genes were compared in unelicited small and large aggregate cultures, higher mRNA 

levels for most pathway genes (six of the seven evaluated; P < 0.05) were observed in the 

small aggregate cultures (Figure 3.2F). Up-regulation of greater than 2-fold was observed 

for four genes, DBBT, PAM, BAPT and DBTNBT, suggesting a difference in initial 

metabolic state prior to MeJA elicitation. However, no differences were observed in 

paclitaxel accumulation in unelicited cultures, as the levels of paclitaxel produced were 

below the limit of quantification of UPLC. These data indicate there are bottlenecks to 

product accumulation in unelicited cultures that are overcome through elicitation. 
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3.3.3 Analysis of cultures with smaller differences in paclitaxel/taxane accumulation 

but higher levels of production 

A second experiment was conducted with the same T. cuspidata cell line, in which the 

aggregate sizes for both small aggregate cultures and large aggregate cultures were 

slightly larger (Figure 3.3A, 3.3B). Like the previous experiment, a similar metabolite 

trend was observed, with small aggregate cultures accumulating higher levels of baccatin 

III and paclitaxel (Figure 3.3C, 3.3D).  However, there were two important differences: 

1) the relative change in metabolite accumulation between small and large aggregate 

cultures maximally was only 4.6-fold for baccatin III and 1.7-fold for paclitaxel, 

compared to 120-fold for baccatin III and 15-fold for paclitaxel in the previous 

experiment; and 2) the large aggregate cultures in this experiment accumulated a 

relatively high level of paclitaxel (1.6 mg/g DW), which was 13-fold higher than large 

aggregate cultures and on the same order as small aggregate cultures from the previous 

experiment. Aggregate size is not the only factor influencing variability in paclitaxel 

accumulation amongst cultures, and it is not uncommon to observe varying differentials 

in paclitaxel accumulation (Kolewe et al. 2011). Additional genetic and epigenetic factors 

not explicitly measured or controlled for likely contribute to the variability observed 

amongst Taxus cultures between experiments. 

In this case, qRT-PCR analysis revealed no differences in the expression levels of 

pathway genes between small and large aggregate cultures after elicitation with MeJA 

(Figure 3.3E). Both small and large aggregate cultures accumulated high levels of 

paclitaxel, indicating that pathway genes were up-regulated by MeJA, but the differences 
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in baccatin III and paclitaxel accumulation between small and large aggregate cultures 

could not be attributed to additional increases in mRNA abundance of pathway genes.  

While this work collectively shows that some degree of variability in secondary 

metabolism can be linked to changes in biosynthetic pathway gene expression, there are 

clearly contributions from other factors. Metabolite levels are not only determined by 

pathway gene expression levels, but also by post-transcriptional and/or post-translational 

regulation of enzyme activity (Verpoorte and Memelink 2002). For example, 

discrepancies in post-transcriptional and/or post-translational regulation were 

hypothesized for the lack of resveratrol production in Vitis vinifera cell cultures even 

after high induction of one of the key pathway genes (Lijavetzky et al. 2008). Primary 

metabolism is known to provide critical substrates for secondary metabolic pathways and 

hence, precursor pool availability can also affect product accumulation. For example, 

phenylalanine addition to T. cuspidata cultures resulted in an increase in paclitaxel 

accumulation (Fett-Neto et al. 1994). In addition to paclitaxel biosynthesis, post-

biosynthetic events such as storage and degradation of paclitaxel and its precursors may 

be important (Roberts 2007; Siegler 1998; Zhang et al. 2002). The paclitaxel biosynthetic 

pathway originates in the plastid and involves hydroxylation in the endoplasmic 

reticulum and acylation in the cytosol (Croteau et al. 2006). Knowledge about subcellular 

trafficking and transport of paclitaxel and precursors, mechanisms for extracellular 

secretion and in vivo degradation will help suggest additional potential regulators of 

paclitaxel/taxane accumulation.  
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3.4 Conclusions  

Significant variability is observed in paclitaxel accumulation amongst cultures of 

different Taxus species and over time within a single species. In this paper, we studied 

the relationship between paclitaxel biosynthetic pathway gene expression and the varying 

bulk levels of paclitaxel observed amongst cultures. Through qRT-PCR, we demonstrated 

induction of paclitaxel biosynthetic pathway genes through elicitation with MeJA, which 

is necessary for paclitaxel accumulation. By analyzing MeJA-elicited cultures with 

varying levels of paclitaxel accumulation, we observed additional up-regulation of 

paclitaxel biosynthetic pathway gene expression between cultures with significant 

differences in paclitaxel accumulation capabilities (15-fold).  In particular, increased 

expression of late pathway genes, such as PAM and DBTNBT, was observed when there 

were substantial differences in bulk paclitaxel accumulation levels. However, when 

paclitaxel accumulation levels are only moderately different (2-fold), no differences in 

pathway gene expression were measured, suggesting that other factors affect the bulk 

paclitaxel accumulation patterns. This is the first study to address the relationship 

between gene expression and variability in paclitaxel accumulation through generating 

cultures with different paclitaxel accumulation potentials upon elicitation with MeJA. A 

systems-wide genomics approach along with consideration of post-biosynthetic pathway 

events such as transport and degradation are necessary to fully understand the factors that 

regulate paclitaxel accumulation in cell culture.  
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Table 3.1 Sequences for forward and reverse primers of the paclitaxel biosynthetic 

pathway genes used in qRT-PCR 

Gene 
Genbank 

Accession 

Primer Pair (5'-forward-3'/5'-

reverse-3') 

Product size 

(bp) 

TASY U48796 TGCAGCGCTGAAGATGAACG 181 

  AGTGCCAGTGCTGCTGCTCA  

    

T5αH AY289209 GCAACAGCCACGCAGGATCT 136 

  TTGGCGAAGTGGTGGTGTCA  

    

DBBT JF735996 CATGGCGGACAACGACCTTT 159 

  CCCACAACAAATCCCCCACA  

    

DBAT AF193765 CCTGCAGCTCTCCACCCTTG 162 

  CGCCCTGCAAAAGGGGAATA  

    

PAM AY582743 GAGGTCATGGAAGCGCTGGA 109 

  CAATGTAGGCGAGCGGGATG  

    

BAPT AY082804 GCCTTCGCCCAAAACAATCC 228 

  ACACCCTGCCCTGTGCACTC  

    

DBTNBT AF466397 GGAGTGCACAGGGGATGGTG 190 

  GGCAATGCCCCCACATGTAA  

    

GAPDH L26922 TTCCCTGGGGTGAGGTTGGT 229 

  GCCAAAGGAGCCAGGCAGTT  

    

Actin JF735995 GCGTGAAATTGTCCGCGATG 148 

  CCGTTCTGCACCAATCGTGA  
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Figure 3.1 Effect of methyl jasmonate elicitation on taxane accumulation and expression 

of taxane biosynthetic pathway genes. (A) Baccatin III accumulation in MeJA-elicited 

and unelicited cultures. (B) Paclitaxel accumulation in MeJA-elicited and unelicited 

cultures. (C) Relative gene expression ratio of seven known paclitaxel biosynthetic 

pathway genes determined with qRT-PCR, calculated using REST 2009 software. 

Expression ratio represents the median fold change in MeJA-elicited samples relative to 

unelicited samples at 15 hours post-elicitation, normalized by actin and GAPDH 

reference gene expressions. The box represents the middle 50% of observations. The 

dotted line within the box represents the median expression ratio. Whiskers represent the 
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minimum and maximum observations. *p<0.05, as determined by randomization tests 

using REST software. Reported values are the average of three biological replicates.  
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Figure 3.2 Profiles of aggregate size distributions, taxane accumulation and gene 

expression patterns in cultures exhibiting a large difference in paclitaxel accumulation. 
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 (A, B) Aggregate size distribution at culture initiation and prior to elicitation, 

respectively. (C, D) Baccatin III and paclitaxel accumulation over a three-week period, 

respectively. (E, F) Relative gene expression ratio of seven known paclitaxel biosynthetic 

pathway genes determined with qRT-PCR, calculated using REST 2009 software. 

Expression ratio represents the median fold change in small aggregate cultures relative to 

large aggregate cultures at 15 hours post-elicitation (E) and just prior to elicitation (F), 

normalized to actin and GAPDH reference gene expressions. The box represents the 

middle 50% of observations. The dotted line within the box represents the median 

expression ratio. Whiskers represent the minimum and maximum observations. *p<0.05, 

as determined by randomization tests using REST software. Reported values are the 

average of three biological replicates.  
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Figure 3.3 Profiles of aggregate size distributions, taxane accumulation and gene 

expression patterns in cultures accumulating high levels of paclitaxel with a relatively 

small difference in paclitaxel accumulation. (A, B) Aggregate size distribution at culture 

initiation and prior to elicitation, respectively. (C, D) Baccatin III and paclitaxel 

accumulation over a three-week period, respectively. (E) Relative gene expression ratio 

of seven known paclitaxel biosynthetic pathway genes determined with qRT-PCR, 
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calculated using REST 2009 software. Expression ratio represents the median fold 

change in small aggregate cultures relative to large aggregate cultures at 15 hours post-

elicitation, normalized using actin and GAPDH reference gene expressions. The box 

represents the middle 50% of observations. The dotted line within the box represents the 

median expression ratio. Whiskers represent the minimum and maximum observations. 

Results are statistically similar for all genes (p>0.05) as determined by randomization 

tests using REST software. Reported values are the average of three biological replicates.  
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3.5 Additional information (not included in the paper) 

i) Cloning the Taxus actin gene 

The sequence for one of the most commonly used reference genes, actin, was not known 

for Taxus. In order to design qRT-PCR primers for actin, we cloned out a partial 

sequence of actin from our cultured cells. RNA was isolated from cells, and converted to 

cDNA as described in the Material and methods section. The primers for cloning Taxus 

actin were designed based on the sequence for Picea Abies (Norway Spruce), Genbank 

ID: FJ869869. PCR reaction was performed with Ex Taq DNA polymerase (Takara). The 

PCR product was integrated into the pCR®/GW/TOPO® plasmid, using the TOPO TA 

cloning kit (Catalog Number: K250020, Invitrogen). The pCR®/GW/TOPO® contains 

two thymine overhangs, allowing for incorporation of the PCR product directly into the 

plasmid and a spectinomycin resistance for screening. The plasmid was then transformed 

into a chemically competent strain of E. coli (DH5) and plated on LB plates containing 

spectinomycin. Plasmids were isolated from E. coli colonies that grew. M13F (20) and 

M13R primers on the pCR®/GW/TOPO® plasmid were used for sequencing the product. 

The resulting sequenced gene was submitted to Genbank (Accession ID: JF735995).  

 

ii) Cloning the full length DBBT gene from the Taxus P93AF cell line 

Full length Taxus DBBT gene (Genbank Accession ID: JF735996) was cloned using the 

same procedure as described above for the Taxus actin gene.   
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iii) RNA isolation from intact Taxus single cells 

Sorting of Taxus cells based on paclitaxel accumulation can be used for both 

development of higher accumulating cell lines and characterization of production 

variability through gene expression analyses, which could ultimately lead to 

identification of rational strategies to enhance paclitaxel accumulation (Gaurav 2011).  

A protocol for isolation of live intact single cells from aggregated Taxus 

suspension cultures was previously developed in the Roberts laboratory (Naill and 

Roberts 2004) and used to investigate cell specific paclitaxel accumulation (Naill and 

Roberts 2005b). An osmoticum of 0.5 M mannitol was prepared in nanopure water. 0.3 % 

dextran sulfate (DS) was added to the mannitol solution to enhance single cell release 

(Takebe et al., 1968). The enzymes pectolyase Y-23 (0.5 % (w/v), MP biomedicals, 

catalog no..320952) and cellulase (0.04 % (w/v), Sigma, catalog no. C1794) were 

dissolved in the osmoticum mixture. Cultured cells were vacuum-filtered through 

Miracloth® (Calbiochem, San Diego, CA) and transferred into the enzyme solution. 

Ratios were maintained at approximately 1 g cell weight per 5 mL of solution for 

consistency. Digestion was carried out for the desired time period (typically 4 hours) at 

standard culture conditions (23 – 24 oC and 125 rpm in the dark). 

When the research presented in this chapter was initiated, we planned on sorting 

intact Taxus cells based on accumulation of paclitaxel using flow cytometry, and 

examining gene expression in the sorted populations. The previously successfully used 

procedure was attempted to isolate single cells from T. cuspidata P991C and P93AF cell 

suspensions for gene expression experiments. However, this line of research became 
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stalled when the process for isolation of viable single cells could not be performed 

reliably, and hence isolation of RNA from single cells was not possible. Here, some of 

the research conducted to try and overcome difficulties in isolating viable single cells is 

summarized. 

Intact RNA can only be isolated, and subsequently detected, from viable cells 

when RNA does not undergo significant degradation post-isolation. Figure 3.4 indicates a 

denaturing gel electrophoresis for RNA isolated from P93AF T. cuspidata aggregated 

suspension cultures (both MeJA-elicited and unelicited), single cells (SC) and protoplasts 

(PP) isolated using previously established protocols (Naill et al. 2004, Roberts et al. 

2003). Intact total RNA run on a denaturing gel will generally have sharp, clear 28S (~ 

5300 bp) and 18S (~ 2000 bp) rRNA bands. The 28S rRNA band should be 

approximately twice as intense as the 18S rRNA band, as indicated by the RNA ladder. 

As seen in Figure 3.4, MeJA-elicited cultures, unelicited cultures and protoplasts had 

intact RNA. However, RNA isolated from single cells exhibited a large smear on the gel, 

indicating degraded RNA. Viability of cells was verified by fluorescein diacetate (FDA) 

and propidium iodide (PI) staining, as described in Section 5.2.3. Single cell viability was 

very low post-enzymatic procedure (< 10 % viable). On the other hand, protoplasts had 

relatively high viability (up to ~ 90%), which made intact RNA isolation possible. 

Viability staining of single cells and protoplasts is shown in Figure 3.5. 
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Figure 3.4 Denaturing gel electrophoresis of RNA isolated from aggregated Taxus cell 

cultures (T. cuspidata P991C), single cells and protoplasts. Intact and degraded RNA are 

shown on a 1.5 % denaturing agarose gel. RNA isolated from MeJA-elicited (+MeJA) 

(day 3 post-elicitation, day 10 of culture period) and unelicited cell cultures (day 10 of 

culture period), intact single cells (SC) (isolated from day 7 post-transfer cultures), and 

protoplasts (PP) (isolated from day 7 post-transfer cultures). The 18S and 28S ribosomal 

RNA bands are clearly visible in the intact RNA samples. The degraded RNA appears as 

a lower molecular weight smear. 
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Figure 3.5 Viability staining of single cells and protoplasts isolated from Taxus 

cuspidata P93AF cell line on day 7 of culture period. (A), (D) are brightfield images, (B) 

and (E) are FDA stained (live) images, (C) and (F) are PI stained (dead) images. The 

high background of FDA stain image (B) and staining of all the nuclei in PI stain image 

(C) indicate cell death in single cells. In contrast, protoplasts stain positive with FDA (E), 

with minimal dead protoplasts (F). Bright white spots in (E) and (F) indicate live and 

dead protoplasts, respectively.  
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To increase cell viability in the single cell isolation procedure, modifications were made 

to both the components of the osmoticum solution and the digestion conditions. These 

experiments were performed in collaboration with Sarah Wilson. Note that the viability 

of aggregated cultures is always high (~ 95 %) during the timeframes investigated (day 7 

– day 14 of the culture period). 

1) Varying osmoticum conditions 

Aim: To determine the effect of various osmoticum components and osmoticum 

sterilization conditions on single cell yield and viability.  

a) Autoclaving the osmoticum – The osmoticum (0.5 M mannitol and 0.3 % dextran 

sulfate (DS)), was sterilized either by autoclaving with liquid cycle conditions (121 oC, 

15 min) or filter-sterilizing (using a 0.22 m filter).   

Table 3.2 Effect of varying osmoticum sterilization conditions on single cell isolation in 

T. cuspidata P93AF cell line, using the procedure described above. Cultures ranging from 

day 7 to day 10 of the culture period were tested. In all cases, viability was measured 

using FDA and PI staining.  

Osmoticum 

(0.5 M mannitol + 0.3 
% DS) 

Effect on pH of 

solution 

Single cell yield Viability of single 

cells 

Autoclave pH drops from 5.5 
to ~ 2 

High All cells are inviable 

Filter sterilize pH remains ~ 5.5 Very low, mostly 
debris 

Very few viable cells 
(< 5%) 
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b) Dextran sulfate was removed from the osmoticum.  

Table 3.3 Effect of removing dextran sulfate from the osmoticum solution on single cell 

isolation in T. cuspidata P93AF cell line. Cultures ranging from day 7 to day 10 of 

culture period were tested. In all cases, viability was measured using FDA and PI 

staining.  

Osmoticum 

(0.5 M mannitol) 

Effect on pH of 

solution 

Single cell yield Viability  of single 

cells 

Autoclave pH changes from 
5.5 to ~ 4.6 

Very low, mostly 
cell debris 

Very few viable single 
cells (< 5%) 

Filter sterilize pH remains ~ 5.5 Very low, mostly 
cell debris 

Very few viable single 
cells (< 5%) 

 

2) Varying the pH of the osmoticum solution 

In the previous experiment, it was observed that the pH of the osmoticum affected both 

cell viability and enzyme activity. At low pH, aggregates were digested to single cells but 

the cells were not viable. At high pH, the aggregates were completely digested and 

mostly cell debris was observed, with few viable single cells. In order to create optimal 

digestion conditions, pH of the regular osmoticum (0.5 M mannitol with 0.3 % DS) was 

adjusted to an intermediate value. Also, to see the general effect of osmoticum pH on cell 

viability, cell aggregates were incubated in regular osmoticum (without enzymes) at pH 

2, 3, 4, and 6 for four hours and then resuspended in conditioned media (obtained from 

day 7 post transfer cells) for 12 hours. Both T. cuspidata P93AF and P991C cell lines 
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were used in this study with similar results. Table 3.4 shows the results for the P93AF 

cell line.  

Table 3.4 Effect of varying osmoticum pH on single cell isolation and aggregated culture 

viability.   

Experimental conditions Results 

 0.5 M mannitol + 0.3 % DS + 
enzymes 

 pH adjusted to 3.3 

Mostly cell debris and a few viable protoplasts 
were observed 

 0.5 M mannitol + 0.3 % DS 

 pH adjusted to 2, 3, 4 and 6 

 Cells kept in respective osmoticum 
for four hours, followed by 
resuspension in conditioned medium 
at a concentration of 1 g wet cell 
mass per 5 mL conditioned medium 

 pH 3, 4 and 6 - The cells remained 
aggregated and were red (stressed)  after 12 
hours incubation in conditioned medium 

  pH 2 – Cell aggregates were pale white, 
but cells were 0 % viable. This result 
suggests that cell death occurs immediately 
upon transfer to the osmoticum solution 
(no time for cells to become stressed and 
red) 

  

From these experiments, it was determined that the pH of the osmoticum solution has a 

drastic effect on cell viability and single cell yield. While single cells are obtained when 

the pH is low (< 3), viability is severely compromised. As the pH is raised to 

approximately 3, the enzyme activity is possibly increased, resulting in high levels of cell 

debris, likely due to significant digestion of primary cell walls. In these experiments, 

single cell viability is very low, but protoplasts that are released from the aggregates 

remain viable.  

Despite all the modifications attempted, a successful balance between single cell 

yield and cell viability was not attained. One of the possible reasons that the viability of 
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isolated single cells was considerably lower than that previously reported (Naill and 

Roberts 2005b) is the variability in Taxus cell lines over time. Future studies should 

consider the results from the above experiments in designing a reliable single cell 

preparation method that yields viable cells.   
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CHAPTER 4                                                                            

TRANSCRIPTOME ANALYSIS OF TAXUS CULTURES 

EXHIBITING METABOLIC AND MORPHOLOGICAL 

HETEROGENEITY 

4.1 Introduction 

Transcriptome, or expressed sequence tag (EST), sequencing is an efficient route to 

generate comprehensive sequence collections that represent expressed genes for a 

particular cell type in an organism. Transcriptome sequencing of eukaryotic organisms is 

a more attractive alternative than whole genome sequencing, as the majority of a 

eukaryotic genome is noncoding and consists of repetitive DNA. Because EST sequences 

lack introns and intergenic regions, information content can be handled more efficiently 

and promote a better interpretation of the data. Moreover, whole genome sequencing 

approaches are expensive and time-consuming, and are currently not feasible in academic 

laboratories for organisms with large genomes (e.g., plant species like Taxus). EST 

sequencing data can be readily used for gene annotation and discovery, as well as 

comparative genomics. In plants, a genome- or transcriptome-based analysis can provide 

valuable insight into important plant metabolic processes. Secondary metabolic 

processes, which produce a variety of medicinal compounds for human health, are not as 

well conserved as primary metabolic processes across the plant kingdom. Therefore, even 

though some plant genomes have been sequenced, understanding, and ultimately 

manipulating, species-specific secondary metabolic pathways is limited.  

For transcriptome sequencing, mRNA is isolated from one or several cell types of 

an organism or tissue culture and reverse transcribed into cDNA. The cDNA is then 



85 
 

fragmented and sequenced either using traditional Sanger sequencing or next generation 

sequencing. Use of Sanger sequencing requires fragmented DNA to be subcloned into 

vectors, followed by amplification in bacterial or viral hosts and then sequenced using the 

Sanger chain termination method. With the advent of next generation sequencing 

approaches (e.g., 454, Illumina, SOLiD, etc.), transcriptome sequencing can be 

completed at a lower cost and in reduced time, as it alleviates the need for cloning, cDNA 

library construction and labor-intensive Sanger sequencing runs. Amongst the next 

generation sequencing methods, 454 (Roche) technology offers longer read lengths 

(about 300 bp), which makes it easier to assemble a transcriptome. Read lengths 

generated by other next generation sequencing methods such as Illumina and SOLiD are 

comparatively shorter and can be challenging for de novo assembly of a transcriptome, 

although some algorithms for assembly of such short reads have been developed 

(Morozova et al. 2009; Garg et al. 2011; Zerbino and Birney 2008). 454 sequencing 

technology has been used for both assembly of EST data of model plant organisms whose 

draft genomes are available (Cheung et al. 2006; Weber et al. 2007), and for de novo 

assembly of EST data for organisms where no prior genomic resources are present 

(Parchman et al. 2010).  

With the introduction of low-cost, high-throughput next generation sequencing 

platforms, genetic information for the Taxus species has begun to emerge. Transcriptome 

sequencing of Taxus organs such as needles (Wu et al. 2011), stem and roots (Hao et al. 

2011), and cambial meristematic cells (Lee et al. 2010) have been established. However, 

a transcriptome of cultured Taxus cells, which offer the most promising route for 

sustainable production of paclitaxel and related taxoids at an industrial scale, has not been 
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generated. A differentially-regulated transcriptome of paclitaxel-accumulating cultured 

cells including response to secondary metabolite elicitors like MeJA will greatly improve 

our understanding of global networks affecting paclitaxel biosynthesis.  In this work, we 

used both 454 and Illumina sequencing technologies to generate a base transcriptome for 

cultured Taxus cells (in both paclitaxel-accumulating and nonpaclitaxel-accumulating 

states). This annotated transcriptome allows for the identification of up-and 

downregulated transcripts in Taxus cultures with variable metabolic patterns. My role in 

this work was to provide the cell cultures, design the experiments to generate cultures 

with different treatments, and perform all the metabolite analysis, while Dr. Lenka 

(Walker Lab) performed the functional annotation and bioinformatics analyses. 

The global gene expression profiles of cultures with different metabolic patterns 

were compared using Illumina sequencing. This global expression study indicated that, 

along with the paclitaxel biosynthetic pathway, other secondary metabolic pathways were 

active in MeJA-elicited Taxus cultures. Key metabolites from these pathways were also 

identified in MeJA-elicited cultures, which positively correlated with the gene expression 

results. For example, along with the paclitaxel biosynthesis pathway, several genes in the 

phenylpropanoid pathway were upregulated in MeJA-elicited cultures. Lignin and 

flavonoids, the key metabolites of the phenylpropanoid pathway, were also present in 

higher quantities in MeJA-elicited cultures as compared to mock-elicited cultures. 

Activation of the phenylpropanoid pathway and presence of lignin partly explained the 

observation of increased mean aggregate size of Taxus cultures upon MeJA elicitation, as 

described herein. Though complete analysis of the cultures with different metabolic 

phenotypes is still ongoing in the paclitaxel collaborative group, preliminary results show 
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a number of differentially regulated transcripts in each culture-specific state. Such 

culture-specific global transcript profiling will allow identification of genes involved in 

global pathway control, including potential paclitaxel biosynthetic genes, and genes that 

may be involved in other complimentary and competing pathways, to ultimately suggest 

effective targets for metabolic engineering.   

4.2 Materials and methods 

4.2.1 Cell culture maintenance, MeJA elicitation and Coulter counter analysis 

The Taxus cuspidata cell line P93AF  was provided by the U.S. Plant Soil and Nutrition 

Laboratory in Ithaca, NY, and maintained in our laboratory, as described previously 

(Naill and Roberts 2004). Suspensions were maintained in 500 mL Erlenmeyer flasks 

capped with Bellco (Vineland, NJ) foam closures at 23 oC and 125 RPM in gyratory 

shakers in the dark. Subculture transfers were performed by transferring 40 mL of inocula 

(corresponding to a packed cell volume of 4-5 mL) originating from a 14-day old 

suspension culture into 160 mL of fresh medium. For elicitation, cultures were treated 

with 150 M methyl jasmonate (MeJA), as described previously (Naill and Roberts 

2004). Mock-elicited, or control cultures, were generated by using equivalent amounts of 

sterile water instead of MeJA. A Multisizer 3TM Coulter counter equipped with a 2,000 

μm aperture (Beckman Coulter, Brea, CA) was used to measure biomass and culture 

aggregate size distributions, as described previously (Kolewe et al. 2010). For Coulter 

counter analysis, two x 2 mL samples of well mixed culture broth from each of the three 

replicate flasks were run.   
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4.2.2 RNA isolation for 454 sequencing  

Biological duplicates of MeJA-elicited and mock-elicited cultures were used for RNA 

isolation and taxane analysis. RNA was isolated at 12h, 36h, 60h, 84h, 108h, 132h, 156h, 

180h, 204h, 228h, 252h, 276h, 300h, 324h, and 348h time points spanning 15 days post-

elicitation, as described in 3.2.4.1. Equal amounts of total RNA were pooled from each 

time point for 454 sequencing. After rRNA depletion and fragmentation, a transcriptome 

library was prepared by sequencing the pooled RNA sample on one full Picotiter Plate 

(PTP) using the 454 Genome Sequencer FLX Titanium System™ following 

manufacturer's instructions (Roche, Branford, CT).  

 4.2.3 Initiation of cultures with different aggregate size distributions and sampling 

for RNA isolation for Illumina sequencing  

Small and large aggregate cultures were generated by altering the aggregate size 

distribution at the time of culture initiation, as described in 3.2.2. Measurements for 

biomass and mean aggregate size were taken on the day of inoculation (day 0) and on the 

day of elicitation with MeJA (day 7). RNA was isolated at both 18 hour and 72 hour time 

points post MeJA-elicitation, as described in 3.2.4.1. 50 bp paired end mRNA sequencing 

libraries were prepared from both MeJA-elicited and mock elicited T cuspidata P93AF 

cells at both the 18 and 72 hour time points using Illumina HiSeq 2000 platform 

(Illumina, Inc.  San Diego, CA).  
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4.2.4 Contig generation, annotation and expression analyses  

Reads from both 454 and Illumina sequencing libraries were used in de novo assembly to 

generate contigs using CLC genomics workbench (CLC Bio, Aarhus, Denmark) by 

setting A, C, G, T voting method for conflict resolution. A total of 48,614 contigs were 

generated (>200 bp, avg. >100 reads/contig, > 50X coverage) with N50 contig length of 

873 bp. These contigs were annotated and assigned gene ontology (GO) terms using 

Blast2GO default parameters (Conesa et al. 2005). Paired end reads from each Illumina 

library were mapped onto the contigs using CLC Genomics Workbench software. Gene 

expression for both MeJA-elicited and mock-elicited cultures at both 18 and 72 hour time 

points were calculated using RPKM (Reads per kb per million reads) method (Mortazavi 

et al. 2008). To identify the differentially expressed genes, the proportions-based test was 

used between any two RNA-seq libraries under comparison with p-value <0.05 (Kal et al. 

1999).  To calculate the fold change between any two conditions, quantile normalization 

of the RPKM values was used. 

4.2.5 Taxane analysis  

Samples for taxane analysis were collected at several time points post-elicitation and 

analyzed using UPLC, as described in 3.1.7. 

4.2.6 Lignin content analysis  

For qualitative lignin analysis, MeJA-elicited and mock-elicited cultures were stained 

with phloroglucinol (Sigma Aldrich). The staining solution was 16 % (v/v) ethanol, 13.5 

% (v/v) HCl and 20 mg/mL phloroglucinol. 1 mL of well mixed culture was taken on a 
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microscope slide, media was removed with a Kimwipe, and the remaining cells were 

incubated for 3 min in dark, with the phloroglucinol stain solution. The cells were 

directly photographed using a digital color camera. The cinnamaldehyde end groups of 

lignin react with the phloroglucinol-HCl to yield a temporary red-violet color (Leple et al. 

2007).  

For quantitative lignin analysis, acetyl bromide soluble lignin (ABSL) method 

was used (Foster et al. 2010; Fukushima and Hatfield 2001). This analysis was done in 

Samuel Hazen’s laboratory in UMass, Amherst. Two mg of dried cells (dried in oven 

overnight at 60 oC) were dissolved in 100 l acetyl bromide solution (25% v/v acetyl 

bromide in glacial acetic acid). The contents were heated at 50 oC for two hours with 

occasional mixing by inversion. After cooling the sample to room temperature, 400 L of 

2 M NaOH and 70 L of 0.5 M hydroxylamine hydrochloride were added. After 

vortexing the sample, the volume was raised to 2 mL with glacial acetic acid. Optical 

density at 280 nm was measured using a spectrophotometer. Spectrophotometric readings 

for MeJA-elicited and mock-elicited cultures were compared to obtain a fold difference 

in the amount of lignin. 

4.2.7 Estimation of total flavonoid content 

Flavonoids were extracted and determined using the aluminum chloride (AlCl3) method, 

as described in (Zhishen et al. 1999). Briefly, 250 mg of dried cells (dried overnight in 

oven at 60 oC) were extracted with 1 mL of 80% methanol using sonication in water bath 

for 30 min. Samples were then centrifuged at 10,000 x g and supernatants collected. 1 mL 

of distilled water was added to 250 L of methanol extract, followed by addition of 75 
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L of 5% NaNO2 (sodium nitrite). The sample was divided into two parts with equal 

volumes of approximately 660 L each. After 5 min. 37.5 l of 10 % AlCl3 were added 

to one aliquot, and 37.5 l of distilled water were added to the other (blank). After one 

minute, 250 L of NaOH were added to each aliquot and the total volume was raised to 

1.25 mL with distilled water. The solution was well mixed and the absorbance was 

measured against the blank at 510 nm using a spectrophotometer. 

4.3 Results and discussion 

4.3.1 Generation of a base transcriptome for Taxus cultured cells 

A base transcriptome of Taxus cell cultures (T. cuspidata P93AF cell line) in paclitaxel-

accumulating (with MeJA elicitation) and nonaccumulating (without MeJA elicitation) 

states by de novo assembly of 454 and Illumina sequencing reads was generated. A total 

of 48,614 contigs were generated with N50 contig length of 873 bp. Contig assembly, 

annotation and gene ontology analysis was done as described in Materials and Methods. 

The base transcriptome consists of all the genes expressed in Taxus cultures through a 

time period spanning 15 days post elicitation. Corresponding metabolic profiles for 

baccatin III and paclitaxel are shown in Figure 4.1. Detectable levels of baccatin III were 

seen after four days post-elicitation. Accumulation peaked at day 10 and then decreased, 

concurring with previous reports (Nims et al. 2006). Paclitaxel accumulation was 

detected after five days post-elicitation, increased until day 12, and then leveled off.  
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4.3.2 MeJA-mediated upregulation of taxane biosynthetic pathway  

Cultures with different aggregation characteristics (small and large aggregate cultures, 

Figure 4.2 A) in both the MeJA-elicited and mock-elicited state were used to generate 

cultures with varying biosynthetic capabilities (Patil et al. 2012). RNA was isolated at 18 

and 72 hours post-elicitation from these cultures (hereafter referred to as Small +MeJA, 

Small mock, Large +MeJA, and Large mock) to understand which genes and pathways 

were influenced by MeJA elicitation. As taxane biosynthetic pathway genes peak at 

approximately 18 hours post elicitation (Patil et al. 2012; Nims et al. 2006), we chose this 

time point to analyze global gene expression profiles between the MeJA-elicited and 

mock-elicited small and large aggregate cultures. The 72 hour time point was chosen to 

uncover genes involved when paclitaxel accumulation begins (Figure 4.1 and (Nims et al. 

2006)). This time point allows examination of global expression patterns of genes 

involved in events such as transport and degradation.  Analysis revealed approximately 

489 contigs that were annotated as “paclitaxel biosynthetic process (GO: 0042617)” 

genes. Multiple contigs can represent an individual taxane pathway gene, and therefore 

far fewer than 489 unique “paclitaxel biosynthetic process” genes are expressed in our 

cultures. Addition of MeJA induced expression of most paclitaxel biosynthetic process 

contigs (Figure 4.3). As indicated in the heat map (Figure 4.3), multiple individual 

contigs form clusters with similar expression patterns. These clusters may reflect 

individual genes that are represented by multiple contigs, or may represent multiple genes 

with similar expression patterns. Figure 4.2 shows the time course of taxane metabolite 

accumulation (10-deacetylbaccatin III, baccatin III and paclitaxel) in both small and large 

aggregate cultures post MeJA elicitation. Throughout the culture period, mock-elicited 
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cultures did not produce taxanes at detectable levels via UPLC. These taxane metabolite 

data positively correlate with the taxane biosynthetic pathway gene expression profiles.  

4.3.3 MeJA-mediated upregulation of phenylpropanoid pathway 

Along with the paclitaxel biosynthesis pathway, MeJA elicitation upregulated the 

phenylpropanoid pathway (Figure 4.4) in T. cuspidata P93AF cell cultures. Contigs 

representing genes involved in all steps of the phenylpropanoid pathway were 

significantly upregulated (data not shown). MeJA is known to induce multiple secondary 

metabolic pathways within the same culture, e.g., phenylpropanoid and triterpene 

pathway gene transcripts in Medicago truncula cells (Suzuki et al. 2005), and nicotine 

and phenylpropanoid pathway gene transcripts in tobacco cells (Galis et al. 2006). To 

validate the upregulation of phenylpropanoid pathway gene expression, relevant 

metabolites such as lignin and total flavonoids were measured in these cultures. 

Significant lignin accumulated in MeJA-elicited Taxus cultures, as indicated by a positive 

phloroglucinol-HCl test (Figure 4.5B, C, D, and E). A quantitative acetyl bromide assay 

revealed that MeJA-elicited cultures accumulate ~ 23% more lignin than mock-elicited 

cultures (Figure 4.5A). The absolute value of lignin content in the cultures was 

determined by the % ABSL method described in Foster et al. (2010), using  a conversion 

factor for Arabidopsis. The lignin content values in mock-elicited cultures was ~ 190 

mg/g biomass, whereas MeJA-elicited cultures had ~ 234 mg/g biomass (~ 23 % 

increase). These values are well within the range observed for other plant species (39.1 – 

312.7 mg lignin/g biomass) as determined by % ABSL method (Fukushima and Hatfield 

2001). An increase in lignin content from 19 mg/g (control cultures) to 74 mg/g (elicitor-

treated cultures) was observed in spruce cell cultures treated with a fungal elicitor, using 
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the thioacidolysis method to determine lignin (Lange et al. 1995). The total flavonoid 

content, quantified by a spectrophotometric method, was considerably higher (~ 122 %) 

in MeJA-elicited cultures as compared to mock-elicited cultures (Fig 4.5A). These data 

confirm an increase in flux through phenylpropanoid pathways upon MeJA addition, a 

result which was not previously observed in cultured Taxus cells.  Phenylalanine is a 

precursor to both the taxane and phenylpropanoid pathways. Increasing the precursor 

pools of phenylalanine, and redirecting carbon flux towards taxane biosynthesis by 

silencing target genes in the phenylpropanoid pathway (Figure 4.6) may allow for greater 

availability of phenylalanine for paclitaxel biosynthesis.  

4.3.4 Increased mean aggregate size upon MeJA elicitation potentially linked to 

upregulation of phenylpropanoid metabolism   

The mean aggregate size of the MeJA-elicited cultures increased after elicitation and 

remained higher throughout the course of the experiment in comparison to mock-elicited 

cultures (Figure 4.7). Jasmonic acid (JA) and MeJA have been shown to cause cell 

swelling and expansion in mature tuber discs (Takahashi et al. 1994), tuber buds (Abdala 

et al. 1999) and polyphenolic parenchyma (PP) cells in conifer trees (Hudgins and 

Franceschi 2004). One mechanism suggested was that MeJA may disrupt cortical 

microtubules, which leads to cell expansion; however such disruption was seen only in 

small fraction of MeJA-treated cells (Matsuki et al. 1992; Abe et al. 1990). Another 

possible mechanism is an increase in the amount of cell wall polysaccharides, which has 

been observed in potato cells in response to JA (Takahashi et al. 1995). Lignin 

incorporation leading to thickened cell walls has also been observed in fungal-elicited 

cell cultures (Eberhardt et al. 1993; Campbell and Ellis 1992). Similarly, increases in 
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production of monolignols and oligolignols, building blocks of lignin (through 

upregulation of the phenylpropanoid pathway), has been documented in MeJA-elicited 

Arabidopsis cultures; however, changes in cellular morphology were not reported 

(Pauwels et al. 2008). Lignins and ferulic acids, which are also derivatives of the 

phenylpropanoid pathway, are known to form ferulate-polysaccharide-lignin complexes, 

which cross-link the cell wall (reviewed in (de O. Buanafina 2009)). It has been observed 

that during stationary phase, cells get released from aggregates and there is reduced cell 

division, which leads to a decrease in mean aggregate size (Capataz-Tafur et al. 2011; 

Mavituna and Park 1987; Kolewe et al. 2010). The presence of cross-linking within the 

cell wall can cause stiffening, which may inhibit cell release. Upregulation of 

phenylpropanoid pathway genes and some of the metabolites can result in generation of 

such ferulate-polysaccharide-lignin complexes in MeJA-elicted Taxus cultures, resulting 

in stronger cell aggregates. Mock-elicited cultures would lack such complexes, resulting 

in cellular release from aggregates at stationary phase, leading to smaller culture mean 

aggregate size.   

4.3.5 Further analysis of transcriptional patterns in cultures with different 

morphological and metabolic patterns  

In order to improve our understanding about the pathways that affect paclitaxel levels 

within Taxus cultured cells, we are further investigating the transcriptional difference 

between the large and small aggregate cultures. Preliminary global gene expression 

results indicate that a number of transcripts are differentially upregulated (Figure 4.8A) 

and downregulated (Figure 4.8B) in these cultures at 18 and 72 hours post-elicitation. 

The differential transcripts obtained from these cultured cells can be linked to available 
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pathway databases (e.g., KEGG or MetaCyc) to draw conclusions as to which pathways 

are active during a particular phenotypic state; this work is ongoing by Dr. Lenka. Such a 

global comparison of cultures with different bulk paclitaxel/taxane accumulation patterns 

will provide a superior understanding of Taxus cultures at the level of transcription and 

will certainly provide new targets for metabolic engineering, as evidenced by the 

phenylpropanoid example described above.  

4.4 Conclusions 

The transcriptome of cultured Taxus cells has been sequenced, de novo assembled and 

characterized, providing a valuable resource for developing a better understanding of the 

Taxus genome. Along with the paclitaxel biosynthetic pathway, the phenylpropanoid 

pathway is also upregulated upon elicitation with MeJA, supported by increased lignin 

and flavonoid accumulation in MeJA-elicited cultures as compared to mock-elicited 

cultures. Although detailed analysis of cultures with differential metabolic and 

aggregation phenotypes is still pending, preliminary results indicate several transcripts 

which are differentially regulated in these phenotypes. The annotated transcriptome 

sequences and culture-specific gene expression profiles will illuminate our understanding 

of global transcriptional control of paclitaxel biosynthesis, and its cooperating and 

competing pathways in Taxus cultures for enabling targeted metabolic engineering.  
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Figure 4.1 Time course of taxane accumulation after MeJA elicitation in T. cuspidata 

P93AF cultures. Cultures were either elicited with 150m MeJA or mock-elicited on day 

7 of the culture period. The data represent two biological replicates for each taxane at 

each timepoint. Circles represent paclitaxel. Triangles represent baccatin III.  
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Figure 4.2 Profiles of taxane accumulation in small and large aggregate cultures over a 

three-week period post MeJA-elicitation. (A) Distributions for small aggregate cultures 

and large aggregate cultures on day 7, prior to MeJA elicitation. Each distribution curve 

represents the average distribution measured using a Coulter counter for three replicate 

flasks. Time course of 10-deacetylbaccatin III (B), baccatin III (C), and paclitaxel (D) 

accumulation in small and large aggregate cultures post MeJA elicitation. Reported 

values are the average of three replicate flasks and error bars represent standard error of 

the mean. Throughout the culture period, mock-elicited cultures did not produce taxanes 

at detectable levels.  
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Figure 4.3 Heat map showing the hierarchical clustering of differentially expressed 

paclitaxel biosynthesis genes displayed by average linkage and Euclidean distance as a 

measurement of similarity. The heat map was generated by Dr. Lenka using the 

CIMminer software (http://discover.nci.nih.gov/cimminer/). 
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Figure 4.4 Outline of phenylpropanoid biosynthesis pathways. Enzymes are reported 

with a three letter code: PAL, phenylalanine ammonia lyase; C4H, cinnamate 4-

hydroxylase; 4CL, 4-coumarate CoA ligase; C3H, p-coumaroyl shikimate/quinate 3-

hydroxylase; COMT, caffeic acid/5-hydroxyferulic acid O-methyltransferase; F5H 

ferulate 5-hydroxylase; CCR, (hydroxy)cinnamoyl CoA reductase; CAD, (hydroxy) 

cinnamyl alcohol dehydrogenase; CHS, chalcone synthase; CHI, chalcone isomerase; 

FLS, flavonol synthase; DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin 

synthase; LDOX, leucoanthocyanidin dioxygenase; UFGT, UDP glucose-flavonoid 3-o-

glucosyl transferase. Contigs representing all the genes of this pathway were upregulated 

in MeJA-elicited condition.  
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Figure 4.5 Increased phenylpropanoids upon elicitation with MeJA. (A) Total flavonoid 

content was measured using the aluminum chloride method, and lignin was measured 

using the acetyl bromide soluble lignin method. Fold change represents the percentage 

increase in MeJA-elicited samples relative to mock-elicited samples at day 13 of the 

culture period (6 days post-elicitation). Reported values are the average of three replicate 

flasks and error bars represent standard error of the mean. Phloroglucinol-HCl staining of 

MeJA-elicited cultures, (B) and (D); and control cultures, (C) and (E). Pink/red color 

indicates the presence of lignin as measured by phloroglucinol-HCl staining.  
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Figure 4.6 Effect of MeJA addition on mean aggregate size of the culture. Cultures were 

either elicited with 150 μM MeJA or mock-elicited on day 7 of the culture period. 

Reported values are the average of three replicate flasks and error bars represent standard 

error of the mean.  
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Figure 4.7 Overview of paclitaxel biosynthesis and interacting pathways. Dotted arrows 

represent multiple steps. Thick arrows represent multiple steps, with some unknown 

reactions. DXS:1-deoxy-D-xylulose-5-phosphate (DXP) synthase, DXR: DXP 

reductoisomerase, HDR: 1-hydroxy-2-methyl-butenyl 4- diphosphate reductase, IPP: 

isopentenyl pyrophosphate, DMAPP: dimethylallyl pyrophosphate, GGPPS: 
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geranylgeranyl diphosphate synthase, TASY: taxadiene synthase, T5αH: taxadiene 5α 

hydroxylase, TAT: taxadienol acetyl transferase, T13αH: taxadienol 13α hydroxylase, 

T10βH: taxane 10β hydroxylase, T14βH: taxoid 14β-hydroxylase, DBBT: taxane 2α-O-

benzoyl transferase, DBAT: 10 deacetylbaccatin III-10-O-acetyltransferase, BAPT: 

baccatin III: 3-amino, 3-phenylpropanoyltransferase, DBTNBT: 3’-N-debenzoyl-2-

deoxytaxol-N-benzoyltransferase, C4H:cinnamate-4- hydroxylase, PAL: phenylalanine 

ammonia lyase, PAM: phenylalanine aminomutase.  
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Figure 4.8 Venn diagrams representing overlap between upregulated genes upon 

elicitation with MeJA. (A) and downregulated (B) in the different conditions (Small 

MeJA 18h, Small mock 18h, Small MeJA 72h, Small mock 72h, Big MeJA 18h, Big 

mock 18h, Big MeJA 72h, Big mock 72h). The large aggregate cultures have been 

referred to as big aggregate cultures in this figure. Venn diagrams were generated by Dr. 

Lenka using the ASAP-utilities add on for Excel (http://www.asap-utilities.com/).     
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CHAPTER 5                                                                               

METHYL JASMONATE REPRESSES GROWTH AND AFFECTS 

CELL CYCLE PROGRESSION IN CULTURED TAXUS CELLS 

5.1 Introduction 

Dedifferentiated plant cell suspension cultures provide a regulated environment 

independent of geographical and external environmental factors for the synthesis of 

plant-based secondary metabolites. Cell suspension culture offers a distinct advantage 

over tissue or organ culture as existing bioprocess technology developed for microbial 

and mammalian cells can be easily adapted to plant cells (Kieran et al. 1997). The use of 

elicitors in plant cell suspension culture can both increase product yields and 

consequently decrease the long fermentation times, facilitating the use of plant cell 

culture technology in commercial applications. Jasmonic acid (JA) and its methyl ester, 

methyl jasmonate (MeJA) have been widely used as elicitors to induce secondary 

metabolite production in a variety of plant cell culture systems (Gundlach et al. 1992; 

Lijavetzky et al. 2008; Pauwels et al. 2008; Yazaki et al. 1997). In particular, jasmonates 

have been effective at enhancing production of the anticancer drug paclitaxel (Taxol®) in 

a variety of Taxus species and cell cultures (Ketchum et al. 1999; Yukimune et al. 1996; 

Bonfill et al. 2006). Paclitaxel is widely used for treatment of breast, ovarian and lung 

cancers as well as AIDS-related Kaposi’s sarcoma, and is being investigated for use in 

the treatment of neurological disorders and in post-surgery heart patients (Vongpaseuth 

and Roberts 2007). Paclitaxel titers of up to 900 mg/L have been achieved in industrial 

environments using a combination of MeJA elicitation and cell culture optimization 

strategies (Bringi V 2007).  
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Increased secondary metabolite accumulation upon MeJA elicitation is often 

accompanied with concurrent decreases in culture growth (Thanh et al. 2005; Kim et al. 

2005; Zhang and Turner 2008). MeJA has been shown to broadly induce defense 

responses and secondary metabolism in plants (Reymond and Farmer 1998; Seo et al. 

2001; Farmer and Ryan 1990), which diverts carbon resource allocation from primary 

metabolism (Logemann et al. 1995; Pauwels et al. 2009). Recent studies indicate that 

MeJA-mediated growth inhibition is associated with perturbations in mitochondrial 

membrane integrity along with decreases in the biosynthesis of ATP (Ruiz-May et al. 

2011) and proteins related to energy metabolism (Cho et al. 2007).  

At a mechanistic level, MeJA has demonstrated an inhibitory effect on growth at 

the level of the cell cycle (Pauwels et al. 2008; Swiatek et al. 2002). Most studies to 

understand the effect of jasmonates on the cell cycle have been done in angiosperms, 

such as Arabidopsis thaliana and tobacco BY-2 cell suspension cultures (Pauwels et al. 

2008; Swiatek et al. 2002). Exogenously applied MeJA blocks the G1/S and G2/M 

transitions in the cell cycle of cultured tobacco BY-2 cells (Swiatek et al. 2002). 

Micromolar concentrations of MeJA added to A. thaliana suspension cultures repressed 

the activation of M phase genes, arresting cells in G2 phase (Pauwels et al. 2008). 

Genomic information and established protocols for synchronizing cell cultures 

(Kumagai-Sano et al. 2006; Menges et al. 2002) to understand cell cycle events are 

readily available for these plant species, facilitating mechanistic studies. In contrast, 

gymnosperms such as Taxus have not been as well studied with regard to cell cycle 

progression and the mechanism of MeJA-repressed growth. 
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While a number of studies have reported increased taxane biosynthetic pathway 

gene products upon MeJA elicitation (Nims et al. 2006; Patil et al. 2012; Jennewein et al. 

2004), there have been few reports regarding the role of MeJA on growth inhibition and 

cell cycle progression in Taxus cultures (Kim et al. 2005; Naill and Roberts 2005a). In 

the present study we investigate the influence of MeJA on both cell growth and viability 

of Taxus cells in batch culture. The effect of MeJA on cell cycle progression was 

determined using asynchronous Taxus cuspidata cells. Actively dividing cells were 

quantified and cell cycle kinetics were determined by cumulative and pulse-labeling 

using 5-ethynyl-2’-deoxyuridine (EdU), a nucleoside analog of thymidine. Recently 

obtained 454 and Illumina transcriptome sequencing data for both MeJA-elicited and 

mock-elicited cultures were used to obtain the expression status of cell cycle-associated 

genes in the asynchronous T. cuspidata cultured cells. There is currently no sequence 

information on cell cycle regulated genes derived from this division of the plant kingdom, 

and hence these studies provide the first insight into cell cycle control upon elicitation 

with MeJA. Because the mechanism of action of MeJA has not been investigated to date 

for gymnosperms such as Taxus, strategies to promote growth, while still enhancing 

secondary metabolite synthesis for bioprocessing, have not been identified or tested. The 

results here show that MeJA-induced growth repression in Taxus growth occurs at the 

level of cell cycle, providing important mechanistic information on the influence of 

MeJA on Taxus cell proliferation.  
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5.2 Materials and methods 

5.2.1 Cell culture maintenance and MeJA elicitation  

The T. cuspidata P93AF cell line was provided by the U.S. Plant Soil and Nutrition 

Laboratory (Ithaca, NY), and maintained in our laboratory on gyratory shakers in the 

dark at 125 rpm and 23 0C. Cell cultures were maintained in 125 mL, 250 mL or 500 mL 

glass Erlenmeyer flasks with Bellco (Vineland, NJ) foam closures. Every two weeks, 

cells were subcultured into growth medium, which consisted of Gamborg's B5 basal salts 

with 20 g/L sucrose, supplemented with 2.7 μM naphthalene acetic acid (NAA) and 0.1 

μM benzyladenine (BA). 150 mg/L of citric acid, 150 mg/L ascorbic acid, and 6.0 mM 

glutamine were filter-sterilized and added post-autoclave. For elicitation, 40 L of 100% 

methyl jasmonate (MeJA) was added to 460 L of 95% (v/v) ethanol and 500 L 

nanopure water. This solution was vortexed and then filtered through a 0.2 m Gelman 

PVDF filter into a sterile container. This solution was then added to the cultures on day 7 

post-transfer to yield a final concentration of 150 M. The foam closures were covered 

with aluminum foil to prevent evaporation. Mock-elicited cultures were generated by 

using equivalent amounts of sterile water instead of MeJA. All chemicals were purchased 

from Sigma-Aldrich unless otherwise specified. 

5.2.2 Biomass and taxane content measurements  

A Multisizer 3™ Coulter counter equipped with a 2000 μm aperture (Beckman Coulter, 

Brea, CA, USA) was used to determine total biomass dry weight based on previously 

published correlations (Kolewe et al. 2010). For analysis, two x 2 mL samples of well-
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mixed culture broth (cells plus media) were taken from each flask. Taxane content in 

mock-elicited and MeJA-elicited cultures were analyzed at several time points post-

elicitation using Ultra Performance Liquid Chromatography (UPLC), as described 

previously (Patil et al. 2012). 

5.2.3 Viability analysis 

Qualitative analysis of viability was performed by staining with fluorescein diacetate 

(FDA) and propidium iodide (PI). 500 L of well-mixed culture was sampled, to which 

10 L of a 0.5 mg/mL FDA stock solution and 4 L of a 1 mg/mL PI stock solution was 

added. After a 10 min incubation in the dark, supernatant was removed, and 500 L of 

fresh Gamborg’s B5 medium was added. 100 L of cell suspension was observed under a 

fluorescence microscope. A Zeiss Axiovert 200 inverted microscope fitted with a blue 

filter set (excitation at 450–490 nm and emission above 515 nm) for FDA fluorescence 

and a green filter set (excitation at 530–560 nm and emission above 580 nm) for PI 

fluorescence was used. FDA detects living cells, whereas PI detects non-viable cells. 

FDA is a non-fluorescent molecule that is able to diffuse into a cell. Once in a viable cell, 

intercellular esterases hydrolyse FDA to fluorescein, a highly fluorescent molecule. 

Viable cells retain the fluorescein and emit fluorescence, whereas dead cells do not 

fluoresce (Skehan P. 2002; Widholm 1972). Esterases released from unviable cells can 

result in background fluorescence. PI is a hydrophilic dye that cannot penetrate intact cell 

membranes. However, it can diffuse into cells with compromised membranes and 

intercalate with DNA, causing cells to fluoresce, indicating cell death.   
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5.2.4. DNA laddering assay 

Total genomic DNA was extracted following the method of Dellaporta et al. (1983) with 

a slight modification. Fresh cells (0.2 g) were ground in liquid nitrogen with mortar and 

pestle. Grinded cells were transferred to a sterilized Eppendorf tube and dissolved in 600 

µL buffer (pH 8.0) consisting of NaCl (100 mM), Tris/HCl (50 mM), EDTA (25 mM), 

sodium dodecyl sulfate (1%, w/v), and β-mercaptoethanol (10 mM). The mixture was 

shaken vigorously through inversion and incubated in a water bath at 65 oC for 10 min. 

250 µl of potassium acetate (5 M) was added to the mixture, which was incubated on ice 

for 30 min followed by centrifugation at 10,000g  for 10 min at 4 oC. The supernatant was 

collected and mixed with equal volume of 100% isopropanol (approximately 600 µL). 

The precipitate formed was centrifuged, washed with 70% (v/v) ethanol, and redissolved 

in 200 µl of buffer (10 mM Tris/HCl, 5 mM EDTA, pH 8.0). Further precipitation was 

achieved by addition of 20 µL sodium acetate (3 M, pH 5.2), followed by 500 µL of 

100% (v/v) ethanol and gentle inversion to completely mix the two phases. Precipitates 

were centrifuged, washed with 70% (v/v) ethanol and then dried at room temperature. 

Pellets were resuspended in 40 µL buffer (10 mM Tris/HCL, 1 mM EDTA, pH 8.0). 

RNAse A (100 µg/mL) was added to digest RNA at 37 oC for 30 min. DNA 

concentrations were quantified using a Nanodrop 1000 spectrophotometer (Thermo 

Scientific, Wilmington, DE, USA). For analysis of DNA laddering, equal amounts of 

DNA were run on a 1.5 % (w/v) agarose gel stained with ethidium bromide (0.5 g/mL), 

and observed under a UV transilluminator. 1 kbp and 100 bp DNA ladders (New England 

Biolabs) were used as molecular weight markers.  
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5.2.5 Isolation and fixation of intact nuclei 

Approximately 0.5 g of biomass (about 3-4 ml of well mixed culture broth) were filtered 

through Miracloth® (Calbiochem, La Jolla, CA), and transferred to a petri dish to isolate 

nuclei (Galbraith et al. 1983; Gaurav et al. 2010). 1 mL of Galbraith buffer [45 mM 

MgCl2, 30 mM sodium citrate, 20 mM 3-(N-morpholino)-propanesulfonic acid (MOPS), 

0.3 % (w/v) Triton X-100, pH 7.0] at 4 oC was added to the biomass sample, and the 

biomass was chopped approximately 500 times with a sharp razor blade to disrupt cell 

walls and allow nuclei to be released. An additional 2 mL of Galbraith buffer was added 

to resuspend the chopped biomass, and this suspension was successively filtered over 80 

μm and 30 μm nylon mesh (SmallParts, Inc., Miramar, FL). Post-filtration, nuclei were 

fixed with 1% paraformaldehyde (dissolved in Galbraith’s buffer) at 4 oC for 30 min. 

Fixed nuclei were washed twice with Galbraith’s buffer by centrifuging at 700 g for 4 

min at 4 oC. After washing, nuclei were resuspended in 1 mL of Galbraith’s buffer and 

stored at 4 oC until further analysis. 

5.2.6 Distribution of cells in different phases of the cell cycle  

Triplicate samples of MeJA-elicited and mock-elicited cultures were sampled and nuclei 

were isolated at several time points post-elicitation as described above. 1 mL of the 

nuclei solution were aliquoted, and 50 L of 1 mg/mL RNAse and 50 L of 1 mg/mL PI 

were added. Samples were stained for at least 30 min on ice before flow cytometric 

analysis (see below).  
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5.2.7 EdU incorporation assay 

MeJA-elicited and mock-elicited Taxus cell cultures were maintained in medium 

containing 10 M EdU for the required incubation period (see cumulative and pulse 

labeling below). Nuclei were isolated from the EdU-labeled cultures, fixed and incubated 

with 250 L EdU detection cocktail (Click-iT EdU Alexa Fluor 488 Flow Cytometry 

Assay kit, cat no: C35002, Invitrogen, Carlsbad, CA) at room temperature for 30 min as 

per manufacturer’s protocol, with slight modifications. For one sample reaction (250 μL), 

the following amounts of kit components were used:  219 μL of 1X Click-iT Reaction 

buffer (Component G, diluted to 1X in Galbraith’s buffer), 5 μL Copper (II) sulfate 

solution (Component H, 100 mM aqueous CuSO4), 1.25 μL Alexa Fluor 488 azide 

(Component B) and 25 μL 1X buffer additive (component I, diluted to 1X in Galbraith’s 

buffer).  Post incubation, 2 mL of Galbraith’s buffer were added to the samples as a 

wash; samples were centrifuged at 700 g and 4 ºC for 4 min, and resuspended in 0.5 mL 

Galbraith’s buffer for subsequent staining and analysis. 1 mg/mL of RNAse A was added 

followed by 1 mg/mL 7-aminoactinomycin D (7-AAD) (Invitrogen, Carlsbad, CA). 

Samples were incubated for 60 min at room temperature before flow cytometric analysis 

(see below). 

5.2.8 Pulse labeling of MeJA-elicited and mock-elicited cultures 

MeJA-elicited and mock-elicited cultures on day 5 of the culture period were pulse-

labeled for 4 hours with 10 M EdU. Cells were collected by centrifugation at 800 g for 5 

min, and washed with conditioned medium. Conditioned medium was obtained by 

decanting settled MeJA-elicited and mock-elicited cell suspensions incubated without 
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EdU under the same conditions. The wash procedure was repeated two more times to 

eliminate excess EdU. The volume was then adjusted with conditioned medium to that 

before washing, and cultures were continued in the absence of EdU. Samples of pulse-

labeled cells were taken periodically over 48 hours and processed for EdU analysis. A 

series of bivariate DNA-EdU distributions at various times after pulse-labeling was 

obtained using flow cytometry (see below). 

5.2.9 Cumulative labeling of MeJA-elicited and mock-elicited cultures  

MeJA-elicited and mock-elicited cultures on day 7 of the culture period were incubated 

with 10 M EdU. After EdU addition, nuclei were isolated and fixed every 24 hours for 

the following 5 days. Isolated nuclei were stained for EdU (Alexa Fluor 488) and DNA 

content (7-AAD) (see above) and analyzed via flow cytometry (see below). 

5.2.10 Flow cytometry  

For nuclei analysis, a Becton Dickinson (San Jose, CA) LSRII analytical flow cytometer 

equipped with an argon laser tuned to 488 nm with the standard filter set-up was used. A 

minimum of 5000 events were collected in the gated region of a forward scatter and side 

scatter plot corresponding to nuclei. The scatter plots were manually gated to exclude 

debris and doublets. For cell cycle analysis, forward scatter and side scatter were 

collected on a logarithmic scale, and PI fluorescence was collected on a linear scale. For 

cumulative- and pulse-EdU labeling analysis, a bivariate plot of DNA-EdU was obtained. 

Alexa Fluor 488 EdU intensity was detected between 515-545 nm. For detection of 7-

AAD intensity (DNA content) the 663-677 nm emission range was used with the 

standard filter sets available on the LSRII. The boundary of EdU-labeled nuclei in 
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biparametric plots was obtained by subtracting the background using a non-EdU treated 

culture.    

 5.2.11Cell cycle-associated contig generation, annotation and expression analysis  

RNA was isolated from T. cuspidata P93AF cells (MeJA-elicited and mock-elicited) 

every 24 hours post-elicitation over a time period spanning 22 days of the culture period. 

Equal amounts of total RNA from each culture were pooled from each time point for 454 

sequencing. After rRNA depletion and fragmentation, a transcriptome library was 

generated by sequencing the pooled RNA sample on one full PicoTiterPlate (PTP) using 

the 454 Genome Sequencer FLX Titanium System™, following the manufacturer's 

instructions (Roche, Branford, CT).  In addition, 50 bp paired end mRNA-sequencing 

libraries were prepared from both MeJA-elicited and mock-elicited T. cuspidata P93AF 

cells at 18 and 72 hour time points using the Illumina HiSeq 2000 platform (Illumina, 

Inc.  San Diego, CA). Reads from both 454 and Illumina sequencing libraries were used 

in de novo assembly to generate contigs using CLC genomics workbench (CLC Bio, 

Aarhus, Denmark) by setting A, C, G, T voting method for conflict resolution. A total of 

48,614 contigs were generated (>200 bp, avg. >100 reads/contig, >50X coverage) with 

N50 contig length of 873 bp. These contigs were annotated using Blast2GO default 

parameters (Conesa et al. 2005). Based on the Blast2GO annotation, 149 contigs 

representing known cell cycle-associated genes were identified (Table S1). Paired end 

reads from each Illumina library were mapped onto the contigs using CLC Genomics 

Workbench software.  Gene expression for both MeJA-elicited and mock-elicited P93AF 

cells at the 18 and 72 hour post-elicitation time points were calculated by using the 

RPKM (Reads per kb per million reads) method (Mortazavi et al. 2008). To identify 
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differentially expressed genes, the proportions-based test was used between any two 

RNA-seq libraries under comparison with a p-value <0 .05 (Kal et al. 1999). To calculate 

the fold change between any two conditions, quantile normalization of the RPKM values 

was used. 

5.3 Results  

5.3.1 MeJA represses cell growth without significant changes in necrosis and 

apoptosis 

Inhibition of growth after MeJA elicitation has been observed in a variety of Taxus 

species and cell lines (Laskaris et al. 1999; Kim et al. 2004; Yukimune et al. 1996; 

Bonfill et al. 2006), as well as other plant cell culture systems (Goossens et al. 2003; 

Thanh et al. 2005). Although most reports indicate a decrease in Taxus cell growth upon 

MeJA elicitation, some data show no difference in cell growth between MeJA-elicited 

and non-elicited Taxus cell lines (Bonfill et al. 2007; Ketchum et al. 1999). Upon 

addition of MeJA on day 7 of the culture period,  T. cuspidata P93AF cell cultures clearly 

demonstrate repressed growth (Figure 5.1A) and increased taxane production (Figure 

5.1B) as compared to mock-elicited cultures.  

Subsequently, we examined the viability of cultures using fluorescein diacetate 

(FDA) and propidium iodide (PI), to indicate both viable and non-viable cells, 

respectively. Eight time points were examined spanning 24 days of the culture period; 

representative data are shown in Figures 1c and 1d. Both MeJA-elicited and mock-

elicited cultures exhibited approximately 90% to 95% viability until day 16 of the culture 

period (9d post-elicitation) (Figure 5.1C and 5.1D). At later time points, the FDA 
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fluorescence intensity decreased in both MeJA-elicited and mock-elicited cultures, 

implying a decrease in metabolic activity for all cultures (Li et al. 2011). More PI 

fluorescent cells were observed in MeJA-elicited cultures as compared to mock-elicited 

cultures on days 21 and 24 of the culture period (14d and 17d post-elicitation) (Figures 1c 

and 1d), indicating compromised cell membrane integrity and the beginning of cell 

necrosis in MeJA-elicited cultures. There was a time lag between evidence of reduced 

viability and a measurable decrease in biomass (dry weight), as has been observed with 

other Taxus cell lines (Kim et al. 2005; Naill and Roberts 2005a). 

 A hallmark feature of apoptotic cell death is the fragmentation of DNA into 

oligonucleosomal fragments of approximately 180-200 bp or multiples thereof, giving 

rise to a ladder during gel electrophoresis of genomic DNA (Yuan et al. 2002; Ryerson 

and Heath 1996). Genomic DNA was isolated from MeJA-elicited and mock-elicited 

cultures on day 11, day 24 and day 30 of the culture period. A DNA laddering pattern 

was not observed until day 30 of the culture period (23d post-elicitation) in mock-elicited 

and MeJA-elicited cultures (Figure 5.2), indicating that apoptosis is not a direct 

consequence of MeJA elicitation. Repression of cell growth thus occurs before significant 

necrosis and apoptosis begins in MeJA-elicited Taxus cultures, which necessitates further 

investigation into the cell cycle to understand the role of MeJA in growth inhibition.  

5.3.2 MeJA causes a transient increase in G2 phase cells and a decrease in S phase 

cells, followed by an arrest at G0/G1 in asynchronous Taxus suspension cultures  

Nuclei were isolated from mock-elicited and MeJA-elicited cultures and stained with PI 

for flow cytometric-based DNA quantification. A flow cytometric DNA histogram of 
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Taxus nuclei is shown in Figure 5.3D for reference. All data presented were extracted 

from similar histograms. The percentage of cells in the different cell cycle phases were 

calculated using the Watson Pragmatic Model of FlowJo software (v 7.6, Tree Star, Inc.). 

The proportion of cells in each cell cycle phase in mock-elicited and MeJA-elicited 

cultures is shown in Figure 5.3 (A-C). Within the first 24 hours post-elicitation, MeJA-

elicited cultures had more cells in G2 phase (18% in MeJA-elicited, 13% in mock-elicited 

cultures) and fewer cells in S phase (10% in MeJA-elicited, 14.5% in mock-elicited 

cultures) when compared to mock-elicited cultures. This trend was confirmed by further 

analyzing cultures at shorter time increments before 24 hours post-elicitation (Additional 

information, Figure 5.7). After 72 hours post-elicitation the percentage of cells in both G2 

and S phases decreased and the distributions shifted towards a higher percentage of cells 

in G0/G1. An increased G0/G1 cell population post-MeJA-elicitation has also been 

observed with another Taxus cell suspension line (Naill and Roberts 2005a).  

5.3.3 MeJA slows down the cell cycle  

5-ethynyl-2’-deoxyuridine (EdU) pulse labeling was used to investigate the effect of 

MeJA on cell cycle kinetics. A four-hour EdU pulse was provided to both MeJA-elicited 

and mock-elicited cultures. As cells only in S-phase are able to incorporate EdU, labeled 

cells were quantified as they pass through different phases of the cell cycle (S to G2/M to 

G0/G1) using the bivariate DNA-EdU distributions obtained with flow cytometry. 

Approximately 10% EdU incorporation was used for pulse labeling, which allows enough 

cells to be labeled for accurate quantification using flow cytometry. A similar percentage 

of 5-bromo-2'-deoxyuridine (BrDU) incorporation was used successfully in pulse 

labeling studies of Solanum aviculare cells (Yanpaisan et al. 1998). The G0/G1 peak in 
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mock-elicited cultures appeared 9 hours after the EdU pulse; whereas it took 24 hours 

after the EdU pulse to observe the G0/G1 peak in MeJA-elicited cultures (Figure 5.4). 

This later appearance of the G0/G1 peak in MeJA-elicited cultures clearly demonstrates 

that MeJA repressed cell cycle progression in Taxus cultures. However, the appearance of 

the G0/G1 peak in MeJA-elicited cultures indicates that the cell cycle is not arrested at 

the G2/M transition.  

5.3.4 MeJA decreases the number of cycling cells 

Cumulative EdU incorporation in MeJA-elicited and mock-elicited Taxus cultures is 

shown in Figure 5.5. Five days after incubation with EdU, the number of cells 

incorporating EdU in mock-elicited cultures was approximately 45% of the total cell 

population, whereas in MeJA-elicited cultures it was only 12% of the total cell 

population. These data indicate that MeJA addition results in fewer cells participating in 

DNA synthesis, hence a lower number of actively cycling cells in culture. Repression of 

DNA synthesis and blockage of cells in G1 and G2 phases of the cell cycle upon MeJA-

elicitation have also been observed in synchronized tobacco BY-2 cell cultures (Swiatek 

et al. 2002).  

5.3.5 MeJA represses a number of genes participating in cell cycle progression  

Using a combination of deep sequencing technologies and Blast2GO annotation (see 

Experimental Methods for details), 149 cell cycle-associated contigs (referred to as cell 

cycle-associated genes from here onwards) were identified in the transcriptome of mRNA 

isolated from cultured Taxus cells (Additional information Table 5.5). A comparison of 

gene expression between mock-elicited and MeJA-elicited cultures was done at 18 hours 
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and 72 hours post-elicitation. At both 18 hours and 72 hours post-elicitation, none of the 

149 cell cycle associated-genes were upregulated in MeJA-elicited cultures relative to the 

mock-elicited cultures. However, a total of 52 cell cycle genes were significantly 

downregulated (> 2-fold down regulation, P < 0.05) at 18 hours and 72 hours post-

elicitation in MeJA-elicited cultures relative to mock-elicited cultures. Figure 5.6 shows 

the hierarchical clustering of the 52 cell cycle genes that were downregulated in MeJA-

elicited cultures. At 18 hours post-elicitation, 49 genes that were homologous to genes 

involved in the G2/M and G1/S transition in other plant species were downregulated in 

MeJA-elicited cultures (Table 5.1).  In particular, the gene representing E2F target 

protein 1 (ETG1), which is a component of the replisome complex and needed for DNA 

replication (Takahashi et al. 2008), was drastically downregulated (~160 fold). The 

transcription factor E2F, which in Arabidopsis governs expression of ETG1 and other 

cell cycle genes [about 70 target genes, (Vandepoele et al. 2005)] involved in the G1/S 

transition was also downregulated. Genes representing CDC6 (Castellano et al. 2001), 

CDC45 (Stevens et al. 2004), CDC48 and D-type cyclins (Meijer and Murray 2000), 

whose expression typically peaks during G1 or early S phase, and some of the genes 

representing B-type cyclins and other G2 and M phase-specific genes that facilitate 

progression through mitosis were also downregulated.  

At 72 hours post-elicitation, about 20 cell cycle genes were significantly 

downregulated in MeJA-treated cultures (Table 5.2). Most of these genes (17 out of 20) 

were also downregulated at the 18 hour time point when compared to mock-elicited 

cultures. However, in contrast to the 18 hour time point, which had genes representing 

both the G1/S and G2/M transition, the majority of the downregulated genes at 72 hours 



121 
 

were those whose expression typically peaks during G2 and M phase. For example, 

Cyclin A1, B1, B2, cyclin dependent kinase B (CDKB) and -other G2/M specific cyclins, 

whose transcripts are known to accumulate during G2 and M phases (Inze and De 

Veylder 2006), were found to be the most downregulated (> 10-fold downregulation, 

Table 5.2). This result implies that in MeJA-elicited cultures, fewer cells are going 

through mitosis at the 72 hour time point as compared to mock-elicited cultures.  

A comparison was made between the gene expression levels at 18 hours and 72 

hours for both mock-elicited and MeJA-elicited cultures (18h mock-elicited vs. 72h 

mock-elicited and 18h MeJA-elicited vs 72h MeJA-elicited). There was no change in 

expression of cell cycle-related genes in the mock-elicited cultures. However, comparison 

between 18h MeJA-elicited and 72h MeJA-elicited cultures showed that genes that are 

usually expressed during G2 and M phase (e.g., cyclin dependent kinase B, cyclin A1, 

cyclin B2 and B3, etc.) were downregulated at 72 hours as compared to 18 hours (Table 

5.3). Some G1 phase-specific genes (e.g., D-type cyclins and CDC 48 homologs) were 

upregulated at 72 hours as compared to 18 hours (Table 5.4).  

Apart from the cell cycle-specific genes, genes representing the subclasses of core 

histones, H2A, H2B, H3 and H4, which are essential for cell proliferation and required 

for the packaging of DNA into chromatin (Yi et al. 2006; Gutierrez 2009) were also 

repressed in MeJA-elicited cultures at both 18 and 72 hours (Additional information, 

Tables 5.6 and 5.7).  
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5.4 Discussion  

In the present study, we quantified the effect of MeJA, a widely used enhancer of plant 

secondary metabolism, on asynchronously dividing T. cuspidata cell cultures. Biomass 

measurements showed that MeJA repressed culture growth (Figure 5.1A). There was a 

time lag between growth inhibition and cell death, indicating that MeJA-mediated growth 

inhibition was not due to necrosis and/or rupturing of cell membranes (Figure 5.1C, D). 

Biotic (fungal derived) and abiotic (Cerium (Ce+4)) elicitors induce apoptotic cell death in 

Taxus cultures within a few hours to few days post-elicitation (Yuan et al. 2002; Qiao et 

al. 2003; Ge et al. 2002). Here, we observed DNA fragmentation, a hallmark of apoptotic 

cell death, only at a very late time point (day 30 of the culture period), implying that 

apoptosis is not directly linked to MeJA elicitation (Figure 5.2). Similar results have been 

reported for T. cuspidata P991 and T. canadensis C093D cell lines upon MeJA elicitation 

(Kim et. al, 2005). One explanation for this anomalous behavior for MeJA is that MeJA 

elicitation in Taxus suspensions did not markedly increase the phosphatic acid (PA) 

levels, which is associated with regulating cell death response (Yang et al. 2008). Ce+4 

caused both increased paclitaxel levels and increased PA levels, leading to cell death 

(Yang et al. 2008). Repression of growth without cell death and a delayed onset of 

apoptosis suggest that MeJA is repressing growth by altering cellular metabolism and/or 

affecting the cell cycle. We previously demonstrated that MeJA upregulates paclitaxel 

biosynthetic pathway genes (Patil et al. 2012; Nims et al. 2006; Lenka et al. 2012), and 

thus metabolism is shifted towards synthesis of paclitaxel. Here, the influence of MeJA 

on the Taxus cell cycle and the mechanism of growth inhibition have been elucidated.  
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MeJA addition to asynchronously dividing Taxus cultures resulted in four effects 

on the cell cycle, as revealed by flow cytometric analyses: i) transient increase in G2 

phase cells, ii) transient decrease in S phase cells, iii) increase in G0/G1 phase cells at 

later stages post-elicitation, and iv) decreases in G2 and S phase cells at later stages post-

elicitation (Figure 5.3 and 5.6). At a mechanistic level, the effect of jasmonates has been 

shown to be dependent on the phase of the cell cycle in synchronized tobacco BY-2 cells 

(Swiatek et al. 2002). When JA was applied before the G1/S transition it prevented DNA 

replication, keeping BY-2 cells in G1 phase. When JA was applied during S phase, it 

prevented cells from entering mitosis without directly affecting their DNA synthesis 

(Swiatek et al. 2002; Swiatek et al. 2004). Though our cultures were not synchronized, a 

similar effect was observed upon MeJA elicitation, with a drop in the percentage of cells 

in S phase and an increase in the percentage of cells in G2 phase immediately following 

elicitation. The decreased percentage of cells in G2 and S and increased percentage of 

cells in G0/G1 at 96 hours post-elicitation suggest that the cells were not permanently 

arrested in G2/M, but rather moving slowly. An EdU pulse label assay confirmed these 

data showing clearly that MeJA addition slowed progression through the cell cycle 

(Figure 5.4).  

The transcription of several cell cycle genes at 18 hours and 72 hours post-

elicitation with MeJA also correlated with the flow cytometric data trends. Concomitant 

with the decrease in S phase cells (Figure 5.3B), significant downregulation of expression 

of ETG1 and CDC6 genes at the 18 hour time point was observed. Expression of ETG1 

and CDC6 genes has been shown to be necessary for the G1/S transition in Arabidopsis 

(Castellano et al. 2001; Takahashi et al. 2008). Genes representing CDC45 (Stevens et al. 
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2004) and CDC48 homologs (Feiler et al. 1995), which play a role in the G1/S transition 

were also downregulated. Plant cyclins are known to interact with cyclin-dependent 

kinases (CDKs), and these CDK-cyclin complexes regulate the key G1/S and G2/M 

transition points responsible for DNA replication and mitosis, respectively. Plant cyclins, 

especially the A and B types, show oscillatory behavior at the transcription level, where 

transcript levels peak during certain phases of the cell cycle. Generally, D-type cyclins 

are known to regulate the G1/S transition, A-type cyclins regulate the S/M transition, and 

B-type cyclins regulate both the G2/M transition and M phase control (Breyne and 

Zabeau 2001; Inze and De Veylder 2006); though a number of exceptions to these 

functional assignments have been reported (Inze and De Veylder 2006; Kawamura et al. 

2006). Genes representing all these three classes of cyclins were downregulated at the 18 

hour time point in MeJA-elicited cultures relative to mock-elicited cultures. Also, cyclin-

dependent kinase B (CDKB) genes, which are regulated at the transcript level and are 

necessary for the G2/M transition (Inze and De Veylder 2006), were downregulated at 18 

hours in MeJA-elicited cultures. The expression patterns of some of these cell cycle 

genes are thus consistent with the increase in G2 phase cells within 24 hours post-

elicitation with MeJA (Figure 5.3C). At 72 hours post elicitation, the majority of 

downregulated genes were those for which expression peaked during G2 and M phases 

(e.g., cyclin A1, CDKB, cyclin B2, etc.). Some of the genes that are involved in G1/S 

transition (e.g., ETG1, CDC45, etc.) were also downregulated at the 72 hour time point 

(Table 5.2), indicating that cell proliferation and progression of cells from G1 for division 

is hindered.   
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Comparison of cultures at 18 and 72 hours post-elicitation with MeJA shows that 

G2/M-specific cell cycle genes (e.g., G2-mitotic specific cyclin, cyclin A1, CDKB, etc.) 

are downregulated at 72 hours as compared to 18 hours (Table 5.3). This result implies 

that the downregulation of genes required to drive cells through G2 and M phases causes 

more cells to remain in G2 phase. Some G1 phase genes (e.g., cyclin D (d2-4 type cyclin) 

and CDC 48, Table 5.4) are also upregulated at 72 hours as compared to 18 hours post-

elicitation, implying that more cells are present in G0/G1 phase at 72 hours relative to 18 

hours in MeJA-elicited cultures. These results correlate well with flow cytometric data 

(Figure 5.3), where both a decrease in G2 and S phase cells and an increase in G0/G1 

phase cells were observed after 72 hours post-elicitation.  

Moreover, along with the cell cycle-specific genes, histone-encoding genes were 

also downregulated upon MeJA elicitation. Histones are highly conserved across 

eukaryotic species and have been classified into four subcategories of core histones 

(H2A, H2B, H3, and H4) and linker histones (H1). For most species, each core histone 

protein is encoded by a multigene family (Piontkivska et al. 2002). Biotic and abiotic 

stresses can repress expression of histone genes in plants. For example, in cultured 

parsley cells, UV radiation and fungal elicitors repressed expression of several genes 

essential for cell cycle progression including histones H2A, H2B, H3, and H4 (Logemann 

et al. 1995), leading to growth inhibition. Similar results were observed here in MeJA-

elicited T. cuspidata cultures, where all the genes representing histones were 

downregulated relative to mock-elicited cultures at both 18 and 72 hours post-elicitation. 

Thus, histone gene repression can be correlated to decreased cell division in Taxus, 

analogous to observations in parsley cells (Logemann et al. 1995).  
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The number of cells incorporating EdU was significantly lower in MeJA-elicited 

cultures when compared to mock-elicited cultures (Figure 5.5). This result suggests that 

over time the number of actively dividing cells (i.e., synthesizing DNA) decreased in 

MeJA-elicited cultures. This result is supported by the increase in G0/G1 phase cells 

observed in MeJA-elicited cultures (Figure 5.3A). One explanation is that cells remain in 

G0 phase and are specialized for accumulation of paclitaxel and potentially other 

secondary metabolites (Naill and Roberts 2005a). Total metabolic activity inferred from 

total cellular protein content is relatively uniform in MeJA-elicited cultures (Naill and 

Roberts 2005c), indicating that non-cycling cells are still metabolically active, but 

potentially redirect carbon flux away from primary metabolism towards secondary 

metabolism. Alkaloid accumulation increased in cultures of Solanum aviculare where 

cell cycle progression was inhibited using a cell cycle arrest agent, again suggesting that 

the metabolic flux may be directed towards secondary pathways in non-proliferating cells 

(Mak and Doran 1993). Research to date in plant systems has been able to identify a 

significant G0 population in culture and presents indirect evidence to suggest a function 

of this population, but has not been able to explicitly correlate the non-cycling cell 

population to other metabolic information. A multi-parametric flow cytometry study to 

simultaneously analyze non-cycling cells (G0 phase cells) and paclitaxel-accumulating 

cells can reveal this relationship in the Taxus cell culture system, and warrants further 

investigation.  

In summary, the MeJA-mediated repression of cell growth in Taxus cultures was 

shown to correlate with inhibition of cell cycle progression as evident both at the culture 

level through flow cytometric analyses and at the transcriptional level by repression of 
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key cell cycle-associated genes. The newly annotated Taxus cell cycle-associated genes 

will provide an importance resource for future cell cycle studies of both Taxus and related 

gymnosperms. The cell cycle progression patterns in culture closely parallel the 

transcriptional regulation of cell cycle-associated genes in MeJA-elicited and mock-

elicited Taxus cell cultures. The results from this study advance fundamental 

understanding of the mechanism of action of secondary metabolite elicitors such as MeJA 

on repression of plant cell division. This result is especially important for species such as 

Taxus, where most research has been focused on improving paclitaxel synthesis with less 

attention paid to the negative effect of MeJA on growth and implications on 

bioprocessing.   
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Table 5.1 Contigs expressed in Taxus cell cultures and annotated as cell cycle-related 

genes downregulated in MeJA-elicited cultures relative to mock-elicited cultures at 18 

hours post-elicitation. 

Contig No. Sequence description Fold Change 

(Normalized) 

 140962 E2F target protein 1 -163.64 

 121259 cell division control protein 6 homolog -143.52 

 65828 ccb22_orysj ame: G2 mitotic-specific cyclin-B2-2  -36.41 

 12355 probable G2 mitotic-specific cyclin -33.23 

 10406 cyclin dependent kinase regulator -26.23 

 11366 D2 4-type cyclin -19.75 

 68975 G2 mitotic-specific cyclin S13-6 -14.18 

 61510 D3-type cyclin -6.19 

 119383 cyclin dependent kinase B -5.46 

 118076 cell division control protein 45 homolog -5.21 

 19091 cell division cycle-associated 7-like isoform 2 -5.03 

 68106 B1-type cyclin dependent kinase -5.00 

 66244 cyclin-dependent kinases regulatory subunit -4.41 

 141136 cyclin A1 -4.35 

 18492 cyclin B 2 -4.17 

 62294 E2F protein -3.49 

 142510 antagonist of E2F-DP complex -3.26 

 9782 cyclin-dependent kinases regulatory subunit -3.14 

 11005 cell division cycle protein -3.05 
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 12010 cyclin-dependent kinases regulatory subunit -2.89 

 75242 cyclin B3-1 -2.88 

 108329 cell division cycle protein -2.81 

 57179 cell division -2.74 

 105427 cell division cycle protein 48 homolog -2.72 

 91147 cell division cycle protein 48 homolog -2.60 

 113240 cell division control protein -2.57 

 134490 cell division cycle protein -2.56 

 99133 cell division cycle protein 48 homolog -2.55 

 100939 cell division cycle protein 48 homolog -2.51 

 10476 transcription factor E2F -2.50 

 103306 cell division cycle protein 48 homolog -2.43 

 110709 cell division cycle protein 48 homolog -2.41 

 97765 cell division control protein -2.39 

 134513 cell division cycle protein -2.37 

 127620 cell division cycle protein 48 homolog -2.37 

 109918 cell division cycle protein 48 homolog -2.35 

 112279 cell division cycle protein 48 homolog -2.35 

 105698 cell division cycle protein 48 homolog -2.34 

 106161 cell division control protein -2.33 

 59549 D2 4-type cyclin -2.31 

 116949 cell division cycle protein 48 homolog -2.26 

 111055 cell division cycle protein 48 homolog -2.18 

 107757 cell division cycle protein 48 homolog -2.18 

 109405 cell division cycle protein 48 homolog -2.11 
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 102800 cell division cycle protein -2.07 

 13227 cyclin dependent kinase A -2.05 

 109272 cell division cycle protein 48 homolog -2.03 

 18149 cyclin-dependent kinase F-1 -2.00 

 100185 cell division cycle protein 48 homolog -2.00 
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Table 5.2 Contigs expressed in Taxus cell cultures and annotated as cell cycle-related 

genes downregulated in MeJA-elicited cultures relative to mock-elicited cultures at 72 

hours post-elicitation. 

Contig No. Sequence description Fold change 

(normalized 

values) 

 141136 cyclin A1 -49.32 

 119383 cyclin dependent kinase B -44.40 

 65828 ccb22_orysj ame: G2 mitotic-specific cyclin-B2-2 -42.36 

 12355 probable G2 mitotic-specific cyclin -40.96 

 142510 antagonist of E2F-DP complex -40.53 

 68975 G2 mitotic-specific cyclin S13-6 -32.15 

 68106 B1-type cyclin dependent kinase -27.65 

 118076 cell division control protein 45 homolog -23.96 

 66244 cyclin-dependent kinases regulatory subunit -23.03 

 11005 cell division cycle protein -20.99 

 10406 cyclin dependent kinase regulator -14.94 

 140962 E2F target protein 1 -12.52 

 75242 cyclin B3-1 -9.86 

 9782 cyclin-dependent kinases regulatory subunit -8.81 

 79802 cell division cycle cofactor of APC complex -6.64 

 10476 transcription factor E2F -5.79 

 81095 anaphase-promoting complex subunit CDC20 -5.69 

 61510 D3-type cyclin -3.68 

 12010 cyclin-dependent kinases regulatory subunit -3.51 
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 125598 cell division control protein -3.25 

 19091 cell division cycle-associated 7-like isoform 2 -3.12 

 18492 cyclin B 2 -2.99 
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Table 5.3 Contigs expressed in Taxus cell cultures whose expression is downregulated 72 

hours post-elicitation as compared to 18 hours post-elicitation in MeJA-elicited cultures. 

Contig No. Sequence Description Fold Change 

(normalized 

values) 

 119383 cyclin dependent kinase B -17.90 

 141136 cyclin A1 -13.62 

 66244 cyclin-dependent kinases regulatory subunit -13.34 

 68975 G2 mitotic-specific cyclin S13-6 -8.09 

 68106 B1-type cyclin dependent kinase -7.96 

 75242 cyclin B3-1 -6.74 

 12355 probable G2 mitotic-specific cyclin -5.50 

 79802 cell division cycle cofactor of APC complex -4.97 

 65828 ccb22_orysj ame: G2 mitotic-specific cyclin-B2-2 -4.79 

 81095 anaphase-promoting complex subunit CDC20 -4.06 

 9782 cyclin-dependent kinases regulatory subunit -3.62 
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Table 5.4 Contigs expressed in Taxus cell cultures whose expression is upregulated 72 

hours post-elicitation as compared to 18 hours post-elicitation in MeJA-elicited cultures. 

Contig No. Sequence Description Fold Change 

(normalized 

values) 

 11366 D2 4-type cyclin 16.25 

 11041 cyclin-dependent protein 3.50 

 59549 D2 4-type cyclin 2.55 

 107757 cell division cycle protein 48 homolog 2.19 

 100185 cell division cycle protein 48 homolog 2.18 

 112647 cell division cycle protein 48 homolog 2.15 

 109272 cell division cycle protein 48 homolog 2.13 

 145394 cell division control protein 2.12 

 113719 cell division cycle protein 48 homolog 2.04 

 92332 cell division cycle protein 48 homolog 2.04 

 101973 cell division cycle protein 48 homolog 2.04 

 107852 cell division cycle protein 48 homolog 2.01 
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Figure 5.1 Effect of MeJA elicitation on T. cuspidata P93AF cultures growth, taxane 

production and viability.  (A) Biomass concentrations in MeJA-elicited cultures as 

compared to mock-elicited cultures. Reported values are the average of three biological 

replicates and error bars represent standard error of the mean (SEM). (B) Taxane levels 

as determined by UPLC in MeJA-elicited cultures as compared to mock-elicited cultures. 

Mock-elicited cultures did not produce detectable levels of taxanes. Reported values are 

the average of three biological replicates and error bars represent SEM. (C, D) Viability 

of mock-elicited and MeJA-elicited cultures on day 16 (Row 1), day 21 (Row 2), and day 

24 (Row 3) of the culture period. Columns indicate brightfield (Column 1), FDA-stained 

(Column 2) and PI-stained (Column 3) images. Cultures were either mock-elicited or 

elicited with 150 μM MeJA on day 7 of the culture period. 
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Figure 5.2 Effect of MeJA elicitation on induction of oligonucleosomal fragmentation in 

cultured T. cuspidata P93AF cells. The agarose gel shows DNA extracted from mock-

elicited and MeJA-elicited cultures. M1, 100 bp marker; lane 1, mock-elicited (day 7); 

lanes 2, 3 and 4,  mock-elicited cultures on day 11, 24 and 30 of culture period, 

respectively; lanes 5, 6, and 7, MeJA-elicited cultures on day 11, 24 and 30 of the culture 

period, respectively; M2, 1 kbp marker. Cultures were either mock-elicited or elicited 

with 150 μM MeJA on day 7 of the culture period.  
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Figure 5.3 Cell cycle distribution in MeJA-elicited and mock-elicited T. cuspidata 

P93AF cultures.  The percentage of cells in (A) G0/G1, (B) S, and (C) G2/M phases is 

shown. (D) Cell cycle analysis using the Watson Pragmatic Model of the FlowJo (v7.6) 

software. RNAse A (50 μg/mL) treatment, followed by staining with propidium iodide 

(PI) (50 μg/mL) was performed to obtain DNA histograms. Reported values are the 

average of three biological replicates and error bars represent SEM.  The asterisk (*) 

indicates a statistically significant difference (P < 0.05; paired Student's t test) between 

MeJA-elicited and mock-elicited conditions. Cultures were either mock-elicited or 

elicited with 150 μM MeJA on day 7 of the culture period. 
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Figure 5.4 Progression of EdU pulse labeled cells in mock-elicited and MeJA-elicited 

cultures. Only EdU positive cells were selected from bivariate histograms of EdU/DNA 

content. Cultures were either mock-elicited or elicited with 150 μM MeJA on day 7 of the 

culture period. Four hours later 10 μM EdU was added to all cultures.  
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Figure 5.5 Total EdU incorporation in mock-elicited and MeJA-elicited cultures. Circles 

represent mock-elicited cultures. Squares represent MeJA-elicited cultures. Cultures were 

either mock-elicited or elicited with 150 μM MeJA on day 7 of the culture period. Four 

hours later 10 μM EdU was added to all cultures.  
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Figure 5.6 Heat map showing expression patterns of significantly downregulated cell 

cycle related-genes in MeJA-elicited cultures as compared to mock-elicited cultures. 

Hierarchical clustering was performed using average linkage and Euclidean distance as a 

measurement of similarity. Changes in gene expression were calculated based on the 

RPKM values of corresponding genes.  
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5.5 Additional information (not included in chapter) 

i) Development of EdU-based proliferation assay  

A widely used technique for monitoring cell cycle activity and for direct measurement of 

new DNA synthesis is by incorporation of a thymidine analog such as 

bromodeoxyuridine (BrdU) into DNA, followed by immunodetection with a specific 

antibody raised against the thymidine analog. This technique was successfully used in 

Taxus cell cultures in our lab (Naill and Roberts 2005a). However, the DNA denaturation 

process required to expose BrDU to the antibody is lengthy, difficult to perform and can 

affect the culture morphology (Kotogany et al. 2010). To alleviate these issues, EdU (5-

ethynyl-2’-deoxyuridine), a terminal alkyne-containing nucleoside analog of thymidine, 

can be used. The EdU detection method is based on simple click chemistry, which 

consists of an azide-conjugated fluorochrome (such as Alexa Fluor 488) and copper (I) as 

the catalyzer of the click reaction. As EdU detection does not rely on high molecular size 

antibodies, DNA denaturation steps can be omitted, which provides a more rapid analysis 

and better preservation of cellular structures. 

 Based on existing protocols for BrDU detection (Naill and Roberts 2005a; 

Yanpaisan et al. 1998), Taxus cells were cultured in medium containing 10 mM EdU 

(Invitrogen) for the required incubation period. Nuclei were isolated from EdU-incubated 

cultures and control cultures (not incubated with EdU), as mentioned in 2.2.3. Several 

steps were changed from the manufacturer’s protocols (Click-iT EdU Alexa Fluor 488 

Flow Cytometry Assay kit, cat no: C35002, Invitrogen, Carlsbad, CA) for successful 

staining and flow cytometric analysis of EdU-stained nuclei. The optimization steps for 
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successful EdU and DNA staining and their subsequent flow cytometric analysis were: i) 

use of Galbraith’s nuclei isolation buffer instead of water for determining the optimal 

working concentration (using dilution) of Click-iT Reaction buffer (Component G) and 

buffer additive (component I), ii) use of Galbraith’s nuclei isolation buffer instead of 

water to dissolve paraformaldehyde for fixing the nuclei, and iii) choosing the optimal 

forward and side scatter settings on LSRII flow cytometer to differentiate between nuclei 

and debris. The optimal conditions are described in Materials and Methods (Section 5.2). 

This EdU-based technique reduced the time for cell cycle analysis to approximately three 

hours, as compared to 7-8 hours for the analogous BrDU technique, which necessitates 

BrDU detection by both primary and secondary antibodies and includes multiple washing 

steps. This protocol can potentially be translated to intact single cells and protoplasts in 

the future for multi-parameter flow cytometric studies (Section 6.2.2) 
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 ii) Supporting information  

 

Figure 5.7 Cell cycle distribution in MeJA-elicited and mock-elicited T. cuspidata 

P93AF cultures within 48 hours post elicitation. The percentage of cells in (A) G0/G1, 

(B) S, and (C) G2/M phases is shown. Cell cycle analysis was done using the Watson 

Pragmatic Model of the FlowJo (v7.6) software. RNAse A (50 μg/mL) treatment, 

followed by staining with propidium iodide (PI) (50 μg/mL) was performed to obtain 

DNA histograms. Reported values are the average of three biological replicates and error 

bars represent SEM.  The asterisk (*) indicates a statistically significant difference (P < 

0.05; paired Student's t test) between MeJA-elicited and mock-elicited conditions. 
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Cultures were either mock-elicited or elicited with 150 μM MeJA on day 7 of the culture 

period.  
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Table 5.5 Complete list of 149 contigs expressed in Taxus cell cultures that are predicted 

to be cell cycle-related. 

Contig No. Specific function 

10110 low quality protein: cyclin-dependent kinase D-1-like 

10406 cyclin dependent kinase regulator 

10743 cyclin T1 

10765 cyclin dependent kinase inhibitor 

11041 cyclin-dependent protein 

11341 cyclin-dependent kinase C-1-like 

11366 D2 4-type cyclin 

117445 cyclin BRF1-like TBP-binding protein 

117583 cyclin-related protein 

117875 cyclin family protein 

119004 B-type cyclin 

119383 cyclin dependent kinase B 

119769 cyclin-dependent kinase G-2-like 

12010 cyclin-dependent kinases regulatory subunit 

12269 cyclin delta-3 

12355 probable G2 mitotic-specific cyclin 

12531 cyclin-L1-1 

13227 cyclin dependent kinase A 

140080 cyclin H-1 

141136 cyclin A1 

18077 CCC11_orysj ame: full=cyclin-C1-1 short= 1 1 
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18149 cyclin-dependent kinase F-1 

18354 cyclin-dependent kinase G-2-like 

18492 cyclin B 2 

18814 cyclin-T1-5-like isoform 1 

19788 cyclin family expressed 

22178 cyclin-D-binding myb-like transcription factor 

22860 cyclin-dependent protein kinase 

439 CKB11_orysj ame: full=cyclin-dependent kinase B1-1 
short=CDKB1 1 short=CDKB 1 

46333 cyclin M 

57438 cyclin family expressed 

57795 cyclin-dependent kinase C-1-like 

58809 cyclin dependent kinase inhibitor 

59549 D2 4-type cyclin 

59726 cyclin-dependent kinase F-4-like 

60181 cyclin-dependent kinase G-2-like 

61510 D3-type cyclin 

62310 cyclin-dependent kinase F-4-like 

64817 calcyclin binding protein 

65153 cyclin-dependent kinase E-1 

65828 CCB22_orysj ame: full=cyclin-B2-2  

66244 cyclin-dependent kinases regulatory subunit 

67880 D2 4-type cyclin 

68106 B1-type cyclin dependent kinase 

68643 cyclin-dependent kinase E-1 
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68975 G2 mitotic-specific cyclin S13-6 

75100 cyclin family expressed 

75242 cyclin B3-1 

76658 cyclin-dependent kinase E-1 

90048 calcyclin binding protein 

9782 cyclin-dependent kinases regulatory subunit 

100185 cell division cycle protein 48 homolog 

100939 cell division cycle protein 48 homolog 

10134 plastid division2 protein 

101973 cell division cycle protein 48 homolog 

102800 cell division cycle protein 

103306 cell division cycle protein 48 homolog 

103776 cell division cycle protein 48 homolog 

103991 cell division cycle protein 48 homolog 

104612 cell division cycle protein 48 homolog 

105427 cell division cycle protein 48 homolog 

105698 cell division cycle protein 48 homolog 

106161 cell division control protein 

107757 cell division cycle protein 48 homolog 

107852 cell division cycle protein 48 homolog 

108329 cell division cycle protein 

109017 cell division cycle protein 48 homolog 

109272 cell division cycle protein 48 homolog 

109405 cell division cycle protein 48 homolog 

109610 cell division cycle protein 48 homolog 
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109918 cell division cycle protein 48 homolog 

11005 cell division cycle protein 

110200 cell division control protein 

110559 cell division cycle protein 

110709 cell division cycle protein 48 homolog 

110863 cell division cycle protein 48 homolog 

111055 cell division cycle protein 48 homolog 

111300 cell division cycle protein 48 homolog 

112008 cell division cycle protein 

112279 cell division cycle protein 48 homolog 

112647 cell division cycle protein 48 homolog 

113240 cell division control protein 

113719 cell division cycle protein 48 homolog 

114075 cell division control protein 

116949 cell division cycle protein 48 homolog 

117777 cell division control protein 48 homolog B-like 

118076 cell division control protein 45 homolog 

11868 plastid division protein chloroplastic-like 

119196 nuclear division RFT1-like protein 

12019 cell division control 

121259 cell division control protein 6 homolog 

124695 cell division cycle and apoptosis regulator protein 

125598 cell division control protein 

127620 cell division cycle protein 48 homolog 

128286 cell division control protein 
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12900 cell division 

129444 cell division control protein 6 homolog 

134490 cell division cycle protein 

134513 cell division cycle protein 

13564 plastid division protein chloroplastic-like 

140234 plastid division protein PDV1-like 

141017 cell division control 

141711 cell division 

141752 cell division control protein 48 homolog C-like 

145394 cell division control protein 

145766 nuclear division RFT1-like protein 

146264 cell division cycle cofactor of APC complex 

18555 cell division protein FtsY homolog 

18658 cell division-associated protein BIMB-like 

19091 cell division cycle-associated 7-like isoform 2 

23923 meiotic nuclear division protein 1 homolog 

57179 cell division 

58621 plastid division regulator 

62766 cell division protein 

65384 cell division control protein 48 homolog C-like 

65772 cell division cycle protein 48 homolog 

67851 cell division cycle 5-like 

68799 cell division cycle protein 48 homolog 

74520 cell division control 

75212 cell division protein 
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76811 cell division control protein 48 homolog C-like 

77042 cell division protease FTSH-like protein 

79802 cell division cycle cofactor of APC complex 

80228 cell division cycle cofactor of APC complex 

80940 cell division cycle protein 

82001 cell division cycle cofactor of APC complex 

87666 cell division protein 

91147 cell division cycle protein 48 homolog 

92263 cell division cycle protein 48 homolog 

92332 cell division cycle protein 48 homolog 

92539 cell division cycle protein 48 homolog 

96454 cell division control protein 48 homolog E-like 

97765 cell division control protein 

98625 cell division cycle protein 48 homolog 

99133 cell division cycle protein 48 homolog 

99223 cell division cycle protein 48 homolog 

119534 dual specificity phosphatase CDC25 

119826 AAA family ATPase CDC48 subfamily 

21530 AAA family ATPase CDC48 subfamily 

22931 PCDC2 rp- 

69905 RNA polymerase ii assessory factor CDC73P 

81095 anaphase-promoting complex subunit CDC20 

10476 transcription factor E2F 

140962 E2F target protein 1 

142510 antagonist of E2F-DP complex 
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146585 E2F -associated phospho 

19706 E2F-associated phospho 

62294 E2F protein 

74429 protein kinase wee1 
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Table 5.6 Contigs expressed in Taxus cell cultures that are predicted to encode histones 

and which are downregulated in MeJA-elicited cultures relative to mock-elicited cultures 

at 18 hours post-elicitation. 

Contig No. Seq. Description Fold Change 

(normalized values) 

 75207 histone chaperone                        -602.2 

 96097 histone H2B -16.56 

 21437 histone H2A -15.37 

 129999 histone H2BN -15.31 

 127298 histone H2B -12.13 

 23029 histone H3 -10.77 

 93181 histone H3-like -10.35 

 120251 H2B5_wheat ame: full=histone ame: 
full=WCH2B-6 

-9.51 

 65215 histone H2A -8.47 

 133736 histone H3 -8.16 

 99292 histone H2B -7.70 

 105777 histone H4 -7.58 

 125916 histone H2A -7.34 

 97023 histone H3 -7.30 

 145388 histone H3 -7.09 

 89365 H2B5_wheat ame: full=histone ame: 
full=WCH2B-6 

-6.93 

 103001 histone H3 -6.53 

 92399 histone H3 -6.27 
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 90765 histone -like isoform 1 -6.24 

 125880 histone H4 -6.17 

 65477 histone H2B like protein -6.09 

 126700 histone H4 -5.73 

 138300 histone -5.50 

 89314 histone H2B -5.47 

 96814 histone H3 -5.40 

 92302 histone H2A -5.17 

 93891 histone H3 -5.14 

 142011 histone H2A -5.13 

 121465 histone H1-like protein -5.07 

 88085 histone H4 -5.01 

 112797 histone H4 -5.00 

 112244 histone H3 -4.92 

 91339 histone H3 -4.88 

 79833 histone H2B -4.86 

 128757 histone H4 -4.82 

 125318 histone H2A -4.49 

 28497 histone H2A -4.42 

 92425 histone H3 -4.37 

 45090 histone-lysine n-methyltransferase 
ATXR4-like 

-4.34 

 18499 histone H2A variant -4.33 

 141827 probable histone H2A variant 3 -4.29 

 21433 histone H2A variant -4.28 
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 126269 histone -like -4.28 

 141835 histone-like protein -4.24 

 125453 histone H4 -4.10 

 110266 histone H3 -4.08 

 68567 histone gene transcript 5 hairpin-binding 
protein 

-3.86 

 125786 histone H2B -3.85 

 57733 histone acetyltransferase -3.82 

 101758 histone H3 -3.75 

 89296 histone H4 -3.74 

 124694 histone H4 -3.63 

 60238 histone-lysine n-methyltransferase 
ASHR3 

-3.57 

 138148 histone H2A-like protein -3.54 

 126658 histone H4 -3.43 

 102145 histone H2A-like -3.42 

 90623 histone H4 -3.36 

 95231 histone H2A-like protein -3.30 

 87786 histone H4 -3.29 

 97564 histone H4 -3.24 

 104335 histone 2 -3.23 

 120016 histone H3 -3.23 

 147310 histone RNA hairpin-binding protein -3.13 

 109265 histone H2B -3.12 

 145669 histone H4 -3.08 
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 27108 histone H4 -3.07 

 145507 histone H4 -3.03 

 125121 histone H4 -3.01 

 147353 histone H3 -2.98 

 111922 histone 2 -2.94 

 108403 histone H2B -2.91 

 37028 histone-lysine n-methyltransferase 
SUVR3 

-2.89 

 57220 histone acetyltransferase type B catalytic -2.82 

 91392 histone H4 -2.78 

 59833 histone H3 -2.75 

 61107 histone H4 -2.73 

 91166 histone H2B -2.68 

 61146 histone H2B -2.66 

 40540 H2B5_wheat ame: full=histone ame: 
full=WCH2B-6 

-2.62 

 10241 histone-lysine n-methyltransferase 
SUVR4 

-2.59 

 75030 histone -2.56 

 136283 histone H3 -2.52 

 125003 histone H3 -2.51 

 65860 histone-lysine n-methyltransferase MLL5 -2.46 

 77267 histone H2B -2.45 

 147393 histone H4 -2.44 

 141233 histone-like protein -2.40 

 59456 histone chaperone ASF1B -2.25 
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 18845 histone-arginine methyltransferase 
CARM1 

-2.21 

 18640 histone H2B -2.21 

 128784 histone H2B -2.19 

 20988 histone-lysine n-methyltransferase 
SETD1B 

-2.17 

 69186 histone-lysine n-methyltransferase 
ASHH3-like 

-2.15 

 21973 histone H3 -2.14 

 139810 histone-lysine n-methyltransferase-like 
protein 

-2.12 

 11058 histone deacetylase -2.07 

 96821 histone H3 -2.04 

 77046 histone deacetylase -2.03 

 141984 histone -2.02 

 125733 histone H2B -2.01 

 125492 histone H4 -2.01 
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Table 5.7 Contigs expressed in Taxus cell cultures that are predicted to encode histones 

and which are downregulated in MeJA-elicited cultures relative to mock-elicited cultures 

at 72 hours post-elicitation. 

Contig No. Seq. Description Fold Change 

(normalized values) 

 93181 histone H3-like -384.00 

 92399 histone H3 -265.58 

 141984 histone -245.67 

 97023 histone H3 -215.60 

 102145 histone H2A-like -201.15 

 133736 histone H3 -187.98 

 103001 histone H3 -143.25 

 96814 histone H3 -137.91 

 92425 histone H3 -129.39 

 65215 histone H2A -120.02 

 21973 histone H3 -87.63 

 93891 histone H3 -87.45 

 125916 histone H2A -79.72 

 127298 histone H2B -78.48 

 21437 histone H2A -56.09 

 142011 histone H2A -48.65 

 68567 histone gene transcript 5 hairpin-
binding protein 

-47.12 

 120251 H2B5_wheat ame: full=histone ame: 
full=WCH2B-6 

-46.42 
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 135558 histone H4 -43.99 

 19008 histone H4 -43.84 

 59456 histone chaperone ASF1B -40.88 

 147310 histone RNA hairpin-binding protein -36.94 

 110266 histone H3 -36.93 

 79833 histone H2B -34.76 

 61107 histone H4 -31.67 

 145388 histone H3 -25.72 

 59833 histone H3 -24.78 

 40540 H2B5_wheat ame: full=histone ame: 
full=WCH2B-6 

-24.07 

 125003 histone H3 -23.49 

 91339 histone H3 -20.41 

 121465 histone H1-like protein -17.74 

 12499 histone H3 -17.57 

 141835 histone-like protein -16.25 

 125453 histone H4 -16.06 

 128757 histone H4 -15.62 

 105777 histone H4 -15.24 

 96097 histone H2B -14.23 

 129999 histone H2BN -13.49 

 89365 H2B5_wheat ame: full=histone ame: 
full=WCH2B-6 

-11.65 

 23029 histone H3 -11.33 

 125318 histone H2A -10.77 
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 65477 histone H2B like protein -10.28 

 112244 histone H3 -9.79 

 21433 histone H2A variant -9.19 

 138148 histone H2A-like protein -8.16 

 41101 histone H2A -7.85 

 103567 histone H1-like protein -7.82 

 95231 histone H2A-like protein -7.64 

 91392 histone H4 -7.43 

 18499 histone H2A variant -7.20 

 104335 histone 2 -7.18 

 90765 histone -like isoform 1 -7.13 

 111922 histone 2 -6.44 

 125880 histone H4 -6.41 

 134675 histone H1-like protein -6.30 

 99292 histone H2B -6.13 

 126700 histone H4 -5.79 

 126658 histone H4 -5.40 

 77377 histone H1-like protein -5.36 

 105385 histone H1-like protein -5.17 

 112797 histone H4 -5.15 

 89296 histone H4 -5.11 

 90728 histone H1 -4.73 

 97564 histone H4 -4.61 

 138300 histone -4.46 

 90623 histone H4 -4.35 
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 75030 histone -4.21 

 28497 histone H2A -3.98 

 124753 histone deacetylase HD2 -3.52 

 145632 HD2 type histone deacetylase -3.35 

 87786 histone H4 -3.34 

 124694 histone H4 -3.30 

 145669 histone H4 -3.27 

 141233 histone-like protein -3.26 

 101531 histone H4 -3.25 

 145507 histone H4 -3.07 

 65000 histone H1-like protein -3.05 

 120016 histone H3 -3.04 

 27108 histone H4 -2.92 

 110798 histone H4 -2.62 

 126269 histone -like -2.47 

 91166 histone H2B -2.24 

 134849 histone 2 -2.21 

 60923 histone Z -2.13 

 136329 histone H2A-like protein -2.08 

 124714 histone H2A -2.04 

 97372 histone H2A-like protein -2.03 

 77046 histone deacetylase -2.01 

 125786 histone H2B -2.01 
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CHAPTER 6                                                                         

IMPACT AND FUTURE WORK 

6.1 Impact  

The overarching goal of the work presented in this dissertation is to optimize processes 

for production of pharmaceuticals in plant-based systems, in particular for plant cell 

suspension cultures. The basic emphasis is on understanding cellular metabolic control 

and culture heterogeneity in Taxus suspension cultures, which produce the 

pharmaceutically relevant anti-cancer drug paclitaxel. Instability in product yields over 

multiple subculture periods has hampered the efficient and sustainable use of plant cell 

culture technology for production of paclitaxel. In Chapter 2, paclitaxel accumulation in 

Taxus cell suspension culture was quantified over multiple subculture periods and 

correlated to mean aggregate size. Paclitaxel levels varied approximately 6.9-fold over 

the six-month timeframe investigated and were negatively correlated to the mean 

aggregate size of the cultures. These results not only extend the previous work on 

aggregation done in our laboratory (Kolewe 2011), but also demonstrate the relevance of 

measuring, and potentially controlling aggregate size during long term subculture, 

particularly for plant suspensions where industrially relevant secondary metabolites are 

not pigmented to enable rapid culture selection.   

Understanding regulation of gene expression is critical to the design of targeted 

metabolic engineering approaches. In Chapter 3, expression patterns of known paclitaxel 

biosynthetic pathway genes were quantified from different culture phenotypes to 

understand the role of biosynthetic pathway gene expression in the creation of specific 

culture states. This work represents one of the first molecular studies to gain a 
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mechanistic understanding of paclitaxel accumulation variability in Taxus cell cultures, 

which could provide rational engineering strategies to control variability and optimize 

performance of Taxus cell cultures. While this study collectively showed that some 

degree of variability in paclitaxel accumulation can be directly linked to changes in 

biosynthetic pathway gene expression, there were clearly contributions from other 

factors. To fully understand the factors that regulate paclitaxel accumulation, a systems-

wide genomics approach was conducted using 454 and Illumina sequencing methods, as 

described in Chapter 4. A comprehensive, annotated transcriptome of cultured T. 

cuspidata cells was generated. Several pathways outside of paclitaxel biosynthesis were 

found active upon MeJA elicitation, and such complementary and competing pathways 

can ultimately affect final paclitaxel levels within the culture. Though, a complete 

analysis of the transcriptome data to understand all the active pathways in the cultures is 

still ongoing, the results thus far have been exciting and have the potential to rapidly 

accelerate genetic engineering efforts in Taxus cell cultures.  

In Chapter 5, MeJA was shown to affect the growth of Taxus cell cultures at the 

level of the cell cycle. A number of genes annotated as “cell cycle” genes were found to 

be downregulated in the MeJA-elicited state. The results from this study provide valuable 

insight into the relatively unknown mechanisms governing MeJA perception and 

subsequent events leading to repression of cell growth in Taxus. Apart from improving 

our fundamental understanding about MeJA’s mechanism of action in Taxus cell cultures, 

these data also demonstrate a successful example of application of the recently annotated 

transcriptome. In the future, this annotated base transcriptome can serve as a scaffold to 

understand gene expression, which could: i) improve our understanding of global 
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transcriptional control of paclitaxel biosynthesis, and ii) act as a valuable resource for 

genomic studies in Taxus and other non-model medicinal plant species..  

6.2. Recommendations for future work 

In addition to the suggestions already provided in the previous chapters, it is anticipated 

that the work presented in this thesis will provide a foundation for future work on the 

process engineering and population- and genetic-level characterization of Taxus cell 

cultures.  

6.2.1 Process engineering strategies to control aggregate size  

The work in this thesis emphasizes the importance of controlling aggregate size, which 

could help minimize variability in paclitaxel yields over long term subculture. Some of 

the efforts to investigate the effect of process parameters, such as inoculation density and 

time of inoculation on aggregation, have already been initiated. Results indicate that 

cultures inoculated at higher densities showed consistently smaller aggregates and 

cultures inoculated earlier showed slightly decreased aggregate size and biomass 

accumulation (Section 2.5 and Kathryn Geldart, Senior thesis 2012). Further studies need 

to be undertaken to fully understand the relationship amongst these parameters and 

paclitaxel accumulation. Studies to understand the effect of operating parameters such as 

agitation rate on aggregation have also been initiated (Kathryn Geldart, Senior thesis 

2012). In order to control aggregate size, turbulent shear forces can be used to promote 

aggregate dissociation. Shearing forces to dissociate aggregates can be achieved either by 

manually passing the aggregates back and forth through smaller diameter pipettes or by 

using higher agitation rates. However, care should be taken that excessive shearing does 
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not cause cell damage and/or cell death, which would negatively affect cell health and 

paclitaxel production. For manipulating agitation rates controlled bioreactors could be 

used, as they can also allow for better control of other operating parameters such as pH 

and temperature. Recently, a population balance equation framework to describe Taxus 

cell aggregates as a particulate system was developed and utilized in our laboratory to 

quantitatively predict changes in total biomass, mean aggregate size, and aggregate size 

distributions (Kolewe et al. 2012). Results obtained from shearing experiments and the 

relationship to paclitaxel accumulation can be included in this model to further improve 

its predictability, which can be used to optimize operating conditions and culture 

performance. Ultimately identification of optimal conditions to control aggregate size 

will improve both paclitaxel production and reliability of achievable yields.  

6.2.2 Multiparameter flow cytometry to determine the relationship between 

paclitaxel-accumulating and noncycling cells in Taxus cell culture  

The proportion of cells accumulating secondary metabolites in a culture can significantly 

change the overall productivity, resulting in variable culture yields over time. For 

example, in C. roseus, the proportion of cells accumulating anthocyanin was 

approximately 10% of the total population, and the variation in total anthocyanin content 

was attributed primarily to a change in the proportion of cells accumulating anthocyanin 

(Hall and Yeoman 1987). Certain cells in culture can differentiate and have specialized 

roles for metabolite storage, such as in Macleaya microcarpa for the storage of alkaloids 

(Franke and Bohm 1982). It is speculated that G0 cells may play a significant role in 

secondary metabolism (Yanpaisan et al. 1998; Naill and Roberts 2005a). Results have 

indicated an increase in the percentage of G0/G1 cells in the T. cuspidata P93AF cell line 
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upon MeJA elicitation. Similar results were obtained with another T. cuspidata cell line 

(P991) in our laboratory, where BrdU staining was used to calculate the percentage of 

noncycling (G0) cells in the culture. About 65% of the Taxus cells (P991 cell line) were 

identified as noncycling in mid-exponential phase (Naill and Roberts 2005a), however 

the role of these cells in suspension cultures was not characterized. Total metabolic 

activity inferred via total cellular protein content was relatively uniform in MeJA-elicited 

cultures (Naill and Roberts 2005c) indicating that noncycling cells are still metabolically 

active, but potentially redirecting carbon flux away from primary metabolism towards 

secondary metabolism. In another study, alkaloid accumulation increased in cultures of 

Solanum aviculare where cell cycle progression was inhibited using a cell cycle arrest 

agent, again suggesting that the metabolic flux may be directed towards secondary 

pathways in nonproliferating cells (Mak and Doran 1993). To this point, investigators 

have only been able to identify a significant G0 population in culture or present indirect 

evidence to suggest a function of this population, but have not been able to explicitly 

correlate the noncycling cells to other cellular metabolic information.   

One way to test the hypothesis that noncycling cells are more active in 

accumulating paclitaxel is by using a multi-parametric flow cytometric staining approach 

to simultaneously identify noncycling cells and paclitaxel-accumulating cells. Cultures 

should be elicited with MeJA, followed by digestion of aggregated cultures into single 

cells (Naill and Roberts 2004) and then dual stained for paclitaxel and EdU based on the 

methods described in this dissertation. One primary difficulty is that intact single cells 

must be used for this type of analysis, rather than nuclei, which were used in this 

dissertation for DNA content and EdU analysis. Hence experiments will have to be 
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conducted to establish a reproducible method to analyze DNA and EdU in single cells. 

Another complication will be design of these experiments with respect to specifically 

identifying the precise timing of addition of MeJA and EdU. For efficient EdU 

incorporation, early exponential phase cells (day 4 to day 7) should be used as the cells 

are actively dividing in this phase, allowing cycling and noncycling cells to be 

distinguished. For paclitaxel staining, cells must have accumulated a sufficient amount of 

paclitaxel for detection, which typical begins after 4 to 5 days post MeJA-elicitation (as 

measured by HPLC/UPLC). However, continuous incubation with EdU can affect the 

distribution of cells in the cell cycle, and can also result in cell toxicity. Such effects have 

been observed with BrDU (Yanpaisan et al. 1998), which is an analog of EdU. Hence, 

experiments will have to be performed to figure out the precise timing of MeJA and EdU 

addition. To account for the issues of spectral overlap of dyes, singly-stained samples (as 

well as an unstained sample) should be analyzed in parallel, followed by the generation 

of a compensation matrix using the FlowJO software. Simultaneous analysis of more than 

one parameter along with cell proliferation (BrDU incorporation) has been used 

previously in other cell systems (Rosato et al. 2001; Pechhold et al. 2009). The 

information gained from this study will provide insight into regulation of paclitaxel 

metabolism in specific cell populations.  
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6.2.3 Metabolic engineering of Taxus cell cultures 

6.2.3.1 Further characterization of global molecular-genetic regulatory networks to 

enable metabolic engineering  

Though initial efforts to compare gene expression profiles using Illumina sequencing 

amongst cultures with different bulk paclitaxel/taxane accumulation patterns have been 

initiated, a detailed characterization of pathways still needs to be established before the 

best targets for metabolic engineering can be selected. Once targets are identified, 

experiments can be designed to either overexpress or silence the target genes, and effects 

on taxane accumulation can be assessed.  

Aggregate size has been shown to be an important parameter which can affect the 

levels of secondary metabolite accumulated in several plant cell culture systems (Edahiro 

and Seki 2006; Bolta et al. 2003; Zhao et al. 2003), including paclitaxel accumulation in 

Taxus suspension cultures (Kolewe et al. 2011). As cell aggregate size is governed by 

cohesiveness of cell wall, genes involved in cell wall biosynthesis likely contribute to 

presence of different sized aggregates within a culture. The recent transcriptome data 

obtained can be grouped based on molecular function, e.g., cell cycle progression or cell 

wall biosynthesis. Grouping the genes based on cell wall biosynthesis can potentially 

provide a list of genes that are differentially expressed in small and large aggregate 

cultures. These results can be used to identify genes/pathways responsible for 

morphological differences in the cultures, and potentially for differential paclitaxel 

accumulation. Genes that are shown to be involved in aggregation would be a target for 

gene silencing approaches, to allow for smaller aggregate sizes. Overall, further analysis 
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of the available transcriptome data will provide a superior understanding of Taxus 

metabolism and its regulation at the level of transcription. 

6.2.3.2 Agrobacterium-mediated stable transformation method 

The targeted metabolic engineering of Taxus cells in culture requires a method for stable 

transformation. Agrobacterium tumefaciens provides an ideal method of stable 

transformation in Taxus cell culture (Ketchum et al. 2007). A single paper describes the 

Agrobacterium-mediated transformation of Taxus (Ketchum et al. 2007); however, this 

method was not reproducible in our lab due to possible somaclonal variation of Taxus cell 

lines derived from the same original stock (Vongpaseuth 2011). To facilitate the 

development of the transformation protocol, we collaborated with the Van Eck group at 

the Boyce Thompson Institute for Plant Research. The Van Eck group has successfully 

established Agrobacterium-mediated transformation protocols for other plant species 

(Ganapathi et al. 2001; Eck et al. 2006), and were able to develop a successful working 

protocol for our Taxus cell cultures. Now that Agrobacterium-mediated transformation 

has been demonstrated with our cell lines, future work will focus on developing superior 

cell lines with enhanced performance characteristics (e.g., higher yields of paclitaxel). A 

combination of overexpression or RNAi strategies can be used to divert flux towards 

paclitaxel synthesis. Ultra performance liquid chromatography (UPLC) can be utilized to 

investigate the effect of overexpression or knockout of target genes on the accumulation 

of paclitaxel and other taxanes in both MeJA-elicited and mock-elicited cells. 
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