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�e brain emerges from the primitive ectoderm as a 
sheet of neuroepithelial cells which folds into the neural 
tube during neurulation1. �e developing nervous 
system is unique for the length of the developmental 
window, the extent of the interplay between di�erent 
anatomical regions and lineages, and the diversity of 
cell types generated. �erefore, the ability of single-cell 
RNA-seq to disentangle the molecular heterogeneity of 
a complex cell pool has been particularly useful to study 
nervous system development2–10. Recent studies have 
shed light on the developing telencephalon5,11, the hip-
pocampus9,12,13, the developing ventral midbrain14–16, the 
developing spinal cord and cerebellum17,18, and the hy-
pothalamic arcuate nucleus and diencephalon19,20. Sin-
gle-cell RNA-seq has elucidated the di�erences between 
embryonic, postnatal and adult neural progenitors9,21,22, 
and compared normal glial progenitors with their 
malignant counterparts23,24. 

To map mouse brain development in detail, we 
collected embryonic brain tissue from 43 pregnant 
CD-1 mice, sampling each day from E7 to E18 (Extended 
Data Figure 1a-b, Table S1). We prepared 105 samples 
by droplet-based single-cell RNA sequencing. A�er 
removing low-quality cells and doublets (Methods), 
96 samples remained with a mean of 5 766 transcripts 
(unique molecular identi�ers, UMIs) and 1 934 genes 
detected per cell (Extended Data Figure 1c-f). �e 
total cellular RNA content dropped as a function of 

embryonic age in all lineages, and then increased again 
in the most mature neurons (Extended Data Figure 
1e-f and Extended Data Figure 2c-d). Erythrocytes 
segregated into primitive and de�nitive erythropoie-
sis and showed exceptionally high UMI counts but low 
gene counts (Extended Data Figure 2a). A transcription-
al signature of cell-cycle activation (Methods) showed a 
clear bimodal pattern where 32% of all cells were cycling 
(>1% cell-cycle gene UMIs; Figure 1 and Extended Data 
Figure 2b). Immature cells from young embryos were 
generally proliferating, whereas more mature cells from 
older embryos had stopped dividing. Postmitotic cells 
expressed a larger proportion of nascent (unspliced) 
RNA relative to mature (spliced) RNA (Extended Data 
Figure 2e), likely due to the induction of lineage-specif-
ic genes when cells began their maturation programs.

A tSNE embedding of the dataset (Figure 1) 
revealed that cells were organized primarily by gesta-
tional age, branching to show the major lineages orig-
inating from the neuroepithelium. A large connected 
component — representing the neural tube and its de-
rivatives — was surrounded by disconnected islets of 
microglia, erythrocytes, and vascular cells, none of 
which are derived from the neuroepithelium. From 
E7 the embryo split into clusters corresponding to the 
three germ layers, then formed the early neural tube. 
By E8-10, the neural crest had formed and from E10 
to E16 di�erentiated into the VLMC (vascular and lep-
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tomeningeal cells25, also known as brain �broblast-like 
cells26) lineage which proceeded to form the two layers 
of the meninges, pia and arachnoid27. �e early neural 
tube then matured into proliferating radial glia, the 
precursors of all neural cells. Two large cohorts of 
neurons branched from the neural tube, one comprising 
forebrain excitatory neurons, and one containing all 
other neuronal types. �e clear separation of forebrain 
excitatory neurons agrees with our previous �ndings 
in the adult mouse brain22, indicating the strong tran-
scriptional and functional specialization of those cell 

types. A�er about E14, radial glia gradually lost pro-
liferative capacity and switched to a glioblast state that 
eventually gave rise to astrocytes, ependymal cells and 
oligodendrocyte precursor cells. �e orderly progres-
sion of successive waves of cell types reveal the coordi-
nated temporal development of the mammalian brain 
(Extended Data Figure 2f).

Focusing �rst on the late gastrulation and early neuru-
lation stages, we extracted E7-E8 cells from our dataset 
(Figure 2a-b) and divided the population into three 
parts (Figure 2b-c): primitive streak-stage cells (Pou5f1 
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and T, ref. 28); non-neural lineage-restricted progenitor 
cells (Foxa2 and Krt8, refs. 29,30); and early neuroepi-
thelial cells (Pax6 and Hes3, refs. 31,32). Aligning our 
dataset to a previously described single-cell atlas of gas-
trulation (Figure 2d-f, ref. 33) con�rmed that our data 
captured a continuous set of cell states from gastrula-
tion and neurulation (Figure 2e) but revealed a greater 
heterogeneity of states than previously reported (Figure 
2f).

Among neural cells we identi�ed fourteen pop-
ulations: twelve neuroepithelial clusters expressing 
Fez1, Sox3, Pax6, and Pdzph134, one neuromesodermal 
progenitor cluster expressing Cdx4, Cdx1 and a set of 
caudal Hox genes35,36 and a population of early neu-
roblasts expressing Nhlh1 and Nhlh237 (Figure 2g-i). 
�e twelve neuroepithelial populations comparably 
expressed a set of stem-cell genes but di�erential-
ly expressed genes linked to spatial patterning (Figure 
2h, refs. 38,39). We recognized anterior populations 
including forebrain, anterior neural ridge and eye 
�eld progenitors (NEpitA1-3), a population expressing 
midbrain, hindbrain and spinal cord pattering factors 
(NEpitMd, NEpitMH, NEpitH and NEpitC) but 
also populations with a stark mediolateral patterned 
signature corresponding to the progenitors located at 
the midline and the neural fold (NEpitML and NEpitB). 
Finally, the population of early neuroblasts showed het-
erogeneous gene expression and likely represented a 
mixture of cells. Comparing these cells with later neu-
roblasts, revealed an enrichment of a midbrain and 
hindbrain signature with telencephalic-speci�c genes 
being less represented, suggesting that the �rst neuro-
blasts appear posteriorly (Figure 2j; Methods).

Next, we examined the neurulation and morphogene-
sis stages, E9-E11. Di�erently from gastrulation, where 
signals for the establishment of the neural plate anter-
oposterior axis are provided extrinsically, during neu-
rulation speci�c neural progenitors, called secondary 
organizers, orchestrate the morphogenesis of the 
brain. We examined the distribution of genes encoding 
morphogens including SHH, WNTs, BMPs, FGFs, Neu-
regulins and R-spondins and found them enriched in 
a subset of E9-E11 radial glia-like cells (Figure 3a-b; 
Extended Data Figure 5a-b). We found four ventralizing 
organizers expressing Shh, four dorsalizing organizers 
expressing Wnts and Bmps, three Fgf-expressing 
organizers that characterized cells at the boundaries 
between regions, and two Neuregulin-expressing 
antihem organizers that appeared later in develop-
ment (Figure 3c-d). �e localization of these organizers 
clusters was corroborated by querying the Allen De-
velopmental Mouse Brain ISH Atlas using Voxhunt 
(Extended Data Figure 5c; Methods; ref. 40).

Because organizer cells were identi�ed by 
clustering, their transcriptomes were distinct from 
those of other cells and not de�ned only by the small 
number of genes described in previous literature. A 

large number of transcription factors and secreted 
ligands and surface receptors were expressed speci�-
cally in subtypes of organizers (Extended Data Figure 
5d-e). For example, Wnt7b and Rspo2 distinguished dor-
salizing organizers in the cortical hem, whereas Wnt3 
and Fzd10 were speci�c to roof plate organizers. Ntf3 
and Sost were expressed by mesencephalic and rhomb-
encephalic roof plate cells, respectively. All dorsalizing 
organizers expressed Wnt9a, Wnt3a, Resp1, Resp3 and 
Bmp6.

�ough de�ned by Shh expression, each of the 
ventralizing organizers were further distinguished by 
region-speci�c expression of secreted molecules. �e 
hypothalamic �oor plate was the only ventralizing 
organizer that expressed Dlk1, a Notch ligand, and was 
distinguished by the absence of Spon1 and Ntn1. Further-
more, the Zona limitans intrathalamica (ZLI) and the 
mesencephalic �oor plate shared expression of Wnt5a, 
Wnt5b and Lrtm1 but were distinguished by Pappa and 
Dkk2 expression, respectively. �ese results establish a 
rich repertoire of secondary organizers secreting com-
binations of morphogens that may act region-speci�cal-
ly to induce locally distinct neuronal fates.

To directly validate these secondary organizers, 
we performed in-situ sequencing41 of 119 genes (Figure 
3c and Extended Data Figure 5d-e) in an E10.5 mouse 
brain (Figure 3e-i). �e spatial distributions of Shh, 
Wnt, and Fgf isoforms clearly revealed the secondary 
organizers (Figure 3f). Moreover, the subtypes of �oor, 
roof, and boundary organizers identi�ed by scRNA-seq 
were revealed as spatial domains of the more general 
organizers (Figure 3g-i), de�ning a more complex 
system of spatial regulation of brain development than 
previously recognized. To summarize the complexity of 
the 119 spatial patterns of expression we clustered the 
in-situ sequencing data de�ning 40 embryonic territo-
ries characterized by a unique repertoire of signaling 
molecules and patterning factors (Extended Data Figure 
6a-b). Overall, the fact that subtypes of organizers were 
both transcriptionally distinct, spatially segregated, and 
expressed distinct sets of ligands and receptors, shows 
that progenitors born in even closely adjacent spatial 
domains are subject to distinct environmental cues.

Box 1 | Resources

�e raw sequence data is deposited in the sequence read 
archive under accession PRJNA637987. 

�e companion wiki at http://mousebrain.org provides 
the following resources:

• An interactive version of Figure 1.

• Expression matrices.

• Metadata

�e analysis so�ware developed for this paper is 
available at https://github.com/linnarsson-lab, in reposi-
tories named cytograph, punchcards and auto-annota-
tion-md. 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.02.184051doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.184051
http://creativecommons.org/licenses/by-nd/4.0/


4La Manno, Siletti et al. Molecular architecture of the developing mouse brain

A distinct clade of the cluster dendrogram comprised 
late glia (Figure 1; clusters 751 and above) and related 
progenitors (Figure 4a and Extended Data Figure 7a-f, 
Methods). Focusing on these cells revealed two major 
groups of radial glia: those that expressed neurogenic 
markers, like Neurog2 or Dlx2, and those that expressed 
glial markers like Tnc or Egfr (Figure 4b-c). We refer to 
the latter as glioblasts, given their likely commitment 
to gliogenesis. More than 6 000 genes were signif-
icantly enriched in one of the two groups (Figure 4d, 
Extended Data Figure 7c-d). Over 600 of these genes 
were cell-cycle related, 89% of which were enriched 
in neurogenic radial glia. Olig1, Olig2, Aqp4, Stat3, 
and glutamate and GABA receptors were enriched in 
glioblasts. To further distinguish progenitors related to 
astrocytes or oligodendrocyte precursor cells (OPCs), 
we compared with genes enriched in these cell types in 
the adolescent mouse (Extended Data Figure 8j).

We previously de�ned seven region-specif-
ic astrocyte types of the adolescent mouse brain22, 
dominated by abundant telencephalic and non-tel-

encephalic subtypes. Consistent with this observa-
tion, non-telencephalic glioblasts and oligodendrocyte 
precursors of mixed forebrain, midbrain, and hindbrain 
origin were distinct from a cluster of predominant-
ly telencephalic glioblasts biased towards astrocytes 
(Extended Data Figure 7e). In contrast, neurogenic 
radial glia split into separate clusters based on region. 
�ese observations suggest a loss of regionalization par-
ticularly in the oligodendrocyte lineage, but also among 
astrocytes. To investigate further, we sampled from our 
dataset six groups of cells - early glia, neurogenic radial 
glia, glioblasts, OPCs, neuroblasts, and neurons – and 
trained a classi�er to identify a cell’s region of origin 
using transcription-factor expression (Extended Data 
Figure 7g-i). �e classi�er was trained on each group 
and tested on the �ve remaining groups. Although 
the results suggest that region-de�ning genes shi� 
throughout development, the classi�er still performed 
relatively well when trained on glioblasts and OPCs, 
demonstrating that some region-de�ning genes were 
still present at low levels (Extended Data Figure 7j).
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Figure 2 | Emergence of cell type heterogeneity from gastrulation to neurulation. a, Scheme of tissue sampling for early neurulation 
timepoints (E7-E8). b, The three subsets of cells sampled at early time points (E7-E8) overlaid on the global tSNE embedding of Figure 1. 
c, Expression of lineage-speci�c marker genes overlaid to the global tSNE as in (b). d, tSNE map of the mouse gastrulation single-cell atlas 
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al cells projected on the embedding describing mouse gastrulation33. f, Pairwise correlation between neurulation-stage clusters of this 
paper with those of Pijuan-Sala et al. g, UMAP embedding of the neuroepithelial cells obtained from timepoints E7-8. Cells are colored 
by clusters. Dashed boxes indicate that the ENbl cluster was repositioned as it was located further in the embedding space. h, A heatmap 
displaying gene expression of enriched genes in each of the neuroepithelial populations. i, Expression of broad neuroepithelial markers 
overlaid on the UMAP in (g). j, Patterning-related gene signature scores computed for the cells in the earliest neuroblast cluster (ENbl). 
Signatures consisted of genes enriched from all the other neuroblast cluster that were sampled from di�erent regions of the brain.
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�e transition from neurogenic to gliogenic 
occurred between E12 and E16 (Figure 4e and Extended 
Data Figure 7e). �e earliest gliogenic cell to appear 
was a cluster unique in its co-expression of Egfr and 
the Notch ligands Dll1, Dll3, and Dll4 (Extended Data 
Figure 7k-l), �is cluster, which was closely related to 
OPCs and might represent a pre-OPC state, expressed 
high levels of Olig1 and Olig2, as well as Crlf1, a soluble 
member of the Cntfr pathway implicated in gliogene-
sis42. �e appearance of astrocytes at approximately E15 
was revealed by increased levels of Gfap, Agt, and Aqp4 
(Extended Data Figure 7k).

To better resolve lineage-speci�c versus shared gene 
expression programs, we inferred a pseudolineage tree 
for the whole dataset (Extended Data Figure 8). We ar-
bitrarily designated a single cell in the early neuroep-
ithelium as the root, and computed shortest paths 
(i.e., geodesics on the manifold) to every other cell on 
the radius nearest neighbor graph (RNN). �e set of 
all shortest paths from the root forms a pseudoline-
age tree, due to the convergence of paths towards the 
root (Extended Data Figure 8a-b). Plotting individual 
pseudolineage trajectories to a few selected single cells 
(Extended Data Figure 8c-d) on the atlas embedding 
con�rmed that pseudolineages agreed with expec-
tations. For example, pia and arachnoid originated 
from the cranial neural crest; astrocytes and OPCs 
were generated from distinct but closely related radial 
glia; and cortical excitatory neurons and forebrain 
GABAergic neurons were derived from distinct radial 
glia precursors.

�e pseudolineage tree provides a tool to investi-
gate gene expression along putative lineage trajectories 
leading to speci�c end states. To do this, we isolated all 
the trajectories that ended in a speci�c cluster (or set 
of clusters), and projected all the single cells in those 
trajectories onto the embryonal pseudoage (Figure 4f-h 
and Extended Data Figure 8e-i). We then calculated 
average gene expression in pseudoage bins. To validate 

this approach, we �rst examined the subtree terminat-
ing in cortical excitatory neurons (Figure 4f) whose 
development is well understood. As expected, cells 
along the trajectory predominantly were located in 
the forebrain. Furthermore, a set of known regulators 
of cortical excitatory neurogenesis was expressed in 
an ordered progression from E11 to E18: Emx1, Eomes, 
Tbr1 and Satb211. RNA in situ hybridization (Allen Brain 
Atlas) con�rmed the timing of expression of these key 
transcription factors (Extended Data Figure 8k).

Expanding the analysis to additional glial and 
neuronal lineages showed the expected lineage markers 
(Figure 4g and Extended Data Figure 8e-i). We noticed 
that nearly all neuronal — but none of the glial — lineages 
passed through an early neuroblast state expressing all 
or most of Nhlh1, Nhlh2, Ebf1, Ebf2 and Ebf3, extending 
the HPF analysis above with lineage-speci�city. �e 
expression of Nhlh1 and Nhlh2, especially in combina-
tion, (Figure 4g, Extended Data Figure 8j) identi�ed a 
pan-neuronal state just at or a�er cell cycle exit (Figure 
1 and Extended Data Figure 2b), which coincided with 
the set of clusters we had manually annotated as neu-
roblasts. Notably, however, the forebrain GABAergic 
lineage appeared to lack Nhlh1 expression, although low 
levels of Nhlh2 were detected.

Human brain cancer is a devastating disease, with a 
median survival of less than two years for glioblasto-
ma. Recent work using single-cell RNA-sequencing 
to determine the cellular composition of glioblastoma 
has suggested that these tumors re�ect a reversion to 
an embryonic cell state resembling neural progenitors, 
OPCs and/or immature astrocytes24,43,44. To unambig-
uously test this hypothesis, we compared human brain 
tumor data — comprising �ve glioblastoma samples 
and one anaplastic astrocytoma45 — with a reference cell 
type catalog constructed by merging the developmen-
tal cell atlas of this paper with our previous adolescent 
brain cell atlas22 (Methods and Extended Data Figure 9).

Each of the tumor samples matched a unique set 
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of reference cell types, but in each case aneuploid cells 
predominantly matched embryonic cell types (mainly 
radial glia and neuroblasts) or adult astrocytes (Figure 
5). In contrast, normal (euploid) cells matched adult 
immune cells, oligodendrocytes and vascular cells. 
Euploid vascular cells invariably matched embryonic 
vascular cells, not adult, likely indicating ongoing angi-
ogenesis. �e tumors di�ered in composition, prolifera-
tive status and the nature of the immune response. For 
example, only the anaplastic astrocytoma showed B cell 
and T cell response, and the most highly proliferative 
glioblastoma (SF11215) was almost devoid of immune 
cells. However, every tumor contained proliferating 
progenitors resembling embryonic radial glia or OPCs. 
With one exception (a neural match in tumor SF11159), 
all aneuploid clusters that matched adult cell types 
were astrocyte, OPC or neuroblast-like; all of which are 
cell types that are phenotypically close to embryonic 
progenitor cells. �us, an unbiased comparison with 
embryonic and adult cell types con�rms the essentially 
fetal cellular nature of human glioblastoma.

Our atlas is a step toward dissecting the principles of 
mammalian nervous-system development and provides 
an overview of the prenatal brain’s transcriptomic 
diversity. �e wealth of information on time-, lineage-, 
and region-speci�c gene expression provides powerful 
tools for genetic targeting, and for understanding genes 
involved in neurodevelopmental disorders and human 
brain cancer.
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Methods

Animals 
CD-1 mice were obtained from Charles River (Germany) and mated 
overnight. �e morning that plugs were detected was considered 
E0.5. Mice were housed with regular dark/light cycle and fed 
standard diet and water ad libitum. All animal procedures were 
approved by the Stockholm ethics committee (N68/14; Stockholms 
djurförsöksetiska nämnd) and followed Directive 2010/63/EU of 
the European Parliament and of the Council, the Swedish Animal 
Welfare Act (Djurskyddslagen: SFS 1988:534), the Swedish Animal 
Welfare Ordinance (Djurskyddsförordningen: SFS 1988:539) and 
the provisions regarding the use of animals for scienti�c purposes: 
DFS 2004:15 and SJVFS 2012:26. 

Dissections
161 embryos between E7 and E18.5 were collected from 36 pregnant 
mothers. Embryos were extracted from the uterine horn and 
dissected in phosphate bu�ered saline (PBS) on ice within one 
hour. Dissections were performed with microsurgical tools under 
a �uorescent stereomicroscope. �e number of embryos dissected 
was adapted to accommodate changes in size and cell numbers in 
the developing brain (see Table S1).
E7 and E8 embryos were cut into two parts to isolate the rostro-ven-
tral neural tube from dorsal tissue including the trophectoderm, 
which was discarded. �e developing spinal cord was identi�ed by 
corresponding somite pairs and also discarded. From E9 and E10 
embryos, we isolated the entire cephalic part, including prospec-
tive forebrain, midbrain, and hindbrain. From E11 onwards, only 
developing brain tissue was dissected and collected; surround-
ing head tissue was discarded. Meninges was removed whenever 
possible. E9 to E11 brains were divided into forebrain, midbrain 
and hindbrain. Forebrain and midbrain were separated at the di-
encephalon; midbrain and hindbrain at the isthmus. E12 to E15 
forebrains were further divided into dorsal (including the hemi-
spheres) and ventral (including the subcortical territories, cau-
doputamen and the ventral striatum) parts. E16 to E18 forebrains 
were divided into dorsal, ventral, and thalamic parts. 

Cell dissociation 
Dissected tissue was processed as previously described, with minor 
modi�cations9,22.  Tissue was transferred to a 2 ml Eppendorf tube 
containing preheated digestion solution (37°C). Before E11 Trypsin 
was used for dissociation; a�er E11 the digestion solution contained 
300 µl TrypLE Express (Life Technologies; cat. no. 12605-010), 
2 000 µl papain solution (Worthington Biochemical; cat. no. 
LK003178; 25 U/ml in cutting solution), 100 µl DNase I (Worthing-
ton Biochemical; cat. no. LK003172; 1 mM in cutting solution) and 
100 µl cutting solution. Enzymatic incubation time was adjusted 
based on developmental stage. �e tissue was kept in a 37°C water 
bath and gently pipetted three times every 10 minutes. A�er 30 min 
at 37°C, another 100 µl of TrypLE solution was added, followed 
by 10 more minutes at 37°C and pipetting. A�er approximately 
45–50 min, dissociation was complete, and cells became visible at 
the bottom of the Eppendorf tube. �e solution was �ltered using 
a 20-µm cell strainer (Falcon cat. no. 352340) and collected in a 
15-ml plastic tube. �e digestion solution was diluted with 2.4 ml 
of cutting solution and 0.6 ml of Neurobasal-A medium (Gibco; cat. 
no. 10888) and centrifuged at 100g for 4 min at 4°C. �e super-
natant was removed and the pellet resuspended in 0.5 ml cutting 
solution and 0.5 ml Neurobasal-A medium. Neurobasal-A medium 
was supplemented with l-glutamine (Gibco; cat. no. 25030- 123), 
B27 (Gibco; cat. no. 17504-044) and penicillin plus streptomy-
cin (Sigma 50x; cat. no. P4458). �e cell suspension was carefully 
transferred with a Pasteur pipette onto an Optiprep gradient. 
For the gradient, 85 µl of Optiprep Density Solution (Sigma; cat. 
no. D1556) was mixed with 457.5 µl cutting solution and 457.5 µl 
Neurobasal medium including supplements. �e gradient was sub-
sequently centrifuged at 80 g for 10 min at 4°C. �e supernatant was 
removed until only 100–200 µl remained. DNase I (10 µl) was added 
to prevent aggregation. �e single-cell density was evaluated. �en 
cells were �ltered with a 20 µm strainer (Partec CellTrics). Cells 

were pelleted, resuspended in cutting solution with DNaseI, and 
loaded into 10X Genomics Chromium v1 chips.

Single-cell RNA sequencing
Droplet-based single-cell RNA sequencing was performed using 
the 10x Genomics Chromium Single Cell Kit v1. Single-cell sus-
pensions concentrated at 500-700 cells/ml were mixed with master 
mix and nuclease free water according to the Chromium manual, 
targeting 3 500 cells per reaction. 12 PCR cycles were used for 
cDNA synthesis. Each library was sequenced using an Illumina 
HiSeq instrument, one sample per lane, with one 98 bp read 
located near the 3′ end of the mRNA. Illumina runs were demul-
tiplexed and aligned to the genome (mm10-3.0.0), and BAM �les 
were obtained from the 10X Genomics cellranger pipeline (version 
3.0.2). Molecule counts were attributed to spliced and unspliced 
transcripts by running velocyto46 (version 0.17.11) with standard 
parameters, resulting in one loom �le (http://loompy.org) per 
sample.

In-situ sequencing by HybISS
HybISS41 was performed as published at protocols.io (http://dx.doi.

org/10.17504/protocols.io.xy4fpyw). Padlock probes, bridge probes 
and detection oligo sequences used are listed in Supplementary 
Table 3. Imaging was performed with a Leica DMi8 epi�uorescence 
microscope equipped with LED light source (Lumencor® SPECTRA 
X), sCMOS camera (Leica DFC9000GTC), and 20× objective (HC 
PL APO, 0.80). ROIs were imaged with 10% overlap and 24 z-stack 
planes with 0.5 μm spacing and then maximum projected in LASX 
so�ware and then tiles exported as raw TIFF �les.

Computational Analysis

Pooling samples and preprocessing for analysis
Loom �les from each 10x sample were aggregated by time point 
and brain region, the latter dictated by our dissection strategy. 
In particular we pooled: Cephalic Neural Tube E7-8, Forebrain 
E9-11, Midbrain E9-11, Hindbrain E9-11, Forebrain Dorsal E12-15, 
Forebrain Ventral E12-15, Midbrain E12-15, Hindbrain E12-15, 
Forebrain Dorsal E16-18, Forebrain Ventrothalamic E16-18, 
Forebrain Ventrolateral E16-18, Midbrain E16-18, and Hindbrain 
E16-18. Cells with fewer than 2 000 UMIs were excluded from 
pooling. Genes expressed in fewer than ten cells or greater than 
60% of cells were excluded from analysis.

Cytograph 2.0
�e analysis pipeline is available as an update to our Cytograph 
package, Cytograph 2.0 (https://github.com/linnarsson-lab/cy-
tograph-dev). Cytograph is under continuous development, and 
the results in this paper were generated at commit 2e8eb79a5f83b-
d9dda15503d9b2476ebdd8fa0b3. We described Cytograph v1.0 
elsewhere22, including gene enrichment (overexpression), trinaria-
tion and clustering. We detail below only the key improvements: 
changes to dimensionality reduction and graph construction; au-
to-annotation; and punchcards.

In brief, we used Hierarchical Poisson factorization (HPF47) 
to decompose the expression matrix into 96 non-negative and 
modular components, while reducing noise and preserving most 
of the structural information in the original matrix. We then 
computed a radius nearest neighbor graph (RNN) using the in-
formation radius (also called the Jensen-Shannon divergence, a 
measure of the Shannon information di�erence) to link cells with 
near-identical gene-expression states. Finally, we clustered the 
RNN graph using modularity (Louvain) to de�ne distinct sets of 
cells representing cell types or states along di�erentiation trajec-
tories. We thus represent the high-dimensional gene expression 
manifold simultaneously as an RNN graph (facilitating analysis 
of continuous processes such as di�erentiation), a set of clusters 
(facilitating comparison between discrete cell states) and the 
components of the HPF (facilitating analysis of modular processes 
shared between cells). For visualization, we embedded the manifold 
in two dimensions using an optimized tSNE projection from HPF 
space (e.g. Figure 1). Unless otherwise speci�ed, the following 
parameters were used: ����, ������������, ���������������
	�, 
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������������, ������������, �������, ��������������������, 
���������������������.

Cytograph uses the following open-source packages, 
and we are grateful to the authors for making such important 
resources freely available to the community: �����, ������ �����, 
�����, �������, ������ �������, �������, ������, �������� 
���, ����� ��������, ����, ���� �����, �����, ������� �������, 
�����������, �����, ���������, ������ and ��������. 

Distance metric, manifold graph, and pseudo-lineage geodesics
In single-cell analysis, it is typical to construct a nearest-neigh-
bor graph by imposing a distance metric on a reduced-dimension-
al space of gene expression. �is graph is a proxy for the manifold 
of allowed gene expression states, and can be used for downstream 
processing such as clustering. However, the standard approach has 
several issues:

• Nearest neighbors need not be close to each other in any absolute 
sense. A lone blood cell among neurons will be nearest to some 
neuron, but not close in any useful sense. 

• Distances are not biologically meaningful. For example, 
“euclidean distance in PCA space” has no intrinsic meaning that 
can be interpreted as a meaningful distance between cells.

• Neighborhood structure on the manifold graph depends 
strongly on sampling density

We address these issues in three ways:

• We use Hierarchical Poisson Factorization (HPF) to model 
the gene expression matrix as a linear combination of factors, 
and show that this model captures nearly all structure in the 
expression matrix (Extended Data Figure 3a-d).

• We use the Jensen-Shannon Divergence, also known as the 
“information radius” as a principled metric that distinguishes 
“near-identical” cells from “dissimilar cells”  (Extended Data 
Figure 3e-i). 

• We de�ne pseudo-lineage trajectories as geodesics along the 
manifold, which therefore correspond to sets of cells that form a 
path connected by pairs of cells within a de�ned maximal infor-
mation radius (Extended Data Figure 8a-b).

Given a pair of cells i, j and their normalized HPF component 
vectors θ

i
, θ

j
 (considered here as probability distributions over the 

components) the Jensen Shannon Divergence (JSD) is de�ned as 

where H( ∙ ) is the Shannon entropy function. �e JSD measures the 
entropy of the average of two cells, compared to the average entropies 
of the individual cells. It is a symmetrized version of relative entropy 
(Kullback-Leibler divergence). For a pair of identical cells, their 
HPF component values are drawn from identical distributions, the 
entropy of the average is equal to the average of entropies, and the 
JSD is zero. For a pair of dissimilar cells, the average of entropies 
is smaller than the entropy of the average, because information is 
lost in averaging. A pleasing property of the JSD is the fact that its 
square root is a true metric (satisfying non-negativity, symmetry, 
identity of discernibles and triangle inequality), which is required 
by some clustering and manifold learning algorithms. �e JSD can 
be viewed as de�ning a small neighborhood around each cell, in 
which neighbors are near-indistinguishable in an information-the-
oretic sense. Exploiting this property, we construct a radius nearest 
neighbor (RNN) graph, by imposing a �xed JSD radius around each 
cell, and connecting only cells that fall within this radius (for com-
putational e�ciency, we cap the maximum number of neighbors to 
a �xed number, usually 25). �is approach addresses several of the 
de�ciencies of the common KNN approach: 

• Distances between neighbors have a clear meaning in terms of 
relative entropy, and informally, cells that are connected in the 
RNN can be viewed as “near-identical”

• If the manifold is undersampled, the RNN will automatically 
be sparsely connected, or even disconnected, re�ecting missing 

neighbors

• Regions of the manifold that have been densely sampled will be 
densely connected

• Connected paths through the RNN are guaranteed to proceed 
through individual cell neighbors that are near-identical in 
terms of relative entropy; a more meaningful property than 
arbitrary distances in PCA space

Next, for inference of longer trajectories along the manifold, we 
de�ne a pseudo-lineage geodesic as the shortest path between 
two given cells (e.g. a root cell and a terminally di�erentiated cell) 
on the RNN using the JSD as edge weights. �e shortest path is 
therefore a path of small steps, each connecting a pair of near-iden-
tical cells. A pseudo-lineage tree of all cells can be constructed by 
designating a single root cell, and computing the geodesics to all 
other cells. On this tree, many cells will be internal (branches), 
some external (leaves) and the root cell will have no predecessor. 
Cells not connected directly or indirectly to the root cell will not be 
part of the tree. For this paper, we constructed the pseudo-lineage 
tree by picking a single cell (#206,003) in the early neuroepithelium 
arbitrarily as the root.

Auto-annotation
A�er clustering, Cytograph incorporates a step termed auto-anno-
tation that automatically assigns meaningful labels to the clusters 
(Extended Data Figure 10). Labels are �exible and may denote 
either speci�c cell types or general properties such as “cell cycle” or  
“GABAergic neurotransmission.” Multiple labels can be assigned 
to the same cluster, and each label can be attributed to multiple 
clusters. Each label is de�ned as a text document with a short com-
puter-readable section that consists of four mandatory �elds: name, 
abbreviation, de�nition and category: 

name���������������������������
abbreviation�����
definition���������
����������
categories�������������������������	���

�e “abbreviation” and “name” are unique identi�ers, whereas 
“categories” can be used to organize the labels into meta-labels. �e 
“de�nition” is the most important �eld and represents the label-as-
signment rule. It consists of a list of gene names, each pre�xed with 
“+” if the gene must be present or “-” if the gene must be absent. 
To determine presence or absence, we use Cytograph’s trinariza-
tion score22. A cluster is assigned a label if and only if the “+” genes 
are present and the “-” genes are absent. Many di�erent de�nitions 
for the same label are possible. To create robust labels that apply to 
diverse datasets, we favored de�nitions that comprised short lists of 
genes that are ideally well-studied. �e auto-annotation tags were 
used for data exploration and to subset the dataset as described 
below.

Each document additionally contains a free-form section 
that is used to provide context, justi�cation, and references, which 
was re�ned continuously throughout our study and constructed by 
cross-referencing the literature and our data. As a result, it forms 
a cumulative body of knowledge about mouse brain cell types and 
states that can be automatically applied to future datasets, available 
at https://github.com/linnarsson-lab/auto-annotation-md.

Punchcards
Repeating feature selection and dimensionality reduction on 
a subset of cells o�en highlights further structure than can be 
revealed by clustering a large, diverse dataset. Although subsetting 
the dataset in a supervised way incorporates biological knowledge 
to expose particularly interesting aspects of the heterogeneity, 
these decisions quickly become verbose, and the approach requires 
manual intervention at each level of analysis.

We addressed this issue by using the auto-annotation 
framework to implement a rule-based splitting procedure. Each 
level of analysis is de�ned by a ����� �le termed a punchcard. �e 
name of the punchcard indicates the parent analysis to use as input 
(e.g. �����������������). Within the �le, each subset to analyze is 
given a name (e.g. ������� and ����) and the clusters to include are 
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determined by the auto-annotation listed in the ������� �eld. A 
conditional expression can optionally be speci�ed in the ������ �eld 
to further constrain the subset. Punchcards can therefore de�ne 
a series of biologically meaningful analyses that remain general 
to the input dataset and analysis parameters. Punchcards can be 
applied hierarchically to de�ne increasingly �ne-grained analyses.

Post-processing

Removal of doublets and contaminated clusters
Doublets were removed by running a modi�ed version of Dou-
bletFinder available in cytograph on each individual sample in the 
dataset. DoubletFinder scores were then averaged across clusters, 
and clusters with an average doublet score greater than 0.3 were 
removed from further analysis. Approximately 20 additional 
clusters were removed that were manually annotated as blood-con-
taminated, doublets, or contained fewer than �ve cells.

Merging
A dendrogram was constructed using Cytograph’s ���������� 
class on the dataset. �e dendrogram was cut at a height of 20 to 
generate groups of similar clusters. For each group, di�erential 
expression testing was performed pairwise between the clusters. 
�e package ������ was used to run t-tests on the log expression 
values. Genes were considered di�erentially expressed if 1) q-value 
was less than 0.01, 2) log fold change was greater than 2, and 3) 
at least 30% of cells expressed the gene in one cluster, and the 
percentage of expressing cells in the second cluster was less than 
70% of the percentage of expressing cells in the �rst cluster. Clusters 
with less than one di�erentially expressed gene were merged. �e 
procedure was repeated until the remaining clusters in each group 
were distinguishable from one another by at least one di�erential-
ly expressed gene.

tSNE of all cells and dendrogram of all clusters
We computed HPF to 30 components and then used the Art of 
tSNE heuristics48 (but with exaggeration=1.5, perplexity=150) to 
obtain the tSNE layout in Figure 1. �e use of a relatively small 
number of HPF components resulted in a globally smoother 
and more connected manifold, at the expense of reduced local 
resolution. �is tSNE was used for visualization only; clustering 
and annotation was performed as described above.

�e �nal dendrogram was generated by running Cyto-
graph’s ���������� class on 942 clusters with parameter ���� set 
to ���������������������������������, which excludes cell-cycle, sex-related, 
immediate-early, and mitochondrial genes from the analysis. Both 
the cluster dendrogram and the tSNE of all cells were computed 
with a more recent version of cytograph (commit 8a5518e-
81197f5aa9d54565cbce3875738d8dac9).

Glia analysis

Clustering
Cells belonging to clusters 751 and above were pulled from the 
dataset. �e mean expression of each gene was calculated for every 
cluster, and a new dendrogram was calculated based on the correla-
tion of gene expression between clusters. �e resulting dendrogram 
was cut at a height of 1, resulting in 18 meta-clusters that were sub-
sequently annotated based on gene expression. Independently, a 
new t-SNE was calculated on this subset of cells using cytograph 
with the parameters described above except ����������� �� and 
���������������������������������������������� to mask cell-cycle, sex-relat-
ed, immediate-early, mitochondrial, and blood-related genes. 

Di�erential expression
Di�erential expression was calculated using the ������ 

package. A t-test was calculated on the log gene-expression values 
normalized by total molecules per cell. Independently, the fraction 
of positive cells for each gene was calculated for both neurogenic 
radial glia and glioblasts. Di�erentially expressed genes were then 
�ltered for those with q-values less than 10-5 and expressed in at 
least 10% of either neurogenic radial glia or glioblasts.

Cell type scores
Cell-type scores were based on the top 200 enriched genes for 
astrocytes and OPCs in the adolescent mouse dataset. �e score 

was calculated as the percentage of total genes expressed in each 
cell that belonged to the enriched set.

Region classi�er
1 200 cells were sampled from each of six subsets of the 

dataset: early glia, neurogenic glia, gliogenic glia, OPCs, neu-
roblasts, and neurons. Equal numbers were sampled from the 
forebrain, midbrain, and hindbrain. Each of these subsets was used 
to train a classi�er for region that was then tested on the other 
�ve groups. �e ������� �������������������������� was regular-
ized with the parameter ������������, and ��������������� was 
chosen a�er testing the performance of the classi�er over a range 
of values. Default values were used for other parameters. Precision, 
recall, and F1 scores were calculated separately for forebrain, 
midbrain, and hindbrain cells and averaged.

Gastrulation and neural plate analysis
�e dataset from Pijuan-Sala et al. was pre�ltered by removing cells 
not classi�ed by the authors. Feature selection using a CV-mean 
was used to restrict the analysis to the most variable 3 500 genes. 
Analogously 5 223 genes were selected for the E7-8 dataset (2 000 for 
the primitive streak-stage; non-neural lineage-restricted, and early 
neuroepithelial). We considered the intersection between these two 
gene sets. �e count tables were imputed by k-nearest neighbor 
pooling46 (����) and then log-transformed. To place the E7-8 data 
on the t-SNE embedding for Pijuan-Sala et al., we �rst computed 
the similarity (Pearson’s R) between each of the E7-8 cells and the 
reference cells. �en we assigned to each cell the average of the 
embedding coordinates computed over the 20 most similar cells in 
the reference.

�e signature score for neuroblast from di�erent regions was 
obtained considering genes enriched in neuroblasts sampled from 
forebrain, midbrain and hindbrain. In particular, we considered 
the neuroblast clusters sampled between E9 and E13 and computed 
an enrichment score for each of the areas and selected the top 200 
genes. Neuroblast clusters were de�ned using a rule based on the 
auto-annotations: negative for the cell cycle label and positive for 
one of the neuronal lineage labels (Glut, GABA, Glyc, etc.). Finally 
to compute the signature score for each cell we used the same 
approach adopted by Seurat49. We calculate the Z-scores for each 
of the genes in the set, then average them and normalize the result 
using a reference computed by drawing random gene samples.

Spatial localization of organizer-like clusters
We used the R package Voxunt to determine the developing brain 
regions most likely to host each of the organizer-like cell clusters40. 
�e tool constructs a 3D similarity map of the cells using a reference 
spatial expression atlas that can be interpreted as a putative locali-
zation for the cells. Brie�y, the tool computes the Spearman corre-
lation between average gene expression of a scRNA-seq cluster and 
each voxel of a gene expression model constructed from the ISH 
experiments of the Allen Brain Developmental Atlas50. To compute 
the similarity map we used the same script for E11 and E13, where 
we call �������������� with ������������0 and run ��������� and 
�������� using default parameters.

In situ sequencing analysis
Channel images were merged into a multichannel ti� image and 
aligned to a reference round. �e channel used for tile alignment 
was the DAPI stain. Following alignment, the tiles were stitched 
together using Microscopy Image Stitching Tool (MIST51) and sub-
sequently split into non-overlapping 2000×2000 pixel tiles. Each 
individual tile was then top-hat �ltered, the RCPs were segmented 
and the intensity was measured in each channel. �e RCP was then 
assigned the base with the highest intensity. �e public repository 
for the code used can be found at https://github.com/Moldia/Tools. 
Gene expression was summarized considering a isotropic grid 
which step 16 μm and counting the called dots for each gene. 
�e data was smoothed with gaussian �lter with a bandwidth of 
24 μm. �e grid location with a total of called dots smaller than 
4 were excluded from the clustering analysis. As a preprocessing 
before clustering the counts were transformed with the variance 
stabilizing transform log

2
(x+1), PCA was computed and the top 40 
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principal components retained. Finally, we performed a KMeans 
clustering setting ������������.

Glioblastoma analysis
To identify aneuploid cells, we calculated the normalized sum 
of expression on each chromosome, and then �t a 5-component 
Bayesian Gaussian mixture model to the 24-dimensional 
chromosome expression data of all cells (Extended Data Figure 
9a-c). We then inferred the maximum a posteriori component label 
for each cell, and the posterior probability. We manually examined 
these labels for all clusters to determine which components cor-
responded to aneuploid cells, and which were euploid. We then 
mapped human to mouse genes and re-clustered and re-annotated 

the tumor data using cytograph to ensure comparable analyses. To 
match tumor clusters with reference cell types, we �rst computed 
the top 25 enriched genes for each reference cell type (develop-
mental and adolescent). For each reference cluster and each tumor 
cluster, we then computed a matching score as the product of 
gene enrichment in the tumor for the 25 top enriched genes in the 
reference cell type. �us, a high matching score re�ected highly 
speci�c expression of the set of genes speci�cally expressed in the 
reference cell type. �e top-scoring matching cell type was selected 
for each tumor cluster. For immune cells, we lacked reference data, 
and therefore called those cell types manually based on well-known 
markers of macrophages, B cells and T cells.
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Extended Data Figure 1 | Experimental design and data quality. a, Stereo microscope photographs illustrating the tissue dissection 
strategy. b, Samples composing the dataset. The area of each circle is porportional to the number of cells sampled. Color indicates the 
region dissected. c, Histogram showing the distribution of number of UMIs per cell detected accross the entire dataset. d, Histogram 
showing the distribution of number of genes detected per cell accross the entire dataset. e, Distribution of UMIs per cell aggregated per 
age group. f, Distribution of number of genes detected per cell aggregated per age group.
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tribution of pure Poisson expression noise. h, The e�ect of switching two HPF components, resulting in a change in expression of many 
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Extended Data Figure 7 | Glial diversity. a, Cells from clusters 751 and above were pulled from the complete dataset. Data were 
aggregated by cluster, features were selected, and a dendrogram was built using correlation distance. The dendrogram was then cut at a 
height of 1 (dotted line). Colors indicate the 18 resultant meta-clusters. b, A t-SNE embedding was calculated on the same subset of cells. 
Cells are colored by their original cluster (left) and meta-cluster cut from the dendrogram (right). c, Cells are colored by their labels for 
di�erential gene-expression testing: purple- glioblast; blue-  neurogenic; grey - not included in testing. d, Select genes are annotated on 
a volcano plot illustrating di�erential expression between neurogenic and gliogenic radial glia. The dotted line denotes the signi�cance 
threshold (q = 10-5). The range of the x-axis was chosen to capture statistically signi�cant genes. Cell-cycle genes are colored orange. e, 
For each meta-cluster the height of the bar indicates the percentage of cells from each tissue (left) or each embryonic stage (middle) or 
that are cycling (right). Abbreviations are Fb - forebrain, Fd - dorsal forebrain, Fv - ventral forebrain, Fvl - ventrolateral forebrain, Fvt - ven-
trothalamic forebrain, Hb - hindbrain, Mb - midbrain, Mbd - dorsal midbrain, Mbv - ventral midbrain. f, Expression dot plots are shown 
for select genes. g, Cells selected for region classi�cation are colored: blue - early glia, orange - neurogenic glia, green - glioblasts, red - 
OPCs, purple - neuroblasts, brown - neurons. Grey cells were not selected. h, For a range of parameter values (max_features), a gradient 
boosting classi�er was �t to each training set and tested on the �ve remaining training sets. Average precision, recall, and F1 scores are 
plotted for each parameter value and training set. i, F1 scores for each gradient boosting classi�er (max_features = 50) are shown for 
forebrain, midbrain, and hindbrain cells. The color of each line indicates which cells were used to train the classi�er (colored as in g). 
j, Feature importances for each gradient boosting classi�er were used to rank genes, and the intersection of the 100 most important 
genes for all six classi�ers is shown on the x-axis. Expression dot plots are shown for each of these genes. k, Cells are colored by log gene 
expression for the indicated genes. Grey indicates no expression. Cells that are positive for both Egfr and Dll1 are colored blue.
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Extended Data Figure 8 | Pseudolineage analysis and neurogenesis. a, Pseudolineage tree algorithm, computing shortest paths to the 
root cell passing only through neighbors inside the information radius. b, Isolating the pseudolineages terminating in a selected cluster, 
and projecting to the pseudoage axis. c, Ten selected pseudolineages colored by major class, on the tSNE of Figure 1 with greyscale 
showing the geodesic distance to the root from every cell. d, The same ten selected pseudolineages colored by tissue. e-i, Pseudolin-
eages of astrocytes (e), OPCs (f), �broblasts (g), hindbrain serotonergic neurons (h), and midbrain dopaminergic neurons (i). Each plot 
shows a randomly selected subset of pseduolineages terminating in the indicated clusters, as well as expression of selected genes in 
pseudoage bins along the lineage (calculated for all cells in the lineage). The region and class of each cell is indicated at the bottom. 
Isolation of pseudolineages terminating in a selected cluster, and projection to the pseudoage axis. j, Astrocyte and OPC scores. k, RNA 
in situ hybridization of mouse embryonic brain at the indicated timepoints, showing genes relevant to the cortical lineage (image credit: 
Allen Institute). Each subpanel shows a strip from ventricular zone to pia at four di�erent ages.
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Extended Data Figure 9 | Glioblastoma. a, Histograms of total gene expression per cell per chromosome, for each tumor sample. Arrow 
indicates an ampli�cation of chromosome 7, the most common aneuploidy in glioblastoma. b, Fitting a gaussian mixture model to the 
24-dimensional chromosome expression data for each cell, with �ve components. Arrow indicates two components (green and orange) 
that �t the ampli�cation of chromosome 7. c, tSNE plots of each of the tumor samples, colored by the gaussian mixture model prediction 
for each cell. The size of the cell indicates the probability of the prediction. Arrow and dashed outline indicates cells that likely carry the 
ampli�cation of chromosome 7 in sample SF11159. d, Heatmaps showing the matching score between reference cell types (columns, 
ordered as in Figure 1 for developmental types, and as in Figure 1 of Zeisel et al. for adolescent types) and tumor clusters (rows). For each 
tumor cluster (row), the identity of the best-matching cluster is shown in Figure 5.
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Extended Data Figure 10 | Auto-annotation labels. Each patch shows an auto-annotation label and its de�nition. (+) indicates a gene 
required to be expressed, and (-) indicates a gene required to not be expressed for the label to apply. Colors indicate broad categories 
of labels. All 215 auto-annotation labels used in this paper are shown, and detailed documentation for each label is available at https://
github.com/linnarsson-lab/auto-annotation-md/.
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