
J. Appl. Phys. 127, 241101 (2020); https://doi.org/10.1063/5.0012376 127, 241101

© 2020 Author(s).

Molecular and thermodynamics descriptions
of flow-induced crystallization in semi-
crystalline polymers 

Cite as: J. Appl. Phys. 127, 241101 (2020); https://doi.org/10.1063/5.0012376
Submitted: 30 April 2020 • Accepted: 04 June 2020 • Published Online: 22 June 2020

 Wei Chen, Qianlei Zhang, Jingyun Zhao, et al.

COLLECTIONS

Paper published as part of the special topic on Advances in Processing and Structural Characterization of Complex

Soft Matter

 This paper was selected as an Editor’s Pick

ARTICLES YOU MAY BE INTERESTED IN

Understanding flow-induced crystallization in polymers: A perspective on the role of
molecular simulations
Journal of Rheology 63, 203 (2019); https://doi.org/10.1122/1.5056170

Influence of interchain interactions on the tumbling of chains in a polymer melt during shear
flow
Journal of Rheology 64, 941 (2020); https://doi.org/10.1122/8.0000013

Numerical calculation of free-energy barriers for entangled polymer nucleation
The Journal of Chemical Physics 152, 224904 (2020); https://doi.org/10.1063/5.0009716

https://images.scitation.org/redirect.spark?MID=176720&plid=1857431&setID=379065&channelID=0&CID=683627&banID=520741325&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=6b7428f39f88a83c980d213bbba0a8ac3c995aa5&location=
https://doi.org/10.1063/5.0012376
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=jap
https://doi.org/10.1063/5.0012376
http://orcid.org/0000-0001-8334-0024
https://aip.scitation.org/author/Chen%2C+Wei
https://aip.scitation.org/author/Zhang%2C+Qianlei
https://aip.scitation.org/author/Zhao%2C+Jingyun
/topic/special-collections/apsccsm2021?SeriesKey=jap
/topic/special-collections/apsccsm2021?SeriesKey=jap
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=jap
https://doi.org/10.1063/5.0012376
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0012376
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0012376&domain=aip.scitation.org&date_stamp=2020-06-22
https://aip.scitation.org/doi/10.1122/1.5056170
https://aip.scitation.org/doi/10.1122/1.5056170
https://doi.org/10.1122/1.5056170
https://aip.scitation.org/doi/10.1122/8.0000013
https://aip.scitation.org/doi/10.1122/8.0000013
https://doi.org/10.1122/8.0000013
https://aip.scitation.org/doi/10.1063/5.0009716
https://doi.org/10.1063/5.0009716


Molecular and thermodynamics descriptions

of flow-induced crystallization in semi-crystalline
polymers

Cite as: J. Appl. Phys. 127, 241101 (2020); doi: 10.1063/5.0012376

View Online Export Citation CrossMark
Submitted: 30 April 2020 · Accepted: 4 June 2020 ·

Published Online: 22 June 2020

Wei Chen, Qianlei Zhang, Jingyun Zhao, and Liangbin Lia)

AFFILIATIONS

National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film,

CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China

a)Author to whom correspondence should be addressed: lbli@ustc.edu.cn

ABSTRACT

The flow-induced crystallization (FIC) is commonly encountered in the polymer industry as more than 70% of commercial polymers are
crystalline, which needs to be processed before the final application. The complicated external flow field, i.e., shear or extensional flow,
results in a great challenge in understanding the FIC phenomenon from both general thermodynamics and detailed molecular level aspects.
The current tutorial first describes the general phenomenon of FIC from the aspect of different morphologies and enhanced kinetics
induced by the flow. Second, characterization methods for monitoring FIC are introduced. Here, the in situ synchrotron x-ray scattering
and non-equilibrium molecular dynamics simulation are selected as typical examples. Then, the theoretical descriptions of FIC are summa-
rized from the aspects of molecular origin and thermodynamics. The coil–stretch transition theory and later developed stretched network
theory are highlighted, where the former mainly accounts for polymer dilute solution and the latter for highly entangled cases. Also, multi-
step features for the formation of various intermediate states during flow-induced nucleation are depicted. Despite non-equilibrium nature,
the FIC can still be treated by thermodynamics, especially under weak flow conditions. The classic entropy reduction model is introduced
together with later modifications. In all, understanding the fundamental mechanism of FIC is crucial for optimizing external processing
parameters and internal molecular characteristics, and useful to guide current or further applied techniques.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0012376

I. INTRODUCTION

Semicrystalline polymers are the most widely used polymeric
materials, and polyethylene (PE) and polypropylene (PP) together
accounted for 57% of all synthetic polymers.1 Almost all semicrys-
talline polymers need to be processed from the initial melt state to
the final semicrystalline state, where the processing condition plays
a central role. Since the properties of final products are closely
related to the final structure, which is significantly influenced by
processing, researchers and engineers try to establish the process-
ing–structure–property relationship. Concerning processing condi-
tions, flow and temperature are the most important parameters.
The influence of temperature on the crystallization behavior of
semicrystalline polymers has been extensively explored ever since
the early investigation of polymer crystallization. Most conclusions
are obtained in quiescent conditions. Readers interested in such
topics are suggested to other reviews or books.2–10 The polymer

crystallization influenced by flow, namely, flow-induced crystalliza-
tion (FIC), will be discussed in the current work.

In industry, various processing techniques, i.e., melt-spinning,
film casting, film blowing, and injection molding, are used to
obtain different products meeting different application require-
ments. During these processes, the external flow is found to signifi-
cantly enhance the crystallization kinetics and generate oriented
crystallites. Both phenomena are closely related to nuclei density
and oriented crystallite (point-like11 and oriented12 ones as shown
in Fig. 1). Therefore, most research studies in FIC attempt to
couple the external flow parameters (e.g., shearing rate and time)
with final crystal morphology. However, different from quiescent
crystallization, the FIC is far away from the equilibrium state, and
the flow is always complicated in the real application, i.e., multidi-
mensional and non-uniform, resulting in a great challenge in cap-
turing the in situ microstructure evolution under flow.
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Despite external flow conditions, the semicrystalline polymer is
also intrinsically complicated compared with a small molecule. The
long-chain nature of polymer results in much longer relaxation time
as compare with normal Newton fluids.13 As a result, the processing
flow can significantly distort local chain conformation leading to the
anisotropic feature of the polymer melt.14 Later on, the anisotropic
melt suffering from cooling starts to transform into the semi-
crystalline state, where crystallization and chain relaxation start to
compete with each other.15 Therefore, both the rheological behavior of
the polymer melt and microstructure evolution under flow are crucial
to understand the FIC phenomenon. However, several molecular
characteristics of the polymer, i.e., polydispersity and branched archi-
tecture, severely complicate the analysis of experimental data and final
establishment of the process–structure–property relationship.

As a tutorial, we aim to present the basic issues of FIC in the
semicrystalline polymer system. The detailed historical summary of
FIC is far beyond the scope of the current tutorial. The current tuto-
rial is organized as follows. In Sec. II, the general phenomenon of
FIC is presented including oriented crystallite and enhanced crystalli-
zation kinetics induced by the flow. So readers can get a general idea
of FIC. In Sec. III, we present methods for observing FIC. Here, the
synchrotron radiation x-ray scattering and non-equilibrium molecular
dynamic simulation are discussed in detail. In Sec. IV, the theories
accounting for the formation of different crystal morphologies are
presented. The coil–stretch transition (CST) theory and later devel-
oped stretched network model are discussed in detail. These two the-
ories together with their modifications can well explain the
morphology formation under flow from dilute solution to high con-
centrated and melt states. In Sec. V, the thermodynamics treatment of
FIC is presented. Although FIC is a typical non-equilibrium process,
the FIC can be still dealt with by conventional thermodynamics con-
cepts, i.e., Gibbs free energy, to present a thermodynamics phenome-
nological image, especially under a weak flow condition. The
thermodynamics treatment can qualitatively or sometimes even quan-
titatively reproduce the enhanced crystallization kinetics. Finally, the
key features together with our perspectives of FIC are presented.

II. PHENOMENON OF FIC

A. Shear and extensional flow

The flow is inevitable in the real processing of polymers.
Before further addressing the influence of flow on polymer

crystallization, the definition and classification of different flow
fields are briefly discussed. Figure 2(a) shows the inner structure of
an extruder. The extrusion is commonly the very first step before
any further processing of a polymer. The flow field, as shown in
Fig. 2(b), is quite complicated. However, such complicated flow can
be decomposed into two basic flows: the shear flow [Fig. 2(c)] and
extension one [Fig. 2(d)]. An apparent characteristic of the shear
flow is the velocity gradient. For the extension flow, the strain rate
is the same for different positions along the vertical direction. Since
the flow is crucial for FIC, the key parameters, i.e., the strain rate
and strain, have been extensively studied. Most of the research
studies related to FIC adopts one flow field to investigate the influ-
ence of different processing parameters on final crystal morphology
and crystallization kinetics.

FIG. 1. Crystal morphology (T = 135 °C) of i-PP obtained under (a) quiescent condition, and after shearing with a strain rate of 60 (s−1) for the shearing time of (b) 1 s
and (c) 6 s. Reproduced with permission from Housmans et al., J. Therm. Anal. Calorim. 98(3), 693–705 (2009). Copyright 2009 Springer Nature.

FIG. 2. (a) Schematic illustration of the extruder for polymer processing. (b)
The flow field during the extrusion of the polymer melt, where both (c) shear
and (d) extension flow coexist.
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B. Crystal morphology

The crystal morphology in FIC has already shown in Fig. 1,
where both point-like and shish–kebab structures could be formed.
Since the finding of the “shish–kebab” structure initiated the
research of FIC, we will first summarize the state-of-the-art under-
standing of the formation of the shish–kebab structure.

As shown in Fig. 3, the extended chain formed the shish core,
whereas the polymer lamellae or kebab is normal to the extended
shish.16 The lamellae could twist under the low-stress condition as
it did in normal polymer spherulite,16,17 while such twist is largely
suppressed under large stress. Also for kebab, there are two differ-
ent kinds of kebab, namely, macro-kebab and micro-kebab.18 The
macro-kebab can be removed away from the shish through the
addition of a solvent or increasing the temperature, while the

micro-one remains alive within the shish. Therefore, the micro-
kebab is thought to be as stable as the shish core. The micro-kebab
is proposed to be inside the macro-shish and perpendicular to the
macro-shish [Figs. 3(a)–3(c)]. After the discovery of the shish–
kebab structure, researchers proposed various theories and models
to explain the formation of this shish–kebab structure. Pioneers
such as Penning,19,20 Hoffman,21 and Petermann and Keller22,23

have contributed to the understanding of the nucleation and
growth of the shish core. Detailed summary and comparison of rel-
evant research studies are referred to a recent review.24

The flow does not necessarily lead to the formation of a shish
structure. As shown in Fig. 4, the crystal morphology and crystalli-
zation kinetics (t/tQ, tQ is the half-time of crystallization under qui-
escent condition) are determined by the external flow parameters

FIG. 3. Schematic illustration of (a)–(c)
the macro- and micro-shish–kebab
structure, together with the detailed PE
shish–kebab structure under different
stresses. Reproduced with permission
from Keller and Kolnaar, Materials
Science and Technology. Copyright
2006 John Wiley and Sons.
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(shear/strain rate _γ, strain time ts, and strain γ) and intrinsic molec-
ular parameters (reptation time τrep and Rouse time τs).

25 The
boundary between two neighboring regimes is defined by rheologi-
cal parameters, Deborah number, De, or Weissenberg number,
Wi ¼ _γτ. Derep and Des represent chain orientation and chain
stretch. In regime I (Derep< 1 and Des< 1), the polymer chains
remain in the coil state. As a result, the crystal morphology keeps
spherulite, and the crystallization kinetics is the same as that in the

quiescent condition. In regime II (Derep> 1 and Des< 1), the whole
chain starts to be orientated while the local chain conformation is
not stretched. The enhanced crystallization kinetics appears
(t/tQ< 1), but the general crystal morphology is still spherulite. In
regimes III and IV (Derep> 1 and Des> 1), the chain starts to be
stretched. Despite enhanced crystallization kinetics (t/tQ< 1), the
shish structure appears. The prerequisite for the formation of
the shish structure, or the classification of regimes III and IV, is the
temperature dependence of the strain λ (T). This is because suffi-
cient strain needs to be satisfied to generate shish, which is exten-
sively confirmed by experiments and modeling.26–28 Admittedly,
the criteria of different regimes are not strictly represented by De,
namely, De= 1, as mentioned above. The De used here mostly rep-
resents the relative difference between the external flow rate and
the internal relaxation rate.

C. Enhanced crystallization kinetics

Besides the crystal morphology, another apparent change is
the flow-enhanced crystallization kinetics compared with that of
quiescent crystallization. Taking i-PP as an example, the half crys-
tallization time decreases by the orders of magnitude due to the
flow as shown in Fig. 5(a).29 The crystallization kinetics is indepen-
dent of the shear rate and shearing time.31 Such enhanced crystalli-
zation kinetics is mainly attributed to the significantly increased
nucleus density and growth rate. Figure 5(b) shows the influence of
the shear rate on the nucleation rate. Compared with that in quies-
cent crystallization, the nucleation rate can be increased up to two
orders of magnitude.30 Such an increase seems to follow the expo-
nential function. The flow would eventually lead to an increasing
nucleation rate once the flow rate exceeds a critical value. For
example, for i-PP (Mw= 55 600, Mn= 376 000, and tacticity =
87.6%), the critical shear rate is 0.048 s−1 (T = 140 °C).32

FIG. 4. The crystal morphology and crystallization kinetics evolution in different
flow regimes. Reproduced with permission from Housmans et al., J. Therm.
Anal. Calorim. 98(3), 693–705 (2009). Copyright 2009 Springer Nature.

FIG. 5. (a) The half crystallization time of i-PP as a function of shear rate with a fixed shearing time of 10 s, where three temperatures are selected (140, 134, and
130 °C). Adapted with permission from Koscher et al., Polymer 43(25), 6931–6942 (2002). Copyright 2002 Elsevier. (b) The dependence of shear rate on the nucle-
ation rate as obtained by the combination of Linkam shear stage and optical microscopy. Reproduced with permission from Coccorullo et al., Macromolecules 41(23),
9214–9223 (2008). Copyright 2008 American Chemical Society.
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In addition to increased nucleation density, the later growth
is also significantly different from that in a quiescent condition.
As shown in Fig. 6(a), the multiple-shish, rather than single
shish, is observed in PE blends, where 2 wt. % is the
ultra-high-molecular-weight PE (UHMWPE) and the remaining is
the non-crystalline PE matrix.33 With the presence of this
multiple-shish, the growth rate of kebab, or more precisely, the diam-
eter of the kebab, can be obtained by in situ SAXS measurement as
shown in Fig. 6(b). The calculated growth rate as a function of time
can be fitted by the diffusion-controlled model [G(t)∼ t−1/2]. Such a
conclusion is different from that in quiescent conditions, where the
growth rate in the secondary nucleation theory is constant. This phe-
nomenon is well consistent with the AFM34–36 and simulation
results.37 More detailed experimental result related to the growth is
shown in Fig. 6(c), where increasing shear rate up to 0.3 s−1 results in
one order enhanced growth rate.30

D. Polymorphism induced by flow

The polymorphism is a common phenomenon for the semi-
crystalline polymer. Even for the simplest PE, at least three crys-
talline phases exist: orthorhombic, monoclinic, and hexagonal
phases. Since the macroscopic performance of polymer products
is closely related to the crystal structure,39 an apparent question is

how the external flow would influence the polymorphism.
Compared with crystallization at quiescent conditions, the FIC
happens far from the equilibrium state. As a result, the kinetics
favored, rather than thermal stable crystalline phases could be
obtained. Taking i-PP as an example,38 as shown in Fig. 7(a), the
non-equilibrium phase diagram of i-PP is obtained with the assis-
tance of ultra-fast x-ray scattering technique. Since all experi-
ments were conducted well above the melting temperature of both
crystals, such results suggest that the strong flow can reverse the
thermal stability of crystals and melts. For i-PP, there are numer-
ous crystal structures, such as α, β, γ, and mesomorphic phases,
whose helix conformation is 31. Despite the same helix conforma-
tion, different phases take different packing structures. And
among all phases, the α crystal is the most thermally stable.
However, with increasing strain rate and temperature, the content
of the metastable β crystal also increases. The β crystal is thought
to be a kinetically favored phase under a strong flow. A similar
phenomenon is also observed in other semicrystalline polymer
systems, i.e., poly(1-butene)40 and PE.41 These results suggest that
the competition between thermodynamics stability and crystalli-
zation kinetics dominates the non-equilibrium phase diagram
under flow. This structural information could provide roadmaps
for obtaining polymer products with desired properties through
tuning flow parameters.

FIG. 6. (a) The multiple-shish structure as captured by scanning electron microscopy (SEM); (b) the growth rate of kebab. Adapted with permission from Hsiao et al.,
Phys. Rev. Lett. 94(11), 117802 (2005). Copyright 2005 American Physical Society. (c) The lateral growth rate as a function of shear rate. Reproduced with permission
from Coccorullo et al., Macromolecules 41(23), 9214–9223 (2008). Copyright 2008 American Chemical Society.

FIG. 7. (a) The non-equilibrium phase
diagram of i-PP in strain rate–tempera-
ture space. M represents melt state,
and S represents shish formation. (b)
The relative content of the metastable
β crystal in strain rate–temperature
space. Reproduced with permission
from Ju et al., Macromol. Rapid
Commun. 37(17), 1441–1445 (2016).
Copyright 2016 John Wiley and Sons.
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III. METHODS FOR OBSERVING FIC

The ex situ studies of the FIC are the mainstream during the
last century, and even up to date, this strategy still has great vitality.
Experimental evidence, including the crystal structure and morphol-
ogy, are crucial to the understanding of the FIC by retracing the FIC
process. This strategy is applicable in general polymer crystallization
research.7 However, the in situ observation of FIC is preferred, which
can provide direct evidence of micro-structural information during
FIC. With the fast development in characterization techniques in the
last two decades, the in situ characterization of FIC from the polymer
melt to the final crystalline state becomes possible. Techniques, such
as rheo-AFM,34 rheo-X-ray,33,42 rheo-IR,43 and rheo-Optics,14,44 have
been successfully utilized to track the microstructure evolution
during FIC, especially the initial part. Also, the development of both
hardware and software in molecular dynamics (MD) simulation pro-
vides a great opportunity for us to track FIC at the molecular level.
Here, the x-ray scattering based on the synchrotron radiation facility
and MD simulation is selected as typical examples to show current
efforts to elucidate the detailed molecular origins of FIC.

A. In situ x-ray scattering

With the fast development of synchrotron radiation facility, the
extremely high brilliance ensures the microstructure characterization
of FIC with both high spatial (<100 nm) and time resolution (<1ms).
For the collection of most recent achievements in applying synchro-
tron radiation x-ray scattering (SRXS) in the investigation of FIC,
readers are referred to other reviews.12,45 Here, the selected examples
mainly related to the setup of the experiment are shown below.

1. Extensional flow

Figure 8(a) shows the extensional rheometer commonly
coupled with synchrotron radiation x-ray scattering for in situ
measurement.46–48The strain rate is controlled by the rotational
rate of two rotational clamps, which rotate oppositely. Since the
positions of these two clamps are fixed, the sample cavity is fixed,
which ensures high flow homogeneity. Figure 8(b) shows a typical
2D SAXS pattern of high-density PE (HDPE) at a strain of 2.5
(strain rate is 15.7 s−1, T = 125 °C). The two streaks appear perpen-
dicular to the extensional direction are assigned to the shish struc-
ture. Therefore, the formation of the shish core can be in situ

captured by SR-SAXS as summarized in Fig. 8(c). It shows that the
shish structure can only appear with a strain larger than 1.57. For
the customized extensional rheometer, parameters including exten-
sional temperature, rate, and time can be well controlled, and it can
be easily coupled with in situ characterization techniques, i.e., IR
and x-ray scattering.

FIG. 8. (a) Schematic illustration of the setup of the extensional rheometer installed in the synchrotron x-ray beamline. (b) 2D SAXS pattern. The extensional direction is
indicated. (c) The shish content as a function of strain under different strain rates. Reproduced with permission from Yan et al., Macromolecules 43(2), 602–605 (2010).
Copyright 2010 American Chemical Society.

FIG. 9. Schematic illustration of different shear geometries: (a) cone-plate, (b)
rectilinear parallel plates, (c) rotating parallel plates, and (d) slot flow. (e) The
setup of the Linkam shear stage in synchrotron radiation x-ray scattering beam-
line. Reproduced with permission from Somani et al., Macromolecules 33(25),
9385–9394 (2000). Copyright 2000 American Chemical Society.
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2. Shear flow

Despite the extensional mode, another common method to
apply external flow is shearing. There are numerous modes for
shearing, i.e., cone-plate [Fig. 9(a)],49 rectilinear parallel plates
[Fig. 9(b)],50,51 rotating parallel plates [Fig. 9(c)],52,53 and slot flow
[Fig. 9(d)].44,54 Both cone-plate and rectilinear parallel plates
provide a uniform shear rate, whereas the other two show the
shear rate gradient. Here, one most widely used shear stage—the
Linkam shear stage, or more specifically Linkam CSS450—is pre-
sented. The Linkam shear stage is based on the rotating parallel
plates. Figure 9(e) shows a typical setup of the Linkam shear stage
in the synchrotron radiation x-ray scattering beamline.55 Such
shear rate gradient leads to more convenient detection of FIC
under different shear rates. Also, all measurements could be done
with a fixed temperature, which eliminates possible uncertainty
reproducing the thermal history with repeated measurements for
different shear rates.

Despite above shear geometry, another kind of shear is
achieved through the introduction of fiber. Figure 10(a) shows
the design of a shearing device coupled with micro-focus SRXS,
where fiber is used for applying the shear flow. The micro-focus
x-ray scattering can provide a high spatial resolution of the
whole sample after step shearing as shown in Fig. 10(b).
Therefore, the detailed micro-structure evolution after step
shearing can be obtained [Fig. 10(C)]. If the shearing is applied
well above the melting temperature of the sample (Tm= 165 °C),
no crystal is observed [Figs. 10(c)–2(d)]. Furthermore, cooling
the temperature to 138 °C leads to the appearance of cylindrical
crystallites together with enhanced crystallization kinetics. Also,
as shown in Figs. 10(c)–10(c), an induction period is obtained
when later crystallized at 138 °C. Such results suggest that the
shear-induced precursor is non-crystalline, and sufficient time is
required for transformation from non-crystalline state to crystal-
line one.56

3. Multidimensional flow

As discussed in Sec. II A, in the real industry, the multidimen-
sional, rather than simple shear or extensional flow, would be
encountered. Here, the biaxial stretching, portable extruder, and
film blowing are selected typical examples to show recent efforts
attempting to the in situ characterization of microstructural evolu-
tion under different flow conditions.

Figure 11(a) shows the design of a portable extruder which
can be installed in the x-ray beamline of the synchrotron radiation
facility.57 The extruder is usually the first step for polymer process-
ing. The flow field is not uniform as already shown in Fig. 2. The
flow field condition can be controlled by the mandrel and extrusion
piston. With the assistance of synchrotron x-ray scattering, Chang
et al. investigated the influence of different extrusion conditions on
the microstructure evolution of i-PP. Thus, obtained structural
information together with the well-controlled rheological informa-
tion provides sufficient hint for the correlation between flow
parameters and microstructural evolution during extrusion.

Another frequently encountered flow is the biaxial stretching
as shown in Fig. 11(b). Limited by the available space in the syn-
chrotron beamline, the biaxial stretching machine needs to be mini-
mized but kept the main feature of biaxial stretching. Chen et al.
designed and successfully applied the biaxial stretching machine in
BL16B of Shanghai Synchrotron Radiation Facility (SSRF), where
the biaxial stretching of natural rubber was conducted.58 With the
continuous increase of the stretching ratio along with two perpen-
dicular directions, it was found that the strain-induced crystalliza-
tion (SIC) of natural rubber could be suppressed with λx/λy< 1.6.
Such results challenge the widely accepted self-reinforcement
mechanism of natural rubber under deformation.

The flow conditions become even more complicated during
film blowing. As shown in Fig. 12, to mimic the film blowing
process and meet the space requirement in synchrotron radiation
beamline, the film blowing is minimized, whereas the key functions

FIG. 10. (A) Schematic illustration of the setup of the shear apparatus for FIC, where the shear is achieved by the fiber. (B) Optical microscopy picture of real
shearing and detection region for micro-focus SRXS. (C) Optical microscopy pictures of the i-PP sample after shearing at a temperature of (a) 160, (b) 170, (c) 175, and
(d) 180 °C, together with a corresponding contour plot of crystallinity as captured by micro-focus SRXS. Reproduced with permission from Su et al., Macromolecules
47(13), 4408–4416 (2014). Copyright 2014 American Chemical Society.
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are the same as those of apparatus in the real industry.59–65 The flow
field during the film blowing process is intrinsically biaxial, where
the horizontal extension of the bubble induced by blowing air and
the vertical one induced by the nip rolls. Here, the flow is character-
ized by the particle tracking method where the particle is captured
by CCD, and the temperature is detected by the infrared (IR) ther-
mometer. The in situ synchrotron radiation x-ray scattering, WAXS/
SAXS, was applied to capture the microstructure evolution right
above the die. It was found that the crystallinity at the frost line,
where the bubble diameter reaches the maximum, is determined by
both external flow field and internal molecular characteristics of
polymers. And the non-deformed crystal-based scaffold is formed at
the frost line. Despite FIC, the temperature gradient exists during the
film blowing process, namely, the temperature induced crystallization
(TIC) competes with FIC through the whole process.60

The flow in real processing is always complicated. But the
knowledge obtained by the above simple extension and shear rhe-
ometers is useful to understand the FIC in such non-uniform flow
and temperature fields. Moreover, the final crystal morphology,
either point-like or shish structure, can be obtained through proper
selection of a polymer material and processing parameters.60 The
development of such in situ equipment provides great opportuni-
ties for researchers in both industry and academics to obtain the
desired properties of polymer products.

B. Simulation

One great advantage of simulation is the capturing of the
detailed molecular feature under flow. Utilizing non-equilibrium
molecular dynamics (NEMD) simulations, the researchers can track

FIG. 11. (A) Schematic illustration of
the portable extruder for in situ WAXS
measurement together with the
installed equipment in SSRF.
Reproduced with permission from
Chang et al., Rev. Sci. Instrum. 89(2),
025101 (2018). Copyright 2018 AIP
Publishing LLC. (B) (a) The setup of
the biaxial stretching machine in
BL16B of SSRF; the comparison of (b)
biaxial stretching and (c) uniaxial
stretching. Reproduced with permission
from Chen et al., ACS Appl. Mater.
Interfaces 11(50), 47535–47544
(2019). Copyright 2019 American
Chemical Society.
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the trajectory of every single monomer upon crystallization under
flow, and the information at the molecular level is, therefore, accessi-
ble. The local/global order parameters are introduced in a simulation
study to extract evolutions of many properties such as local structure,
conformation, orientation, density, and crystallinity. In Fig. 13, the
snapshots of systems clearly show the crystallization process of the
polymer melt under extension flow, where the crystalline domains are
colored in white.66–68 Meanwhile, the structures within amorphous
domains are identified, the distributions of folds (yellow), tie chains
(red) and cilia (green) tell how the networks forming during FIC.

On the other hand, the thermodynamic quantities of polymer
crystallization can be calculated by MD simulations even though
the FIC is non-equilibrium in nature. Recently, Nicholson et al.
developed a method based on the mean first passage time (MFPT)
to quantitatively characterize the kinetics and physics of FIC.69 In
Fig. 14, how the critical free energy barrier (ΔG*), the critical size
of the nucleus (n*), and the monomer attachment rate (f1) change
with shear rate (or Weissenberg number Wi) are given for both
shear and extension flows. That information extracted from MD
simulations shed some light on understanding polymer crystalliza-
tion as the nucleation events at temporal and spatial resolutions
that present particular challenges to the experiment.

IV. MOLECULAR ORIGIN OF FIC

In Secs. I–III, the general phenomena of FIC, i.e., crystal
morphology and crystallization kinetics, and techniques used

for tracking FIC are presented. In Sec. IV, the molecular origin
of FIC will be addressed first, which could provide a theoretical
explanation for the formation of different crystal morphologies.

A. Coil–stretch transition

Following Peterlin’s work,71 De Gennes theoretically predicted
that an abrupt transition from a random coil to extended chain
conformation, namely, coil–stretch transition (CST), when the
strain rate _ε exceeds a critical value ( _εc) [Fig. 15(a)].

72 In CST, no
stable intermediate chain conformation exists.24 One parameter,
namely, Deborah number De ¼ _ε*τc, can be used to quantify such
phenomenon: _ε is the macroscopic strain rate, and τc is the termi-
nal relaxation time of the polymer chain, which is closely related to
the molecular weight.

Later on, Keller and Kolnaar first validated this prediction
through the elegant design of the extensional flow device as shown
in Fig. 15(b).70 The birefringence of PE dilute solution starts to
change abruptly when the CST happens [Fig. 15(c)]. The results
also show that the critical strain rate _εc is molecular weight depen-
dence: _εc∝M

−1.5. Therefore, the longer chain is more easy to be
stretched. This provides a hint for the mechanism for the formation
of the shish–kebab structure, where the long-chain mostly partici-
pates in the shish formation.

The direct visualization of the CST of the single polymer
chain is also achieved in the fluorescently labeled DNA system.73–78

The experimentally direct visualization of the CST is merely valid

FIG. 12. (a) Schematic illustration of
the film blowing process; (b) the
customer-built film blowing machine
installed in the synchrotron x-ray beam-
line 16B, Shanghai Synchrotron
Radiation Facility (SSRF). (c) The in
situ characterization methods, including
WAXS/SAXS for microstructure and
CCD for the flow field. Reproduced
with permission from Zhao et al.,
Polym. Test 85, 106439 (2020).
Copyright 2020 Elsevier.

Journal of
Applied Physics

TUTORIAL scitation.org/journal/jap

J. Appl. Phys. 127, 241101 (2020); doi: 10.1063/5.0012376 127, 241101-9

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


in the dilute solution of the macromolecules with long Kuhn
lengths, such as DNA or protein. The direct visualizations of
common commercial polymers are not accessing in the experi-
ments. The molecular dynamics (MD) simulation provides a good
supplement for the study of CST in the polymer systems.77–82 The
MD simulations extend the study of CST into the situation of
stronger external fields and variable polymer systems including
solutions of linear polymers, branched polymers, ring polymers,
and tethered polymers.

Although CST originally proposed to describe the chain
dynamics of the polymer chain under flow in dilute solution, the
extension of CST to the concentrated solution and even the melt
state is also attempted. Different from the polymer chain in the
dilute solution, the polymer chains in the concentrated solution
and melt are highly entangled with each other. In other words, the
polymer network, rather than a single chain, starts to be considered
in dealing with the mechanism for the formation of flow-induced
morphology.70 As shown in Fig. 16 by Keller, further increasing the
strain rate to _εn leads the whole polymer chains deform as a
network. The two lines of _εc and _εn get close to each other with
increasing the concentration. If there is no crossover between these
two lines, the CST holds for both the solution and the melt state as
shown in Fig. 16(a). Otherwise, CST holds for concentration below
C*, and for the melt state, the molecular origin needs to be revised.
However, the prerequisite for the foundation of CST is the hydro-
dynamic effect, which exists in a dilute solution case. In other

words, for the homopolymer, the theoretical foundation of CST in
the melt or highly entangled states does not exist anymore.12 The
sudden transition from a random coil state to a stretched one
would be replaced by transient transition with multiple intermedi-
ate states.

B. Stretched network model

In addition to CST, there exist other models accounting for
the formation of shish–kebab structure formation. Among them,
the stretched network model stands out due to its success in
explaining the formation of the shish–kebab structure in a highly
entangled state. As early as 1984, Smook and Pennings proposed
that the stretched network during flow is responsible for the for-
mation of the shish–kebab structure during gel spinning as shown
in Fig. 17.83,84 For the ultra-high molecular weight PE
(UHMWPE), highly entangled network is formed in the gel state
before spinning, and the elastic flow instability is also encountered
at a low flow rate. During extrusion, the inhomogeneous network
consisting of entanglements of different lifetime deforms inhomo-
geneously: the entanglement with short lifetime migrates or
relaxes easily, while that with long lifetime bears the external flow
leading to the formation of oriented chains. During the continu-
ous flow, the oriented chains form the shish while the unoriented
ones form the kebab.

FIG. 13. The development of the
network during crystallization, and the
snapshots are extracted from the tra-
jectory of MD simulations. Reproduced
with permission from Yamamoto et al.,
Macromolecules 52(4), 1695–1706
(2019). Copyright 2019 American
Chemical Society.
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For the polymer melt under flow, Janeschitz-Kriegl et al.
introduced the dormant nuclei, which is intrinsically a precursor
with a shape of fringed micelle.86–88 Once the flow strength exceeds
the critical value, those dormant nuclei would transform into
point-like nuclei and align along the flow direction. And further
increasing the flow strength leads to the merge of these nuclei to
form the shish-like nuclei. Later on, some modified models are also
proposed. Figure 18 shows one model proposed by Seki et al. for
depicting the molecular picture of the formation of nucleation by

the flow.85 The flow could lead to the formation of precursors close
to the initial nucleus, and these precursors would be further trans-
formed into more thermal stable nucleus along the flow field. This
eventually leads to the trace of precursor clusters or, namely, shish
nuclei. Later, Cui et al. proposed a ghost nucleation model, which
highlights the importance of the movement of these precursors for
the formation of shish nuclei and enhanced crystallization kinet-
ics.89 Despite existing different models, the key feature induced by
the flow is the significant reduction of the nucleation barrier. As a
result, a more point-like nucleus or shish-nucleus could be formed
under flow.

In all, for the highly entangled polymer, concentrated polymer
solution, or melt states, the entanglement between physically cross-
linking points, rather than the single-chain, is responsible for the
shish–kebab structure formation.

C. Multi-step ordering of flow-induced nucleation

With the fast development of characterization techniques as
mentioned above, a more detailed transient structure, especially the

FIG. 14. The change of (a) critical free energy barrier, (b) critical size of
nucleus, and (c) monomer attachment rate when increasing shear and flow rate.
Reproduced with permission from Nicholson et al., J. Chem. Phys. 145(24),
244903 (2016). Copyright 2016 AIP Publishing LLC.

FIG. 15. (a) Illustration of the coil–stretch transition of a polymer chain in dilute solution as predicted by De Gennes.72 Transition happens within ( _εmin � _εmax), where
_εmin and _εmax are the orders of inversion of the Rouse and Zimm frequency, respectively. And within this range, three possible states exist: a coiled state C, an unstable
state P, and the stretched state S. The CST happen at ϵ = ϵ*. Reproduced with permission from De Gennes, J. Chem. Phys. 60(12), 5030–5042 (1974). Copyright 1974
AIP Publishing LLC. (b) Schematic illustration of the device used by Keller with two opposite jets. (c) The birefringent line observed for PE dilute solution under flow.
Reproduced with permission from Keller and Kolnaar, Prog. Colloid Polym. Sci. 92, 81–102 (1993). Copyright 1993 Springer Nature.

FIG. 16. The critical strains for CST ( _εc) and network formation ( _εn) in strain
rate and concentration space (a) without and (b) with crossover. Reproduced
with permission from Keller and Kolnaar, Prog. Colloid Polym. Sci. 92, 81–102
(1993). Copyright 1993 Springer Nature.
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initial flow induce nucleation (FIN), can be obtained. The initial
microstructural evolution, or the FIC precursor structure, has been
extensively investigated by numerous research groups, i.e., Li and
de Jeu,42,90 Hsiao et al.,33,91–94 Winter et al.,95–98 Kornfield
et al.,44,85,99–101 Peters et al.,25–28 and our group46,56,102–105 ( just a
few are listed here limited by the length of the current article).
Numerous discoveries are found. For instance, the structure of
shish can be either amorphous or crystalline, and not all chains
within shish are fully extended but share the same molecular
feature: chains in shish are highly oriented along the flow direc-
tion.24 Here, the multi-step ordering of FIN is presented as a
general view of the current understanding of the formation of
nucleation under flow.

As shown in Fig. 19, after applying the flow on the polymer
melt, the random coil immediately experiences transition from the
random coil to the helix.106 Later, these rigid helixes start the iso-
tropic–nematic transition to form a locally anisotropic struc-
ture.107,108 Then, the helix bundles are formed as the precursors for
nucleation and growth. Concerning the direct experimental

evidence of the existence of these intermediate states, the IR43 or
Raman109 spectroscopy is extensively used to track the formation
of the helix as these techniques are sensitive to local chain confor-
mation change. For i-PP case, different helix lengths result in dif-
ferent and well-resolved IR absorption lines.110–112 Numerous
rheo-IR experiments were conducted to in situ observe the coil–
helix transition.43,113,114 The non-equilibrium MD simulation is
also used to investigate the conformational transition of i-PP under
extension,115 where more detailed microstructure information
including the number and the length of the helix can be quantita-
tively calculated from the trajectories. These spectroscopy and sim-
ulation results together confirm the multi-step ordering of FIN.

The multi-step feature of FIN is completely different from the
“one-step” nucleation scenario described by classical nucleation
theory (CNT)116 but similar to “two-step” or “multi-step” nucle-
ation as recently proposed in crystallization under quiescent
conditions.117–119 It has been observed that the Weissenberg
number (Wi) and temperature together determine the kinetics of
FIN.118,120 The slow strain rate (Wi < 1) may not lead to a confor-
mational change like the “coil–helix” transition of i-PP89,113,121,122

and “gauche–trans” transition of PE,123,124 thus the nucleation
remains the same as that at the quiescent condition. When Wi >1,
the molecular chains will align and straighten along the direction
of the flow field, which remarkably accelerate the nucleation kinet-
ics, and the orientational ordering of segments occurs before the
onset of crystallization.118,125 Our group has studied the influence
of temperature on the crystallization of polyethylene under flow,120

when the shear applied at a temperature lower than the equilibrium
melting temperature (T0

m), the crystallization kinetics is enhanced
and follows the same pathway as quiescent condition, which is
local ordered structure fluctuation assisted nucleation. Nevertheless,
when the system is sheared at a temperature higher than T0

m, the
density fluctuation takes place before crystallization, and the crys-
tallization kinetics becomes conformational ordering→ density
fluctuation→ nucleation. In Fig. 20, the snapshots present the
spatial distributions of density (Voronoi Volume), oriented ordered
segments (CO parameter), and the clusters in the system. The CO
parameter is calculated by

CO ¼ l2 � (2P(θ)þ 1), (1)

where P(θ) ¼ (3cos2θ � 1)/2 is the orientation parameter and l is
the length of all-trans segments. Higher CO value indicates that the
conformational ordered segments have a longer length and higher
orientation. The regions with a higher CO value correspond to
high-density domains in the system, and within these high-density
domains, the nucleation takes place subsequently. This picture sug-
gests that the FIN may be a multi-step ordering process with
density fluctuation as the intermediate state.

Many research groups have made a great contribution to this
issue using computational techniques, i.e., Muthukumar
et.al.,126–128 Rutledge et al.,129,130 Sommer et al.,131–133 Hu
et al.,134–136 and Yamamoto137–139 ( just a few are listed here due to
the length limitation). The microscopic evidence can be a compen-
sation of experimental results and also shed some light on the fun-
damental understanding of this non-equilibrium crystallization
process.

FIG. 17. Illustration of the flow scheme of UHMWPE during gel spinning, where
the bundles of the oriented molecule (dark line) and a cluster of unoriented mol-
ecules form alternatively. Adapted with permission from Smook and Pennings,
J. Mater. Sci. 19(1), 31–43 (1984). Copyright 1984 Springer Nature.
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V. THERMODYNAMICS DESCRIPTION OF FIC

The molecular origin of FIC as discussed above mainly
accounts for different crystal morphologies induced by flow,
whereas the theoretical treatment of the enhanced crystallization
kinetics during FIC is still missing. Herein, the thermodynamics
description of FIC will be presented. Although the FIC is an intrin-
sically non-equilibrium state, the FIC can still be treated by classical

thermodynamics concepts, especially for that in weak flow
conditions.

A. Entropy reduction model (ERM)

The first experimental evidence of FIC is believed to be attrib-
uted to Penning’s work in the 1960s, where the later well-known
shish–kebab structure is found.19,20 However, almost two decades
ago, Flory proposed a model, namely, entropy reduction model
(ERM), accounting for the strain-induced crystallization (SIC)
in natural rubber.140 The ERM is extensively used in understanding
FIC and owns great success in interpreting the enhanced nucleation
rate.

FIG. 18. Schematic illustration of the
nature of the shear-induced nucleation
together with subsequent lateral growth
of oriented lamellae above the thresh-
old shear stress.85 (a) The long-chain
(bold line) adsorbs onto the point-like
nucleus, whereas the dangling
segment becomes oriented during
external shear. (b) More chains adsorb
this nucleus and their dangling
segment forms “streamers” close to the
existing nuclei. (c) More nuclei appear
due to the increased local segment ori-
entation. (d) More chains adsorb to
these formed nuclei and align along
the shearing direction. (e) The lateral
growth perpendicular to the shearing
direction. Reproduced with permission
from Seki et al., Macromolecules 35(7),
2583–2594 (2002). Copyright 2002
American Chemical Society.

FIG. 19. Molecular description of the microstructure evolution of FIC from the
initial random coil in the melt state to the final crystalline state. The multiple
intermediate states exist, including coil–helix transition, isotropic–nematic transi-
tion, and the formation of nucleus through the packing of bundles. Reproduced
with permission from Wang et al., Macromolecules 49(5), 1505–1517 (2016).
Copyright 2016 American Chemical Society.

FIG. 20. The snapshot of the non-equilibrium MD simulation of polyethylene.
The well overlapped spatial distribution of high CO region, high-density domain,
and nuclei suggests that crystallization takes place via density fluctuation under
flow. Reproduced with permission from Tang et al., J. Chem. Phys. 149(22),
224901 (2018). Copyright 2018 AIP Publishing LLC.
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The classical nucleation theory describes the nucleation rate
as116,141

I ffi
NkBT

h
exp �

ΔG*
þΔGη

kBT

� �

, (2)

where h and kB are Plank and Boltzmann constants, respectively; N
is the total number of particles in the system; and T is the tempera-
ture (K). ΔG* represents the maximum activation free energy for
nucleus formation as shown in Fig. 21(a), and ΔGη represents the
free energy for one particle diffusing from the melt to crystalline
domains.

For polymer, due to the connectivity of the segment, the initial
melt is no longer isotropic under flow. As a result, the polymer chain
in the deformed melt already deviates from the initial random coil
state or the Gaussian chain. This is the origin of the name

“strain-induced crystallization,” where strain here represents the devi-
ation of the polymer chain from the initial Gaussian state. As shown
in Fig. 21(b), such deviation results in the increase in the free energy
of the polymer chain in the melt state and finally reduces the nucle-
ation barrier ΔGf* for the formation of the nucleus. One great success
of ERM is the estimation of the reduction of ΔG* in Eq. (2). Rooted
in the rubber elasticity theory, the free energy reduction of the ori-
ented polymer melt is attributed to conformation entropy reduction
ΔSf, which can be estimated by the statistical mechanics. Based on

ERM, ΔSf ¼
kB �N
2

� �

24m
π

� �0:5
λ� λ2 þ 2

λ

� �

h i

, where λ is the stretch

ratio, and m and �N are the numbers of Kuhn segment per network
chain and network chain per unit volume, respectively.140,142

Therefore, the reduced ΔGf* can be quantitatively calculated.

B. Modified ERM

In ERM, the simple affine deformation works quite well for
the natural rubber system as the system is highly crosslinked.
Concerning the polymer melt, however, only physical entangle-
ments exist in most real applications. Therefore, the chain dynam-
ics is required to be considered. Later on, based on the Doi–
Edwards model and independent alignment approximation,13,143 a
microrheological model, namely, (DE-IAA), was proposed.144 The
key feature of this model is the modification of the free energy of
the polymer melt under steady flow. The free energy is calculated
based on the strain rate and chain relaxation (DE memory func-
tion), which is, thus, strain rate dependent. Besides the chain relax-
ation under steady flow, such relaxation occurs also after the flow.
Tian et al. designed a step-strain experiment to check the influence
of the strain rate on the nucleation rate.145 A significant reduction
of the entropy change is found after the flow, which is attributed to
chain relaxation. In all, despite numerous modifications of calcula-
tion of the free energy of the polymer melt under flow, the general
scenario as shown in Fig. 21(b) does not change.

FIG. 21. Schematic illustration of the thermodynamics description of the flow-
induced nucleation. (a) Classical nucleation barrier for crystallization under qui-
escent condition; (b) the reduced nucleation barrier induced by the external flow,
but the Gibbs free energy of the nuclei remains unchanged; and (c) both the
Gibbs free energy of the initial melt and final nuclei are reduced under flow
leading to apparent reduction of the nucleation barrier. Reproduced with permis-
sion from Wang et al., Macromolecules 49(5), 1505–1517 (2016). Copyright
2016 American Chemical Society.

FIG. 22. Schematic illustration of differ-
ent crystal morphologies in strain–tem-
perature space after extensional flow.
Reproduced with permission from Liu
et al., Macromolecules 47(19), 6813–
6823 (2014). Copyright 2014 American
Chemical Society.
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Despite the free energy change of the initial polymer melt
induced by flow, that of the formed crystal may also be changed.
Liu et al. found four different crystal morphologies of lightly cross-
linked PE after flow, namely, orthorhombic lamellar crystal (OLC),
orthorhombic shish crystal (OSC), hexagonal shish crystal (HSC),
and non-crystalline oriented shish precursor (OSP) (Fig. 22).103

This finding shows that the invariant crystal structure assumed in
classical ERM is not right anymore. The local packing structure
(crystal phase) and crystal morphology changes, i.e., from point-
like to shish, clearly showing the final free energy should be
changed as shown in Fig. 21(c).

Based on the entropy reduction of the initial melt and free
energy change of the final nucleus, a unified entropy reduction–
energy change (ER–EC) model is proposed. Based on the ER–EC
model, two key parameters, namely, stretch ratio λ and homoge-
neous crystallization temperature can be expressed as103

1

Tc(λ)
¼

1

TC(1)
�

vkB λ2 þ
2

λ
� 3

� �

2ΔH 1�
4σe

ΔHl*

� � , (3)

where TC(1) andTc(λ) represent the crystallization temperatures at
elongation ratios of 1 and λ, respectively; v is the network-chain
density; l* represents the critical nucleus thickness; and σe andΔH
are the surface energy and the enthalpy change of the newly
formed nucleus, respectively. Equation (3) considers not only the
entropy reduction of the initial melt under flow but also the spe-
cific crystal packing structure (ΔH) and shape (l*and σe) of the
newly formed nucleus.

In summary, to interpret the enhanced nucleation rate
induced by flow, various models, including ERM, DE-IAA, and
ER–EC, are proposed based on the classical nucleation theory.
However, this classical theory has been challenged during the last
two decades, especially in the crystallization of small molecules.146

Various new proposed models, i.e., crystallization by particle
attachment (CPA),146 are proposed, which mostly thanks to the
fast development of new characterization techniques (i.e.,
Cryo-TEM). Systems, such as inorganic salt147–149 and bio-
systems,150,151 have shown the multi-step crystallization mecha-
nism. Concerning the polymer system, such a multi-step feature
has also been discovered. Readers are referred to a recent review.12

Either ERM or modified version mostly accounts for the FIC
under uniaxial deformation. However, in real service conditions,

FIG. 23. (a) Illustration of the contributions of entropy ΔSf and segmental orientation f to the overall crystallinity χc. (b) The comparison of the uniaxial and biaxial stretch-
ing; (c) the experimentally obtained crystallinity in λx vs λy space, together with the (d) theoretical fitted one. Reproduced with permission from Chen et al., ACS Appl.
Mater. Interfaces 11(50), 47535–47544 (2019). Copyright 2019 American Chemical Society.
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the multidimensional flow field is more frequently encountered,
i.e., film blowing and biaxial processing of the polymer film.
Despite numerous investigation of FIC under uniaxial deformation,
those under biaxial stretching are quite few. One great challenge
comes from the suitable equipment, i.e., the biaxial stretching
machine that can be installed in the synchrotron radiation beam-
line. Chen et al. recently reported detailed microstructure evolution
of nature rubber under biaxial stretching with the assistance of the
custom-built biaxial stretching machine.58 Different from uniaxial
stretching, the contribution of the conformation entropy reduction
ΔSf and segmental orientation f to the nucleation barrier can
be obtained as illustrated in Fig. 23(a). The nucleation barrier
[Eq. (2)] expressed in ERM only considers the contribution of the
conformational entropy reduction, whereas the segmental orienta-
tion f is missing. Considering the contribution of the segmental ori-
entation f [Fig. 23(b)], the nucleation barrier can be expressed as

ΔG*
f ¼ ΔG*

f�TΔSf � (TΔSori þ ΔUori),

¼ ΔG*
f�TΔSf � (af 2 þ bf 3 þ cf 4),

(4)

where (TΔSori þ ΔUori) represents the contribution of the oriented
segment, which can be further expressed as a Maier−Saupe relation
of Hermans’ orientation factor f. Based on Eq. (4), the calculated
crystallinity χc as shown in Fig. 23(d) is well consistent with the
experimental obtained one [Fig. 23(c)]. The proposed model in this
work provides a new pathway in dealing with the FIC under the
multidimensional flow field.

VI. CONCLUSIONS

In this tutorial, the general description of the flow-induced
crystallization (FIC) was achieved generally through two lines: one
is the detailed molecular picture for the formation of different
crystal morphologies induced by flow, and the other is the general
thermodynamics consideration for enhanced crystallization kinetics
induced by the flow. The important models and theories, including
the coil–stretch transition theory, the stretched network model, and
the entropy reduction model are briefly discussed. Herein, the
basic foundations of FIC together with recent achievements are
summarized.

Considering the publication of Flory’s work in 1947,140 people
have continued working on FIC for more than 70 years. Yet, there
are still numerous debates existing. This reflects the huge difficulty
in fully understanding FIC. Since the FIC is closely related to
industrial application, the continuous effort in understanding FIC
and implementing new characterizations to in situ track the micro-
structure evolution of FIC is required. Since quite few structure fea-
tures exist in the early stage of FIC, namely, the direct detection of
multiple intermediates, different techniques validating various
intermediate structures of different polymers are required. The fast
development of molecular dynamics simulation and advanced
characterization techniques, i.e., synchrotron radiation facility, pre-
sents a greatly promising future to investigate this non-equilibrium
FIC. For instance, the x-ray photon correlation spectroscopy
(XPCS) has been successfully coupled with 3D printing technology
to in situ track both structure and dynamics evolution during

injecting.152 The further deep investigation of the “old” FIC will
continuously help us to better understand different crystal mor-
phology formations during various processing, and optimization of
both external processing parameters, i.e., strain rate and time, and
internal molecular characteristics of polymers, i.e., molecular
weight and polydispersity.
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NOMENCLATURE

CNT Classical nucleation theory
CO Conformational order
CPA Crystallization by particle attachment
CST Coil–stretch transition
De Deborah number
DE-IAA Doi–Edwards-independent alignment

approximation
ERM Entropy reduction model
FIC Flow-induced crystallization
FIN Flow-induced nucleation
MD Molecular dynamics
NEMD Non-equilibrium molecular dynamics
PE Polyethylene
PP Polypropylene
SAXS/WAXS Small/Wide angle x-ray scattering
SIC Strain-induced crystallization
SRXS Synchrotron radiation x-ray scattering
TIC Temperature induced crystallization
Wi Weissenberg number
XPCS X-ray photon correlation spectroscopy
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