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Abstract

Cystic ovarian disease (COD) is one of the main causes of reproductive failure in cattle and causes severe economic loss to the dairy

farm industry because it increases both days open in the post partum period and replacement rates due to infertility. This disease is

the consequence of the failure of a mature follicle to ovulate at the time of ovulation in the estrous cycle. This review examines the

evidence for the role of altered steroid and gonadotropin signaling systems and the proliferation/apoptosis balance in the ovary with

cystic structures. This evidence suggests that changes in the expression of ovarian molecular components associated with these cellular

mechanisms could play a fundamental role in the pathogenesis of COD. The evidence also shows that gonadotropin receptor

expression in bovine cystic follicles is altered, which suggests that changes in the signaling system of gonadotropins could play a

fundamental role in the pathogenesis of conditions characterized by altered ovulation, such as COD. Ovaries from animals with COD

exhibit a disrupted steroid receptor pattern with modifications in the expression of coregulatory proteins. These changes in the pathways

of endocrine action would trigger the changes in proliferation and apoptosis underlying the aberrant persistence of follicular cysts.

Free Spanish abstract: A Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/

R251/suppl/DC1.
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Introduction

Cystic ovarian disease (COD), which is an important
cause of infertility in dairy cattle, has been defined as the
presence of one or more follicles of more than 20 mm
in diameter in the ovaries, persisting for up to 10 days
without luteal tissue, interrupting the normal reproduc-
tive cycle (Silvia et al. 2002). The incidence of COD in
dairy herds has been reported to vary from 5 to 30%
(Vanholder et al. 2006, Cattaneo et al. 2014) and this
condition generates significant economic losses to the
dairy industry because it increases the calving-to-concep-
tion and inter-calving intervals (Peter 2004).

The etiopathogenesis of COD in dairy cattle is a
complex process that involves dysfunctions in various
physiological processes, including folliculogenesis, ster-
oidogenesis, and ovulation, and many factors, such as
stress, herd management, nutritional status, body
condition, and infectious disease, can coexist (Silvia
et al. 2002). Although it is accepted that the central
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component of the etiopathogenesis of COD is associated
with an altered function of the hypothalamus–pituitary–
ovarian axis, the persistence of follicles over time is linked
to an important intraovarian component (Silvia et al.
2002). The ovulatory failure leads to cyst development
and persistence in the ovary, interfering with the normal
ovarian function (Vanholder et al. 2006). Some authors
define persistence as a temporal stage of the life span
of the cyst (Cook et al. 1990, Hamilton et al. 1995),
whereas others define it as a separate follicular pathology
(Mihm et al. 1994).

Intraovarian alterations, as contributors to follicular
persistence, have not yet been clearly established.
However, several studies have contributed to a better
understanding of specific aspects related to the patho-
genesis of COD. In relation to endocrine signaling
pathways, some of these studies have demonstrated
altered expression of steroid and gonadotropin receptors
(Salvetti et al. 2007, 2012, Marelli et al. 2014). Other
studies have postulated and tested the intrafollicular
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roles of steroids in regulating follicular development
(Berisha et al. 2002, Gümen & Wiltbank 2005, Salvetti
et al. 2007, 2012).

In addition, it has been previously demonstrated that
the proliferation/apoptosis balance in follicles from
animals with COD is altered. These follicles show
diminished cell proliferation and apoptosis in situ and
decreased expression of pro-apoptotic proteins relative
to antiapoptotic proteins (Salvetti et al. 2009, 2010). The
proliferation of granulosa cells and the fate of follicles
(degeneration by follicular atresia or cystic development)
are specifically related to steroid hormone and gonado-
tropin receptors. The imbalance between proliferation
and apoptosis found in follicular cysts could explain the
development of cystic follicles and the preservation of
a static condition without atresia, which leads to their
persistence. These alterations may be due to structural
and functional changes that could be related to the
hormonal milieu and take place in the follicles of animals
with COD. In relation to cellular changes, it has been
proposed that follicular cysts represent a distinctive stage
of follicular differentiation, with a characteristic protein
and gene expression profile in ovarian cells that differs
from that found in dominant follicles or other follicular
categories (Ortega et al. 2007, Salvetti et al. 2010, 2012,
Velázquez et al. 2010, 2011, Matiller et al. 2014).

This review examines evidences for the role of altered
gonadotropin and steroid signaling systems and the
proliferation/apoptosis balance in the ovary from
animals with COD. These data suggest that changes in
the expression of ovarian molecular components associ-
ated with these cellular mechanisms could play a
fundamental role in the pathogenesis of the disease.
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Figure 1 Schematic diagram of the alignment for the different isoforms
of the luteinizing hormone/choriogonadotropin receptor (LHCGR).
Exons 1 through 10 code for the extracellular ligand-binding domain
(EC), while exon 11 codes for the transmembrane (TM) and intracellular
(IC) domains. On the different isoforms, solid black boxes represent
missing portions.
Expression of gonadotropin receptors

Follicular growth and steroidogenesis depend on the
coordinated interaction between gonadotropins and
their receptors in granulosa and theca cells. The cellular
mechanisms regulating folliculogenesis, ovulation, and
follicular regression in cows are not fully defined.
However, a key role of gonadotropins in the regulation
of follicular development has been well established
(Nogueira et al. 2007, Nimz et al. 2009). In normal
ovaries, the interactive system of follicular growth and
steroidogenesis suggests that granulosa and theca cells
are involved in the secretion of steroid hormones through
the two-cell/two-gonadotropin model (Fortune & Quirk
1988). In this model, granulosa cells possess membrane
receptors to follicle-stimulating hormone (FSHR) and
theca cells contain receptors to luteinizing hormone/
choriogonadotropin (LHCGR) during the earlier stages
of follicular development (Bao & Garverick 1998). As
follicular development progresses, changes occur within
the dominant follicle that is preparing for ovulation.
Among these changes, the acquisition of LHCGR by the
granulosa cells of the dominant follicle and the increase
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in the aromatization of androgens provided by the theca
cells in response to LH and FSH are some of the most
important changes (Wiltbank et al. 2002).

As mentioned earlier in this review, neuroendocrino-
logical dysfunction of the hypothalamic–pituitary–gona-
dal axis is the most accepted hypothesis related to the
formation of cystic follicles (Liptrap & McNally 1976,
Kesler & Garverick 1982, Garverick 1997, Vanholder
et al. 2006). It has been demonstrated that gonadotropin
regulation of bovine FSHR and LHCGR protein content
during follicular growth, ovulation, and luteinization is
associated with analogous changes in their respective
receptor mRNA levels (Soumano et al. 1998). Gonado-
tropin receptors are structurally related members of the
seven transmembrane domain G protein-associated
receptor superfamily (Vassart et al. 2004). The gene
encoding LHCGR contains 11 exons (Segaloff et al.
1990, Segaloff & Ascoli 1993), while that encoding
FSHR contains ten exons (Rajapaksha et al. 1996, Hillier
2001). It has also been demonstrated that LHCGR and
FSHR mRNAs are highly alternatively spliced (Figs 1
and 2; Rajapaksha et al. 1996, Simoni et al. 1997, Robert
et al. 2003, Kawate 2004, Nogueira et al. 2010).
However, there are no investigations of splice variants
in ovarian follicular cysts.

The distribution pattern and expression levels of
gonadotropin receptors in healthy ovaries have been
evaluated by several methods, including conventional
and real-time RT-PCR, northern blot assays, and in situ
hybridization (Ireland & Roche 1983, Xu et al. 1995,
Bodensteiner et al. 1996, Rajapaksha et al. 1996, Bao
et al. 1997, Evans & Fortune 1997, Bao & Garverick
1998, Soumano et al. 1998, Odore et al. 1999, Calder
et al. 2001, Manikkam et al. 2001, Robert et al. 2003,
Braw-Tal & Roth 2005, Luo & Wiltbank 2006, Mihm
et al. 2006, Nogueira et al. 2007, Nimz et al. 2009). In
recent studies conducted in our laboratory, we analyzed
the relative expression levels of LHCGR and FSHR in
follicular cysts of cows with COD and antral follicles of
healthy animals by real-time RT-PCR and, in agreement
with that found by other authors, we found that mRNA
www.reproduction-online.org
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Figure 2 Schematic diagram of the alignment for the different isoforms
of the follicle-stimulating hormone receptor (FSHR). Exons 1 through 9
code for the extracellular ligand-binding domain (EC), while exon 10
codes for the transmembrane (TM) and intracellular (IC) domains.
On the different isoforms, solid black boxes represent missing portions.
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expression of FSHR in antral follicles was exclusively
localized to granulosa cells and it decreased as follicle
size increased, and that LHCGR mRNA was detected
in theca cells of antral follicles of all sizes and in the
granulosa cells of large antral follicles, being theca cells
of medium antral follicles, the ones that showed the
highest expression (Marelli et al. 2014). In cattle, Xu
et al. (1995) detected FSHR mRNA in follicles with less
than three layers of granulosa cells, and Beg et al. (2001)
demonstrated that LHCGR mRNA was higher in
granulosa cells from the largest follicle than in those
from the second largest follicle of the follicular wave,
before morphological deviation, suggesting that the
capacity of granulosa cells to respond to LH is part of
the deviation process.

The results of our analysis of the mRNA expression of
gonadotropin receptors (Marelli et al. 2014) agree with
previous studies demonstrating that LHCGR expression
in granulosa cells from bovine follicles smaller than
8 mm in diameter is absent or not detectable (Ginther
et al. 1996, Sartori et al. 2001). These studies have
demonstrated that follicles smaller than 8 mm in
diameter are independent of gonadotropin support,
whereas follicles larger than this diameter require
endogenous LH to develop. Therefore, follicles are
considered to be FSH dependent until dominance
occurs, after which they become LH dependent (Fortune
et al. 2001, Ginther et al. 2001, Garverick et al. 2002).
In this sense, LHCGR expression in granulosa cells
has been detected by in situ hybridization in follicles
of more than 9 mm in diameter that become dominant
(Xu et al. 1995, Bao et al. 1997, Garverick et al. 2002),
together with higher binding of hCG to granulosa cells
in dominant follicles (Ireland & Roche 1983). It must
also be considered that LHCGR mRNA levels in
granulosa cells of the dominant follicle are higher than
those of subordinate follicles (Beg et al. 2001, Evans
et al. 2004). Moreover, in agreement with Mihm et al.
(2006), our findings (Marelli et al. 2014) support the
hypothesis that the dominant follicle presents a
decrease in FSH dependence and an increase in LH
dependence as it grows during the low FSH environment
of follicular waves.
www.reproduction-online.org
Several studies have evaluated the possible alterations
in the expression of gonadotropin receptors as a com-
ponent of COD etiopathogenesis, but, currently, there is
controversy concerning this issue. Hormonal binding
assays suggest that the amounts of FSHR and LHCGR in
granulosa cells of cysts are lower than those in normal
antral follicles (Kawate et al. 1990). However, studies
using the same binding assay, but with a different sample
preparation, have shown that LHCGR and FSHR concen-
trations in the follicular cysts are similar to those observed
in control follicles (Odore et al. 1999). Calder et al. (2001)
compared LHCGR and FSHR mRNA expression by in situ
hybridization in ovaries from cows with dominant and
non-dominant ovarian follicular cysts and in healthy
dominant follicles and found that LHCGR mRNA
expression was higher in granulosa cells of dominant
follicular cysts than in dominant follicles, without
differences in theca cells, and without differences in
FSHR mRNA expression. Discrepancies between studies
may be partly explained by differences in the method-
ology used, such as the determination of the receptor itself
or its mRNA, and the classification of cysts into estrogen-
active and estrogen-inactive (Vanholder et al. 2006).
These differences may also be because some authors
study the whole follicular wall, while others analyze the
granulosa and theca cells separately.

Stimulation of the hypothalamic–pituitary–adrenal/
ovarian axis by stress disrupts the reproductive function
and could be associated with bovine COD pathogenesis
(Moberg 1987). Altered folliculogenesis, reduced
ovulation rates, and follicular cyst development have
been reported in association with adrenocorticotropic
hormone (ACTH) administration and increased levels
of glucocorticoids (Liptrap & McNally 1976, Liptrap
1993, Kawate et al. 1996, Dobson et al. 2000, Amweg
et al. 2013). In this sense, Kawate et al. (2001) proposed
stress as a potential mechanism for the development
of bovine follicular cysts. First, ACTH stimulates the
release of cortisol and progesterone, and then an
increased secretion of progesterone inhibits the release
of gonadotropin-releasing hormone. Enhanced secretion
of cortisol decreases estradiol secretion and LHCGR
content in antral follicles. As a result of these hormonal
imbalances, the positive feedback action of estradiol
on the hypothalamus and pituitary is worsened and
the LH surge is suppressed. Finally, ovulation does not
occur and the follicle becomes cystic. This proposed
mechanism agrees with the decreased expression of
LHCGR reported both by Kawate (2004) and our group
(Marelli et al. 2014).
The intraovarian steroid pathway

Steroid receptors

Steroid hormones play a critical role in folliculogenesis
as well as in ovarian development and differentiation.
Reproduction (2015) 149 R251–R264
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The main hormones involved in these processes are
androgens, estrogens, and progesterone (Rosenfeld et al.
2001, Drummond et al. 2002, Schams & Berisha 2002,
Brosens 2004, Drummond 2006, Kimura et al. 2007,
Ortega et al. 2009). Steroid hormones act through
specific receptors that are members of a superfamily of
ligand-dependent transcriptional activators, which
directly regulate the expression of specific gene
complexes involved in regulating the differentiation
and growth of reproductive tissues, as well as other
metabolic processes (Brosens 2004). In mammals, two
subtypes of the estrogen receptor (ESR) have been
identified, ESR1 and ESR2. These are related structurally
but encoded by two distinct genes (Kuiper et al. 1996).
The progesterone receptor (PGR), instead, has different
isoforms that originate from the same gene (PGRA,
PGRB, and PGRC) (Wei et al. 1990, Bramley 2003).
Finally, androgens perform their actions by binding to
the androgen receptor (AR), which is presented in at
least two isoforms (ARA and ARB) originated from the
same gene (Takeo & Yamashita 1999, Brinkmann 2001).

The location of steroid hormone receptors in the
ovarian follicle has been evaluated by many authors
and in different species (Manikkam et al. 2001, Cassar
et al. 2002, Jo et al. 2002, Schams & Berisha 2002,
Van den Broeck et al. 2002a,b, Hampton et al. 2004,
D’Haeseleer et al. 2005). It has been previously
demonstrated that a subtle imbalance in the expression
of the two subtypes of ESR in the components of the
ovarian follicle could be involved in the pathogenesis
of follicular cysts in cattle (Garverick 1997, Salvetti
et al. 2007, 2012, Alfaro et al. 2012), sheep (Ortega et al.
2009), humans (Shushan et al. 1996, Jakimiuk et al.
2002), and rodents (Salvetti et al. 2009).

In addition, studies on cows with COD induced by the
administration of ACTH have evidenced changes only in
the expression of ESR2 in cystic follicles compared with
control follicles, partially coinciding with the findings in
animals with spontaneous disease (Salvetti et al. 2007,
2012, Alfaro et al. 2012). Studies have also demonstrated
an increase in ESR1 expression in animals with
spontaneous COD and not in the experimental model,
differences that are probably due to the persistence time
of the cysts (Salvetti et al. 2012). Other authors have
found analogous modifications in the expression of ESR2
in cysts from women with polycystic ovarian syndrome
related to normal-size follicles (Jakimiuk et al. 2002) and
in prenatal testosterone-treated sheep characterized by
an abnormal follicular persistence (Ortega et al. 2009).

ESR1 and ESR2 bind to 17b-estradiol with high-
affinity dimerization between them, forming hetero- or
homodimers. In this context, estrogen-dependent
transcriptional activity varies according to the cell
type, the promoter, and the types of dimers formed
(McInerney et al. 1998, Pettersson et al. 2000). There-
fore, expression of ESR2 in specific cells could regulate
the responsiveness to estrogens in certain target genes in
Reproduction (2015) 149 R251–R264
a cell-dependent mode (O’Brien et al. 1999). Previous
studies have demonstrated that ESR2/ESR1 heterodimers
repress ESR1 activity and the affinity to 17b-estradiol
(Hall & McDonnell 1999). Recently, it has been
suggested that the main determinants of the transcrip-
tional activity of ESR1 and ESR2 are their individual
concentrations in target cells as well as the structure of
the estrogen ligand and not their binding ability
(Gougelet et al. 2007, Bhavnani et al. 2008). Thus, a
specific ligand could exert various activities according to
the ESR subtypes expressed in cells, leading to the fact
that small changes in the ESR1/ESR2 ratio could alter
folliculogenesis and ovulation (Mosselman et al. 1996,
Pettersson et al. 1997) by altering cellular proliferation
and apoptosis, the expression of hormonal receptors,
and steroidogenesis, and all molecular aspects of COD
(Fig. 3; Isobe & Yoshimura 2000a, Calder et al. 2001,
Salvetti et al. 2010, Marelli et al. 2014).

In relationship to AR, Hampton et al. (2004) showed
that this receptor is expressed in ovarian follicles of
bovines, and that its expression is increased throughout
folliculogenesis, whereas Alfaro et al. (2012) found that
AR mRNA expression is significantly increased in
granulosa cells of bovine follicular cysts. This increase
would be associated with the role of androgens in
follicular differentiation and growth (Hillier & Tetsuka
1997, Vendola et al. 1998, Walters et al. 2008).
Furthermore, there are discrepancies between AR
mRNA and protein expression, which could be
explained by post-translational regulation (Sette et al.
2010, Salvetti et al. 2012). Finally, changes in the
delicate balance between the ESR subtypes, coupled
with alterations in the expression of AR, may contribute
COD development especially to the maintenance over
time of the cystic structures (Ortega et al. 2008, Salvetti
et al. 2010, 2012).

Previous studies have demonstrated cell-specific
expression of PGR in the bovine ovary (Jo et al. 2002,
Van den Broeck et al. 2002b). In our laboratory, we
analyzed the expression of PGR in ovaries from cattle
with COD and found different results according to the
group of animals tested. In cattle with spontaneous COD
from abattoirs, we detected increased mRNA levels of
PGRB in theca cells (Alfaro et al. 2012), but found no
differences in protein expression (Salvetti et al. 2007).
On the other hand, in animals with ACTH-induced
COD, we detected decreased PGR protein expression
in granulosa cells of cysts, and levels similar to those of
controls in theca cells (Salvetti et al. 2012). In addition,
specific technical factors such as the sensitivity of the
PCRs and the post-transcriptional regulation of gene
expression should be considered (Anderson et al. 1992,
Garverick 1997, Sette et al. 2010).

Taking into account the influence of gonadotropin and
steroid hormones on PGR expression and that these
hormones are altered in animals with COD (Vanholder
et al. 2006, Amweg et al. 2013), it is likely that there will
www.reproduction-online.org
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Figure 3 Estrogen and estrogen receptor
(ESR) dimer interaction in granulosa
cells of experimentally induced cystic
follicles. Interaction between
endogenous 17b-estradiol (E2) and
chaperones allows binding to ER type a

(ESR1) or b (ESR2) with similar affinity
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cells of induced cysts. Dimers are able
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and, in the nucleus, they interact with
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differential transcriptional activities
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be changes in the expression of PGR or the predominance
of one isoform over another. It has been widely reported
that the coexpression of PGRA or PGRC in the same kind
of cell as PGRB modulates its activity (Vegeto et al. 1993,
Wei et al. 1997). Moreover, the genomic actions of PGR
isoforms are affected by their association with nuclear
coactivators and molecular chaperones (Bramley 2003).
Both PGRA and PGRB may activate different sets of genes,
even within the same cell, revealing the enormous
complexity of progesterone-dependent activation in the
target cell (Graham & Clarke 2002, Alfaro et al. 2012).
This suggests that changes in the expression of PGR
isoforms could regulate the biological activity of
progesterone, resulting in functional hormone with-
drawal at the ovarian level, under unchanged pro-
gesterone serum concentrations (Schams et al. 2003,
Amrozi et al. 2004, Goldman et al. 2005).
Steroid receptor coregulators

The biological activity of steroid hormone receptors is
determined by ligand-binding proteins and also by the
relative activities of nuclear receptor-associated coregu-
lators (Mussi et al. 2006). Moreover, the equilibrium
between them and the nature of the ligand define the
state of nuclear receptor activation (Park et al. 2005).
Among the large number of coactivators, the most
important ones are the nuclear receptor coactivator
(NCOA) or steroid receptor coactivator (SRC) family,
which includes NCOA1 (SRC1), NCOA2 (SRC2/GRIP1/
TIF2), and NCOA3 (SRC3/pCIP/ACTR/AIB1/RAC3/
TRAM1) (McKenna et al. 1999). Mostly, NCOA3 acts
as a coregulator for steroid receptors and affects a large
www.reproduction-online.org
number of signaling systems that are essential for normal
cell physiology (Wu et al. 2002, Yang et al. 2006). In
contrast to the function of NCOAs, corepressors
generally suppress or silence gene transcription (Auger
& Jessen 2009). Nuclear receptor corepressor 2
(NCOR2/SMRT), which was discovered through its
interaction with thyroid and retinoid hormone receptors,
is one of the most widely studied corepressors (Chen &
Evans 1995, Hörlein et al. 1995). Another important
corepressor is the repressor of ESR activity (REA), which
interacts with ESR among others (Montano et al. 1999,
Delage-Mourroux et al. 2000). These corepressors are
thought to decrease gene transcription by attenuating
steroid receptor activity by recruiting class I and II
histone deacetylases, which modify chromatin into a
transcriptionally silent status (Kurtev et al. 2004), and by
competing with coactivators for binding to receptors in
the presence of ligands (Martini et al. 2000).

Although the expression of coregulators has been
scarcely studied in the ovary (Hlaing et al. 2001, Zhang
et al. 2003, Hussein-Fikret & Fuller 2005, Chen et al.
2008), follicular development can be influenced by
an altered expression of coregulators that may lead to
differential transcriptional activation of steroid receptors
(Fig. 4; Delage-Mourroux et al. 2000). Under these
circumstances, some hormone-dependent organs or
tumors exhibit over-expression of the NCOA family
members that would be directly involved in the increase
in cell proliferation and differentiation, indicating their
important physiological role (Sarvilinna et al. 2006,
Mukherjee et al. 2007).

Considering that any change in the steroid receptor
equilibrium is correlated with follicular health and the
Reproduction (2015) 149 R251–R264
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stage of development, modifications in intrafollicular
activity of steroid hormones determine the fate of a
specific follicle (Rosenfeld et al. 2001, Drummond et al.
2002, Walters et al. 2008).

Studies determining the expression levels of steroid
receptor coregulators in reproductive tissue are limited
mainly to rodents (Misiti et al. 1998, 1999, Xu et al.
1998, Nephew et al. 2000). In domestic animals, Hlaing
et al. (2001) analyzed the mRNA expression of several
coregulators in the ovary of sheep, cows, and pigs by
northern blot and found mRNA expression of NCOA1,
NCOA2, NCOA3, p300, RIP140, SPA, and NCOR2 in
follicles of the three species studied. By in situ
hybridization, they localized NCOA1, RIP140, and SPA
in granulosa and theca cell layers and stroma of the
ovine ovary (Hlaing et al. 2001).

In previous studies of our group, we have described
the localization of several nuclear receptor coregulators
in normal bovine ovarian follicles as well as in follicles
of animals with COD. We have demonstrated that
induced COD in cattle is concurrent with alterations in
the expression of steroid receptors and coregulators in
ovarian follicles (Salvetti et al. 2012). We also found
intense immunostaining of NCOA3 in granulosa cells
of different follicle categories and an increase in its
expression in theca cells of follicular cysts. Furthermore,
we found a similar pattern for REA in granulosa cells.
Notably, REA differs from other coregulators, in that it is
highly specific for ESR, acting as a negative regulator
of control ESR-dependent gene expression in normal cells
(Mussi et al. 2006). On the other hand, we found that
NCOR2 shows a gradual increase in its expression while
folliculogenesis progresses, with greater expression in
cystic follicles (Salvetti et al. 2012). These findings suggest
that NCOR2 could have a role as a corepressor of sexual
steroids in the ovary of animals with COD, modulating
the response to these hormones in an environment of
altered nuclear steroid receptor expression.
Reproduction (2015) 149 R251–R264
Several studies have highlighted the role of coregula-
tors in total transcriptional activity of steroid hormone
receptors (Evers et al. 2014a, Feng & O’Malley 2014).
However, most of these studies have been carried out
in mammary and uterine normal tissues or tumor tissues
(Evers et al. 2014a,b, Feng & O’Malley 2014, Szwarc et al.
2014). To date, there are few studies evaluating the role
of these proteins and their interactions in the ovary, and
their function (Hlaing et al. 2001, Hussein-Fikret & Fuller
2005). Overexpression of coactivator proteins may lead
to increased transcriptional activation of nuclear steroid
receptors, leading to an enhanced response in hormone-
dependent tissues. Despite the lack of information about
normal expression, an amplification of NCOA3 has
been observed in ovarian tumors and has been correlated
with cell differentiation and tumor growth (Bautista et al.
1998, Tanner et al. 2000). On the other hand, in breast
cancer, amplification of NCOA3 has been correlated
with high expression levels, enhanced positivity to ESR
and PGR, and an increase in tumor size, supporting the
hypothesis that NCOA3 plays an important role in
estrogen-dependent tumor development and progression
(Anzick et al. 1997, Bautista et al. 1998). Although the
information is limited, steroid receptor-associated cor-
egulators may be involved in multiple ovarian functions
such as folliculogenesis, steroidogenesis, and ovulation,
and thus their altered expression adds another piece in
the intricate pathogenesis of COD in cattle. However,
these changes could be the consequence of follicle
persistence, rather than a cause of it.
Cell proliferation and survival mechanisms in
follicular cysts

During folliculogenesis, ovarian cells must follow two
essential steps in order to complete follicular develop-
ment: proliferation and differentiation. After follicles
are established, a continuous process of proliferation
and differentiation allows some of them to reach the
preovulatory size (maximum differentiation level) and
ovulate, but most ovarian follicles undergo a process
of regression and death known as follicular atresia
(Robker & Richards 1998a,b, Adams et al. 2008).

Cell cycle kinase cascades are in charge of controlling
cell cycle proliferation and progression by a complex
signaling system involving positive and negative regu-
lators (Robker & Richards 1998a,b). Cyclins have been
recognized as positive regulatory components of a class
of protein kinases designated as cyclin-dependent
kinases (CDKs). These protein kinases have been
shown to be important regulators of major cell cycle
transitions in diverse eukaryotic systems. In mammals,
the process involving activation of cyclin proteins,
followed by activation of their CDK partner and the
phosphorylation of target proteins, plays an essential
role in cell cycle transitions (Zwijsen et al. 1997).
www.reproduction-online.org
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Table 1 Cell proliferation in cystic follicles of different species and models.

Species
Spontaneous
disease/model Cell types evaluated Methods Results Reference

Rat Continuous light-
induced PCOS
rat model

Granulosa, theca interna,
and theca externa cells of
tertiary, atretic, and cystic
follicles and complete
ovaries

PCNA and Ki-67
immunohistochem-
istry expression
(proliferation index)

Granulosa and theca interna of
cystic follicles presented lower
proliferation index when
compared with control tertiary
follicles. The theca externa also
had reduced proliferation index
in atretic and cystic follicles

Salvetti et al.
(2009)

Human Spontaneous PCOS Granulosa cells Ki-67 immunocyto-
chemistry
expression
(proliferation index)

Ki-67 was significantly higher
in the PCOS group

Das et al. (2008)

Bovine Spontaneous COD Granulosa and theca cells
of healthy antral follicles,
early and late atretic ones,
and early and late
cystic ones

PCNA immuno-
histochemistry
expression

Lower frequencies of PCNA-
positive cells in cystic follicles
compared with healthy follicles
in the granulosa layer from
subapical to basal regions

Isobe &
Yoshimura
(2000b)

Bovine Spontaneous COD Granulosa and theca cells
of follicular cysts

PCNA immuno-
histochemistry
expression

Low frequencies of PCNA-positive
cells in cystic follicles

Isobe &
Yoshimura
(2007)

Bovine Adrenocorticotropin
(ACTH)-induced
COD model

Granulosa and theca cells of
secondary, tertiary, atretic,
and cystic follicles in
ACTH-induced COD
model and synchronized
control cows

Ki-67 expression by
immunohistochem-
istry and RT-PCR of
cyclins E and D

Greater proliferation index in
granulosa cells of tertiary follicles
from the control group than in
tertiary, atretic, and cystic
follicles from COD group.
Secondary follicles from the
COD group exhibited an
elevated proliferation index

Salvetti et al.
(2010)

Swine Spontaneous COD Granulosa and theca cells
of normal, atretic, and
cystic follicles

PCNA immunohisto-
chemistry, western
blot and real-time
PCR

Lower proliferation activity was
detected in granulosa and theca
cells from cystic follicles, and a
lesser number of PCNA-positive
cells were found in cystic
follicles

Sun et al. (2012)

PCOS, polycystic ovary syndrome; COD, cystic ovarian disease.
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The progression through the G1 phase of the cell cycle
requires the action of one specific group of cyclins,
D-type cyclins. In humans as well as in cows, three
D-type cyclins (cyclins D1, D2, and D3) have been
identified (Zwijsen et al. 1997, Yamauchi et al. 2003).
Although they have different functions according to the
cell type, all of them appear to act by activating CDK4
and CDK6 (Zwijsen et al. 1997, Robker & Richards
1998a, Yamauchi et al. 2003). According to Robker &
Richards (1998a,b), the expression of cyclin D2 and
CDK4 in the ovary is confined to the granulosa layer,
whereas cyclin D1 and cyclin D3 are expressed in both
granulosa and theca layers, with higher expression levels
in theca cells. Cyclin E, another cyclin that seems to play
a role in the ovary, acts as a positive regulator of cell
cycle progression through activation of CDK2 (Reed
1996, Robker & Richards 1998a).

Follicular development is an inefficient process,
whereby more than 99% of the follicles present at birth
are destined to degenerate during lifetime via atresia (Tilly
et al. 1991). It is well documented that follicular atresia
occurs byapoptosis (Hughes & Gorospe 1991). Two of the
main players involved in the apoptosis of follicular cells
are the FAS system and BCL2 family members (Kim et al.
1999, Roughton et al. 1999). According to Krammer
www.reproduction-online.org
(1999), the rate of apoptosis might be defined by the
interactions between these two proteins. The binding
between the FAS receptor (FAS/CD95), a member of the
TNF family, and its ligands (FASLG) leads to the formation
of a death-induced signaling complex (Krammer 1999,
Slot et al. 2006). The BCL2 family might be divided into
two main groups, according to their proapoptotic (BAX,
BAD, BIM, BclxS, and BOK) or antiapoptotic function
(i.e., BCL2, BclxL, and BCL2L2) (Slot et al. 2006). All of
them are regulatory proteins whose actions occur at the
mitochondrial level. The antiapoptotic effect is achieved
through the blockage of caspase 3, caspase 6, and caspase
7, which transduce the apoptotic signals (Tilly 1996). The
penultimate stage of cell death requires caspases (Das
et al. 2008). DNA repair enzymes and cytoskeletal and
nuclear scaffold proteins are activated by caspase 3
(Scaffidi et al. 1998, Krammer 1999, Slot et al. 2006),
which is required for apoptosis in follicular atresia.
Granulosa cells, oocytes, and theca cells undergo
apoptosis as part of atresia (Hsueh et al. 1994, Markstrom
et al. 2002), to which early antral follicles are more
sensitive (Markstrom et al. 2002).

In cows, the expression of FAS and FASLG during the
first follicular wave is lower in dominant follicles than
in subordinate follicles (Porter et al. 2000, 2001).
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Table 2 Apoptosis determination in cystic follicles of different species and models.

Species
Spontaneous
disease/model Cell types evaluated Methods Results Reference

Rat DHEA-treated
PCOS rat model

Granulosa cells of cystic
follicles

TUNEL Apoptosis in the granulosa cells of the
cumulus and those lining the antral
cavity of cysts but not in the outer
mural resting on the basement
membrane

Anderson & Lee
(1997)

Rat Continuous light-
induced PCOS
rat model

Granulosa, theca interna,
and theca externa cells
of tertiary, atretic, and
cystic follicles

TUNEL, activated caspase
3, and Bcl2 family
member’s expression by
immunohistochemistry

Lower expression of DNA fragmen-
tation, activated caspase 3, and
BAX protein in all layers of tertiary
and cystic follicles from COD rats
than in normal atretic follicles from
both groups. Protein expression of
Bcl2, BclxL, and Bclw was high
in healthy and cystic follicles in
both groups

Salvetti et al.
(2009)

Rat DHEA-treated
PCOS rat model

Granulosa cells of
follicular wall of cysts

Immunohistochemistry and
western blot of Bax/Bcl2

Bax/Bcl2 ratio significantly higher in
the ovaries from the PCOS group
than in control group

Bas et al. (2011)

Mouse DHEA-treated
PCOS mouse
model

Complete ovarian
follicles

TUNEL Increased ovarian apoptosis and larger
follicle size, thereby producing a
characteristic cystic and atretic
appearance in the mouse ovary

Kim et al. (1999)

Human Spontaneous
PCOS

Granulosa cells of
control, ovulatory,
and anovulatory
PCOS patients

Flow cytometry, propidium
iodide non-viable
(apoptotic) cell detection

Most of the granulosa cells of
polycystic ovaries are healthy
and non-apoptotic

Almahbobi et al.
(1996)

Human Spontaneous
PCOS

Granulosa cells Immunocytochemistry of
activated caspase 3 and
inhibitor of apoptosis
proteins (IAP), TUNEL,
and Real-time RT-PCR of
IAP and Bcl2 families in
the granulosa cells. The
IAP family included
cIAP1,cIAP2, XIAP, and
Survivin. Bcl2 family
members: Bax, Bcl-Long,
and Mcl1

Decreased expression of DNA frag-
mentation, activated caspase 3,
and BAX protein

Das et al. (2008)

Bovine Spontaneous
COD

Granulosa and theca cells
of healthy antral
follicles, early and late
atretic ones, and early
and late cystic ones

TUNEL Apoptosis occurs in the granulosa
and theca interna cells of cystic
as well as atretic follicles, but the
frequency of apoptosis in theca
interna cells decreases in late
cystic follicles

Isobe & Yoshimura
(2000a)

Bovine Spontaneous
COD

Granulosa and theca cells
of follicular cysts

Immunocytochemistry of
activated caspase 3

Decreased expression of activated
caspase 3

Isobe & Yoshimura
(2007)

Bovine Adrenocortico-
tropin (ACTH)-
induced COD
model

Granulosa and theca cells
of secondary, tertiary,
atretic, and cystic
follicles in ACTH-
induced COD model
and synchronized
control cows

TUNEL, active caspase 3,
FAS/FASLG, and
members of the BCL2
family by immunohisto-
chemistry and multiplex
PCR

DNA fragmentation, caspase 3,
FASLG, and BAX protein were
significantly less in layers of tertiary
and cystic follicles from COD cows
than in normal atretic follicles of
both groups, whereas BCL2 was
greater in growing and cystic
follicles in both groups. A relatively
greater BCL2 than BAX in cystic
follicles when compared with
tertiary follicles, as indicated by
multiplex analysis

Salvetti et al.
(2010)

Swine Spontaneous
COD

Granulosa and theca cells
of normal, atretic, and
cystic follicles

TUNEL, expression of
apoptosis regulators
(XIAP, bax, bc12, and
caspase 3) by immuno-
histochemistry, western
blotting, and real-time
quantitative PCR

Apoptosis levels were high in granu-
losa of atretic follicles, but low in
normal and cystic follicles. In theca
layer, the apoptosis was low in all
follicular categories

Sun et al. (2012)

PCOS, polycystic ovary syndrome; COD, cystic ovarian disease.
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Additionally, granulosa cells are able to activate
endogenous apoptosis pathways in the absence of
survival factors (Quirk et al. 2004). For instance, in
vitro studies have indicated that in the presence of serum
in the culture media, granulosa cells express FAS but are
resistant to be killed by exogenous FASLG (Porter et al.
2000, Quirk et al. 2000, 2004, Vickers et al. 2000).

In previous studies conducted in our laboratory, we
observed that the immunoexpression of FAS in cyst and
atretic follicles is similar, whereas FASLG is only
expressed in atretic follicles (Salvetti et al. 2010). These
results suggest that, in follicular cysts, reduced apoptosis
(which means a delay in atresia) could take place due to
the absence of the ligand. On the other hand, dominant
follicles are characterized by the presence of survival
factors, such as insulin-like growth factor (IGF), which
prevent the activation of the FAS pathway and reduce the
expression of FAS and FASLG. Furthermore, the ability of
growth factors such as IGF1 to facilitate the progression
through the cell cycle seems to be a key event to prevent
apoptosis. In vitro studies by Quirk et al. (2004)
demonstrated that FASLG-induced apoptosis as well as
proliferation in granulosa cells can be stimulated by
IGF1, basic fibroblast growth factor, and epidermal
growth factor. Conversely, the treatment with gonado-
tropins seems to decrease the expression of death-
inducer genes and stimulate the expression of death
repressor genes. Specifically, gonadotropins inhibit cell
apoptosis and follicular atresia probably via a reduction
in BAX in granulosa and maintenance of the constitutive
levels of antiapoptotic factors such as BCL2 and BclxL
(Tilly 1996).

Ovarian signaling, mainly mediated by steroid
hormones and local growth factors, might also play
an important role in the balance between proliferation
and apoptosis of granulosa cells via regulation of BCL2
and BCL2L1 gene expression (Tilly et al. 1991, Johnson
2003). Regarding BAX, a protein with pro-apoptotic
effects, it has been shown that Bax knockout mice
develop an excessive number of granulosa cells in their
abnormal follicles (Knudson et al. 1995).

Cows with COD show a decrease in the index of
proliferation in granulosa and theca cell layers of cystic
follicles, similar to that observed in atretic follicles.
Previous studies found that the mRNA levels for cyclins
D1 and E in samples of the follicular wall are lower in
cystic follicles than in healthy tertiary follicles (Isobe &
Yoshimura 2007, Salvetti et al. 2010). Similarly to the
results found in induced follicular cysts in rats in different
experimental models (Table 1; Baravalle et al. 2006,
2007, Salvetti et al. 2009), tertiary follicles of cows show
an intense proliferation in the basal area of the granulosa
layer, whereas in atretic and cystic follicles proliferation
declines (Isobe & Yoshimura 2007, Salvetti et al. 2010).

In addition, results from different studies performed in
our laboratory suggest that the expression of different
markers of apoptosis, such as BAX, FASLG, caspase 3,
www.reproduction-online.org
and DNA fragmentation, is significantly higher in normal
atretic follicles than in cystic and tertiary follicles.
Conversely, the expression of BCL2 (antiapoptotic) is
higher in cysts and growing follicles than in atretic ones
(Salvetti et al. 2010). Similar results about apoptosis
have been found in ovarian cysts of bovines (Isobe &
Yoshimura 2000b, 2007), as well as in those of rats and
other species used as models of COD (Table 2; Anderson
& Lee 1997, Shirwalkar et al. 2007, Salvetti et al. 2009).

In summary, follicular persistence in cystic follicles
appears to be related both to reduced apoptosis and to
a reduced proliferation rate. The expression of apoptotic
markers in follicular cells is related to activation of
both the exogenous pathway through death receptors
and the endogenous pathway by the BCL2 gene family
(Salvetti et al. 2010). However, the poor levels of
apoptosis observed in bovine follicular cysts suggest
that the activation of both apoptosis pathways is
significantly reduced in COD. On the other hand, the
balance between proapoptotic and antiapoptotic factors,
along with FAS/FASLG, could be influenced by the
concentration of different hormones. In this regard,
changes in these factors might be induced as a result
of altered hormonal levels that characterize COD, and,
consequently, cell proliferation and apoptosis might
be affected. For example, a reduction in caspase 3
expression could be induced, resulting in decreased
apoptosis (Salvetti et al. 2010). All these data support the
assumption that, in COD, the expression of proteins
related to follicular cell proliferation and apoptosis might
be influenced by the hormonal changes characteristic
of this disease, contributing to the persistence of cysts.
Conclusions

Cumulative evidence suggests the existence of multi-
factorial causes in the pathogenesis of COD. Owing to
the lack of a distinct cause of COD, it has been difficult
to understand its origins and thus develop an effective
treatment. In this sense, considering that ovulation is a
complex process where, after initiation by LH, cascades
of several pathways interacting within cell types and
between cell compartments are involved, any alteration
in the multiple links can inhibit it. These processes are
essential for the successful establishment of pregnancy,
and involve changes in gene expression with overlap-
ping control and interdependent consequences in the
theca and granulosa compartments of the ovarian
follicle. Systemic and local inputs coordinate with
signals from the follicle; thus, ovulation is under
multipartite control, facilitating synchronization of
oocyte maturation. In this context, interpretation of
alterations in endocrine signals through gonadotropins
and in paracrine and autocrine signals through steroids
is essential for understanding the pathogenesis of
COD. A delay in follicle regression after ovulation
(by alteration in the proliferation/apoptosis balance) is
Reproduction (2015) 149 R251–R264
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an alternative component in the pathogenesis of cysts
because preovulatory follicles that can neither be
ovulated nor become atretic will affect the normal
ovarian function, being the first step in follicular
persistence and establishment of follicular cysts.
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