Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks

Edited by

Peter Csermely

Department of Medical Chemistry, Semmelweis University, Budapest, Hungary László Vígh

Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary

Springer Science+Business Media, LLC Landes Bioscience / Eurekah.com

GILOI LOI SAY Springer Sciencer, Land für biophysikalische Chemin

Copyright ©2007 Landes Bioscience and Springer Science+Business Media, LLC

All rights reserved.

No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system; for exclusive use by the Purchaser of the work.

Printed in the U.S.A.

Springer Science+Business Media, LLC, 233 Spring Street, New York, New York 10013, U.S.A.

Please address all inquiries to the publishers: Landes Bioscience / Eurekah.com, 1002 West Avenue, Second Floor, Austin, TX 78701, U.S.A. Phone: 512/ 637 6050; FAX: 512/ 637 6079 http://www.eurekah.com http://www.landesbioscience.com

Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks, edited by Peter Csermely and László Vígh, Landes Bioscience / Eurekah.com / Springer Science+Business Media, LLC dual imprint / Springer series: Advances in Experimental Medicine and Biology

ISBN-10: 0-387-39974-7 ISBN-13: 978-0-387-39974-4

While the authors, editors and publisher believe that drug selection and dosage and the specifications and usage of equipment and devices, as set forth in this book, are in accord with current recommendations and practice at the time of publication, they make no warranty, expressed or implied, with respect to material described in this book. In view of the ongoing research, equipment development, changes in governmental regulations and the rapid accumulation of information relating to the biomedical sciences, the reader is urged to carefully review and evaluate the information provided herein.

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available from the Library of Congress.

CONTENTS

1. PROTEIN MISASSEMBLY: MACROMOLECULAR CROWDING	
AND MOLECULAR CHAPERONES	1
R. John Ellis	
Introduction	1
Inside the Cell	1
The Principle of Protein Self-Assembly: Yesterday and Today	3
The Molecular Chaperone Concept	
The Problem of Protein Misassembly	6
Macromolecular Crowding	7
Stimulation of Misassembly by Crowding Agents	
How do Chaperones Combat Misassembly?	11
The Molecular Chaperone Function	11
2. THE CELLULAR "NETWORKING" OF MAMMALIAN HSP27 AND ITS FUNCTIONS IN THE CONTROL OF PROTEIN FOLDING, REDOX STATE AND APOPTOSIS	. 14
André-Patrick Arrigo	
Introduction	14
Hsp27 in Cells Exposed to Heat Shock	15
Hsp27 in Cells Exposed to Oxidative Stress	17
Hsp27 in Cells Committed to Apoptosis	19
Conclusions and in Vivo Perspectives	21
3. MOLECULAR INTERACTION NETWORK	
OF THE HSP90 CHAPERONE SYSTEM	. 27
Rongmin Zhao and Walid A. Houry	
Introduction	27
Mapping the Hsp90 Physical Interaction Network	29
Mapping the Hsp90 Genetic Interaction Network	30
The Hsp90 Interactome	31
Perspectives and Future Directions	. 34

Yuichiro Shimizu and Linda M. Hendershot

Introduction	.37
Overview of Protein Biosynthesis in the ER	.37
The ER Possesses a Unique Environment for Protein Folding	.39
The ER Quality Control System	.39
Chaperone Selection during Protein Maturation in the ER	.41
Organization of a Subset of Chaperones into Large	
Preformed Complexes	. 42
Components of the Calnexin/Calreticulin System	
and Their Organization	. 43
Possible Advantages and Constraints That an Organization	
of ER Chaperones Might Impose	. 44
5. MOLECULAR CRIME AND CELLULAR PUNISHMENT:	
ACTIVE DETOXIFICATION OF MISFOLDED	
AND AGGREGATED PROTEINS IN THE CELL	
BY THE CHAPERONE AND PROTEASE NETWORKS	47
BI THE CHAFERONE AND FROTEASE NETWORKS	4/
Marie-Pierre Hinault and Pierre Goloubinoff	
The Criminal Nature of Protein Aggregation in the Cell Defence Mechanisms against Protein Aggregation in the Cell Aging and Conformational Diseases: Failures of Law Enforcement Leading to Lawlessness	. 48
6. CHAPERONES AS PARTS OF CELLULAR NETWORKS	
Peter Csermely, Csaba Söti and Gregory L. Blatch	
Introduction: Cellular Networks and Chaperones	55
Chaperones in Cellular Networks	58
Chaperone-Mediated Emergent Properties of Cellular Networks	59
Chaperone Therapies	
Conclusion	60
7. CHAPERONES AS PARTS OF ORGANELLE NETWORKS	64
György Szabadkai and Rosario Rizzuto	
Introduction	64
Biogenesis of the ER and Mitochondrial Networks:	
A Role for Chaperones in Interorganellar Communication?	65
ER-Mitochondrial Ca ²⁺ Transfer: A Major Example of Organelle Interactions	07

Contents

Chaperone Control of ER-Mitochondrial Interaction along the Ca ²⁺ Signal
Transmission Pathway
Perspectives: The Role of Chaperone Mediated ER-Mitochondria
Coupling in Cell Death
Conclusions
8. HEAT SHOCK FACTOR 1 AS A COORDINATOR
OF STRESS AND DEVELOPMENTAL PATHWAYS
Julius Anckar and Lea Sistonen
Introduction
Functional Domains of HSF1
Activation Mechanisms of HSF1
Regulation of hsp Gene Transcription by HSF1
Stress-Specific Activation of HSF1
HSF1 as a Developmental Regulator
HSF1-Mediated Expression of Cytokines
Heat Shock Factors Working Together
Future Perspectives
9. CHAPERONE REGULATION OF THE HEAT SHOCK
PROTEIN RESPONSE
Richard Voellmy and Frank Boellmann
Introduction
Feedback Regulation of the Heat Shock Protein Response
by Stress-Inducible Chaperones
Hsps and Co-Chaperones Repress Activation of HSF190
HSP90-Containing Multichaperone Complexes Regulate HSF1 Oligomeric
Status and Transcriptional Competence91
Regulation of HSF1 by CHIP as Part of the Protein Quality
Control System
Synopsis
10. MECHANISMS OF ACTIVATION AND REGULATION
OF THE HEAT SHOCK-SENSITIVE
SIGNALING PATHWAYS 100
Sébastien Ian Nadeau and Jacques Landry
Introduction
Major Signaling Pathways Activate Heat Shock
Molecular Origin of the Heat Shock Signal
Conclusion

11. MEMBRANE-REGULATED STRESS RESPONSE:
A THEORETICAL AND PRACTICAL APPROACH
László Vígh, Zsolt Török, Gábor Balogh, Attila Glatz, Stefano Piotto
and Ibolya Horváth
Introduction
The Evolution of the "Membrane Sensor" Hypothesis with the Aid
of Unicellular Stress Models: The Beauty of Simplicity
Evidence Concerning the Operation of Membrane-Associated
Stress Sensing and Signaling Mechanisms in Mammalian Cells.
Membrane Lipids May Provide the Molecular Switch for Stress
Sensing and Signaling
Stress Response Profiling: Can We "Zoom In" on Membrane
Hyperstructures Engaged in the Generation of Stress Signal?
Can We Point to Lipid Molecular Species Engaged in Stress Sensing and Signaling?
Computational Methods for the Design of Subtle Interactions
between Lipids and Proteins of Membranes
Conclusions
12. BEYOND THE LIPID HYPOTHESIS:
MECHANISMS UNDERLYING PHENOTYPIC
PLASTICITY IN INDUCIBLE COLD TOLERANCE
FLASTICITY IN INDUCIBLE CULD TULEKAINCE
Scott A.L. Hayward, Patricia A. Murray, Andrew Y. Gracey
and Andrew R. Cossins
Introduction
Cold Adaptation and the Lipid Hypothesis
Evidence in Prokaryotes
Evidence in Plants
Evidence in Animals
Caenorhabditis elegans Cold Tolerance and the Contribution of Desaturases
Nonlipid Mechanisms of Cold Tolerance
Conclusions
13. TREHALOSE AS A "CHEMICAL CHAPERONE":
FACT AND FANTASY
John H. Crowe
Sugars and Stabilization of Biological Materials143
Origins of the Trehalose Myth144
The Mechanism of Depression of Tm 145
Trehalose Stabilizes Microdomains in Membranes
There Is More Than One Way to the Same End

Contents

Trehalose Has Useful Properties, Nevertheless	147
Glass Transitions and Stability	
Nonenzymatic Browning and Stability of the Glycosidic Bond	
Sugar Glasses in Plant Anhydrobiotes	
Lessons from Nature Can Be Used to Preserve Intact Cells	
in the Dry State	
Successful Freeze-Drying of Trehalose-Loaded Cells	
Can Nucleated Cells Be Stabilized in the Dry State?	
What Is the Role of p26 in Stabilizing Dry Nucleated Cells?	
Summary and Conclusions	
v	

Zoltán Prohászka

Introduction	159
Activation of Innate Immunity by Heat Shock Proteins	159
Immunological Protection of Heat Shock Proteins	160
Role of Natural Autoantibody Networks in Regulation	
of Autoimmunity	161
Heat Shock Proteins as Negotiators between Promotion	
of Inflammation or Control of Autoimmunity	162
Heat Shock Proteins as Elements of Multiple Networks	163

15. THE STRESS OF MISFOLDED PROTEINS:

C. ELEGANS MODELS FOR NEURODEGENERATIVE

CI LELGING MODELS I OKTE OKTO DE GENERATIVE	
DISEASE AND AGING 1	67

Heather R. Brignull, James F. Morley and Richard I. Morimoto

Introduction	
Models of Neurodegenerative Disease	
C. elegans Model of polyQ Disease	
The C. elegans polyQ Series in Neurons	
Biophysical Properties of polyQ Proteins in Neurons of Live Animals	170
PolyQ Length-Dependent Aggregation Correlates	
with Neuronal Dysfunction	172
Dynamic Biophysical Properties of Intermediate polyQ Tracts	
in the Ventral Nerve Cord	
Neuron-Specific Responses to polyQ Proteins	175
The C. elegans polyQ Series in Muscle Cells	175
Aging Influences the Threshold for polyQ Aggregation and Toxicity	
Longevity Genes Influence Aging-Dependent Aggregation	
and Toxicity of polyQ Proteins	178
Genome-Wide RNAi Screening Identifies Novel Regulators	
of polyQ Aggregation and Toxicity	179
Global Disruption of Folding Homeostasis by polyQ Proteins	
Conclusion	

16. HSP90 AND DEVELOPMENTAL NETWORKS 190

Suzannah Rutherford, Jennifer R. Knapp and Peter Csermely

Introduction	
Hidden Genetic Variation	
Hsp90 and Signal Transduction Thresholds	
Nonlinearity in Developmental Responses to Signal Transduction	
A Pivotal Role for Hsp90 in Network Evolvability?	195
INDEX	199

xviii