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The emission of an Auger electron is the predominant relaxation mechanism of core-vacant states in molecules com-
posed of light nuclei. In this non-radiative decay process, one valence electron fills the core vacancy while a second
valence electron is emitted into the ionization continuum. Because of this coupling to the continuum, core-vacant
states represent electronic resonances that can be tackled with standard quantum-chemical methods only if they are
approximated as bound states, meaning that Auger decay is neglected.
Here, we present an approach to compute Auger decay rates of core-vacant states from coupled-cluster and equation-of-
motion coupled-cluster wave functions combined with complex scaling of the Hamiltonian or, alternatively, complex-
scaled basis functions. Through energy decomposition analysis, we illustrate how complex-scaled methods are capable
of describing the coupling to the ionization continuum without the need to model the wave function of the Auger
electron explicitly. In addition, we introduce in this work several approaches for the determination of partial decay
widths and Auger branching ratios from complex-scaled coupled-cluster wave functions.
We demonstrate the capabilities of our new approach by computations on core-ionized states of neon, water, dinitrogen,
and benzene. Coupled-cluster and equation-of-motion coupled-cluster theory in the singles and doubles approximation
both deliver excellent results for total decay widths, whereas we find partial widths more straightforward to evaluate
with the former method. We also observe that the requirements towards the basis set are less arduous for Auger decay
than for other types of resonances so that extensions to larger molecules are readily possible.

I. INTRODUCTION

X-ray spectroscopy is a valuable tool for the analysis of struc-
ture and reactivity throughout chemistry.1 Not only does the
complexity and accuracy of experiments advance every year,
but this has also entailed growing interest in theoretical mod-
eling of the interaction of atoms and molecules with X-ray
radiation and the resulting core-vacant states.2,3 Experiment
and theory strongly rely on each other for the examination
of systems with core vacancy; in many cases, the explana-
tion and interpretation of experimental results requires input
from theoretical modeling. At the same time, the unique elec-
tronic structure of core-vacant states poses a challenge for
theory. The variety of recent investigations illustrates the ef-
forts to achieve a quantitatively correct and at the same time
computationally affordable description of core-vacant states;
overviews are available from Refs. 2,3.
X-ray irradiation of a neutral species can create both core-
excited and core-ionized states. An important mechanism
by which these highly excited states can relax is the Auger-
Meitner effect,4,5 a non-radiative decay process involving two
valence electrons: One of them is emitted while the other one
fills the core vacancy. Auger decay exists in several variants
and can occur as a result of both core-ionization and core-
excitation. As shown in Fig. 1, decay of a core-ionized state
A+∗ produces the dication A2+ in different electronic states,
which are referred to as decay channels. The corresponding
decay process of a neutral core-excited state is called resonant
Auger decay.6,7 Further variants are processes where cations
with charges higher than 2 are produced through simultane-

ous emission of multiple electrons, this has been demonstrated
experimentally for double Auger decay8 and triple Auger de-
cay9. An exotic phenomenon is three-electron Auger decay, in
which two electrons simultaneously fill a double vacancy.10,11

It is also common that the target states of Auger decay are sub-
ject to further decay resulting in so-called Auger cascades.1

Moreover, there are non-local decay processes such as inter-
atomic and intermolecular Coulombic decay12,13 (ICD) and
electron-transfer mediated decay.14

The main subject of the present work is the description of
Auger decay of core-ionized states, but many of our conclu-
sions hold for resonant Auger decay and more involved pro-
cesses as well. A particular topic that we will deal with is
the determination of partial decay widths, that is, the relative
probability of decay into a particular channel. In Auger elec-
tron spectroscopy,1 partial decay widths are determined from
the kinetic energies of the emitted Auger electrons. The in-
tensity of the Auger electrons is measured as a function of
their energy and, typically, each signal can be assigned to a
specific decay channel. While the total number of open de-
cay channels can be anticipated by the application of selec-
tion rules based on molecular symmetry, the determination of
partial decay widths poses a challenge to experiment and the-
ory alike.1,15–24 In a rigorous scattering approach, they may
potentially be evaluated by constructing true continuum func-
tions for each channel at the respective energies. However,
we consider it desirable to evaluate partial widths from L2 in-
tegrable wave functions in analogy to molecular properties of
bound states, even though this necessarily constitutes an ap-
proximation.
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FIG. 1. Generation of a core-ionized state (left) and its Auger decay into different channels (right).

A fundamental aspect of core-vacant states is that they are
not bound states but metastable electronic resonances.25,26

Since they can undergo Auger decay, these states are cou-
pled to the continuum and their lifetime is finite. This is be-
yond the reach of quantum-chemical methods geared towards
bound states. Many existing computational approaches for
core-vacant states neglect their metastable character entirely,
meaning the decay width is modeled to be zero. An elegant
way to impose this restriction in a controlled manner consists
in the core-valence separation (CVS).27 There is ample ev-
idence28–30 that CVS-based descriptions are highly accurate
for many types of core-vacant states as long as one is only
interested in energies and molecular properties determined
as energy derivatives. However, methods that consider core-
vacant states to be bound are obviously unsuited for modeling
Auger decay.

There are several theoretical approaches for electronic
resonances.25,26 Besides approaches based on R-matrix
theory,31,32 Fano’s theory33,34 is of particular importance for
Auger decay. Here, the resonance wave function is modeled as
a bound state superimposed by the electronic continuum. An
important aspect of methods based on Fano’s theory is that the
electronic continuum cannot be properly represented by the L2

integrable functions used in bound-state electronic-structure
theory. This can be circumvented by modeling the wave
function of the emitted Auger electron in an implicit fash-
ion, for example, using Stieltjes imaging.35,36 Although the
problem of a somewhat arbitrary partition of the Hilbert space
into a bound and a continuum part persists, this approach is
well capable of modeling Auger decay as the popular “Fano-
ADC” approach37,38 illustrates. Here, algebraic diagrammatic
construction39 (ADC) is used as electronic-structure backend.
As an alternative to Stieltjes imaging, more explicit treat-
ments of the Auger electron are possible where one solves
an effective one-electron Schrödinger equation with scatter-
ing boundary conditions.16,17 Recently, an approach was sug-
gested, where the decaying resonance state is represented as
a product of a continuum orbital and a correlated many-body
wave function.23 This approach has been shown to reproduce
the most important signals in Auger spectra reliably, but the
functional form of the wave function of the Auger electron

has to be assumed a priori, for example, as plane wave or
Coulomb wave.
In this work, we seek to put forward an alternative method for
the computation of molecular Auger decay widths based on
an L2 representation of the resonance wave function. This re-
lies on analytic continuation of the Hamiltonian to the com-
plex plane by means of complex scaling25,40,41 and its ex-
tension to molecules based on complex basis functions.42,43

In these methods, the decaying character of the resonance
states is implicitly considered in L2 integrable wave functions
that are eigenstates of a non-Hermitian Hamiltonian and have
complex energies. In this way, complex-variable electronic-
structure methods offer a unified treatment of bound states
and different types of resonances. Their integration into ex-
isting implementations of quantum-chemical methods26,44–49

requires extension of the arithmetic to complex numbers and
a different normalization of the wave function50 but the work-
ing equations of a particular quantum-chemical method stay
the same and no a priori assumption about the wave function
of the emitted electron needs to be made.
Complex scaling has already been applied to atomic Auger
decay,51–53 but no similar applications to molecules have been
reported. At the same time, several applications of complex
basis functions to other types of resonances such as tempo-
rary anions47–49 and molecules in static electric fields have
been reported recently.54–57 We also mention treatments of
Auger decay rates and ICD rates based on complex absorb-
ing potentials.58–60 This technique affords a treatment of elec-
tronic resonances in terms of L2 wave functions as well and
can be related to complex scaling.61–63

Here, we extend the method of complex basis functions to
molecular Auger decay. Through energy decomposition anal-
ysis of the complex-scaled wave function, we identify key dif-
ferences between core-ionized states and other types of reso-
nances that involve only valence electrons. These differences
give rise to markedly different basis requirements and an over-
all more robust performance of complex-scaled methods for
core-ionized states as compared to other types of resonances.
Our work is based on coupled-cluster64–66 (CC) and equation-
of-motion (EOM)-CC66–71 wave functions within the singles
and doubles approximation (CCSD and EOM-CCSD). These
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methods provide a parameter-free single-reference description
of the many-electron wave function. Several applications to
X-ray spectroscopies23,24,28,29,72–79 have illustrated that they
are able to provide an excellent description of core-vacant
states. However, we anticipate that the analysis of complex-
scaled CCSD and EOM-CCSD wave functions presented here
will be relevant to other state-of-the-art electronic-structure
methods for core-vacant states as well. These include, for ex-
ample, time-dependent density functional theory (TD-DFT)80

and ∆DFT approaches,81 ADC methods of second and third
order37,38,82–84, and higher-order CC methods.72,75,79

The remainder of this article is structured as follows: In
Sec. II, we discuss the theory of complex scaling and com-
plex basis functions, some aspects of complex-scaled CC and
EOM-CC theory relevant to our work, and the theoretical
background of our energy decomposition analysis. In Sec. III
we analyze the complex-scaled wave function of Ne+ (1s−1)
and discuss the implications for the treatment of molecular
Auger decay in terms of complex basis functions. On the ba-
sis of these results, we present in Sec. IV a computational
protocol for the treatment of molecules together with some
applications to core-ionized states of H2O, N2, and C6H6. Our
general conclusions and an outlook on possible extensions of
the new method are given in Sec. V.

II. THEORETICAL CONSIDERATIONS

A. Treatment of the continuum by means of complex scaling

In complex scaling (CS)25,40,41, the Hamiltonian is subject to
an unbounded similarity transformation

ĤCS = ŜĤŜ−1 with Ŝ = eiθr d/dr , 0 < θ < π/4 . (1)

This is equivalent to rotating the electronic coordinates in
Ĥ(r) so that the Hamiltonian becomes Ĥ(reiθ ). The reso-
nances, which are peaks in the density of continuum states in
Hermitian quantum mechanics, now attain discrete complex
eigenvalues

Eres = ER− iΓ/2, (2)

which are directly related to the resonance position ER and the
resonance width Γ, the inverse of the state’s lifetime. At the
same time, the continua are rotated by an angle of 2θ into the
lower-half complex plane.
If the Hamiltonian is represented exactly, only the energies of
the continua and the resonances embedded therein are affected
by CS, while bound states have Im(E) = 0 even though their
wave functions change. Also, the complex eigenvalues of the
resonances are independent of θ if it is larger than the critical
value41

θc = 1/2arctan[Γ/2(ER−Et)] (3)

with Et as threshold energy. Above the same critical angle, the
resonance wave functions are L2 integrable and thus amenable
to a treatment with bound-state methods. In the context of

Auger decay, Eq. (3) implies that very small scaling angles
are sufficient to uncover the resonances and make their wave
functions L2 integrable. If we consider for a back-of-the-
envelope estimate the core-ionized state of neon (Γ≈ 0.25 eV,
ER−Et ≈ 800 eV), a scaling angle of less than 0.01◦ should
be sufficient. This is in contrast to, for example, the temporary
anion N−2 (Γ≈ 0.4 eV, ER−Et ≈ 2.3 eV)26 where the critical
angle is ca. 5◦. Core-ionized wave functions are thus on the
verge of L2 integrability, which distinguishes them from other
types of resonances. In actual calculations with a finite ba-
sis, Eres does depend on θ ; the optimal value is usually found
through minimizing |dE/dθ |.26,50 For this purpose, trajecto-
ries E(θ) need to be calculated, which is the main reason that
complex-scaled methods are more computationally expensive
than their real-valued counterparts.
CS has the major disadvantage that it cannot be applied to
molecules because the complex-scaled electron-nuclear at-
traction is not dilation analytic within the Born-Oppenheimer
approximation.25 A possible solution is exterior scaling,85

where the area close to the nuclei is not scaled. In the con-
text of Gaussian basis sets, this can be realized by the method
of complex basis functions (CBFs),42,43 which relies on the
identity

〈Ψ(r)|Ĥ(reiθ )|Ψ(r)〉
〈Ψ(r)|Ψ(r)〉

=
〈Ψ(re−iθ )|Ĥ(r)|Ψ(re−iθ )〉
〈Ψ(re−iθ )|Ψ(re−iθ )〉

(4)

and the fact that scaling the coordinates of the basis functions
according to the right-hand side of Eq. (4) is equivalent to
scaling their exponents in the same way. Since it is possible
to scale only selected basis functions —in the computational
practice hitherto the most diffuse shells47— dilation analytic-
ity is preserved and CBF methods are applicable to molecules.
A further advantage of CBF methods over CS is that changes
in the bound-state and resonance wave functions stemming
from Eq. (1) are smaller. As a result, Im(E) of bound states,
which is zero in the full basis-set limit, is smaller by orders of
magnitude in CBF calculations than in CS calculations.
We add here that the scaling angle can be chosen to be
complex-valued in CBF and CS methods, that is, e−iθ =
α ·e−iθR ; α,θR ∈R.25,43 The factor α represents an optimiza-
tion of the exponents of the basis functions and is related to
the stabilization method where resonances are identified from
changes in the energy upon scaling the exponents.86,87

CBF methods offer access to different types of molec-
ular electronic resonances as illustrated by many recent
applications.47–49,54,56,57 However, no work on molecular
Auger decay has been reported. As we will show in Sec. III, a
straightforward application of computational protocols devel-
oped for other resonances results in zero decay widths, that
is, such CBF calculations are blind to Auger decay. Several
changes are necessary to uncover the decaying character of
core-ionized states.

B. Complex-variable coupled-cluster methods

In CC theory, the wave function is obtained from the Hartree-
Fock (HF) state |Ψ0〉 by the action of the cluster operator T̂
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according to

|ΨCC〉= eT̂ |Ψ0〉= (1+ T̂ + T̂ 2/2!+ T̂ 3/3!+ . . .)|Ψ0〉 . (5)

In CBF-CC methods, |Ψ0〉 is always complex-valued while
different approaches are possible for CS-CC methods.26,44 In
this work, all CS calculations are based on a CS-HF reference.
Inclusion of different excitation levels in T̂ gives rise to a hi-
erarchy of methods that converges smoothly to the exact solu-
tion. Here, we use CCSD where T̂ = T̂1+ T̂2. The exponential
parametrization in Eq. (5) ensures size-extensivity and inclu-
sion of the most relevant higher excitations through products
of T1 and T2.66

Inserting Eq. (5) into the Schrödinger equation, one obtains

ĤeT̂ |Ψ0〉= EeT̂ |Ψ0〉 ⇔ e−T̂ ĤeT̂ |Ψ0〉= E|Ψ0〉, (6)

where e−T̂ ĤeT̂ = H̄ is the similarity-transformed Hamilto-
nian. Projection of Eq. (6) onto the HF determinant and the
singly and doubly excited determinants determines the CCSD
energy and amplitudes, respectively.
To describe core-ionized states subject to Auger decay within
CC theory, we employ two computational strategies as illus-
trated in Fig. 2: In the ∆CCSD approach, one performs two
separate CCSD calculations based on HF determinants for the
neutral state and the core-ionized state. In this work, the latter
state is always described in a spin-unrestricted manner. We
determine the optimal scaling angle from the difference of the
two CCSD energies; in accordance with previous reports49 we
find that this approach usually leads to much smaller values
for |dE/dθ | than determining θ from the total energy. If not
specified otherwise, we recomputed all energies in the 0–45◦

range in steps of 1◦. The total decay width Γ is then evalu-
ated from the difference of the two imaginary energies. We
reiterate that Im(E) of the neutral state would be zero in ex-
act theory, but has a significant value especially in CS-based
calculations (see Sec. II A).
The other method we use is EOMIP-CCSD.70,71 Based on
a CCSD wave function for a neutral molecule, biorthogonal
right and left wave functions for a core-ionized state are con-
structed in EOMIP-CCSD as

|ΨEOMCC〉= R̂eT̂ |Ψ0〉 , (7)

〈ΨEOMCC|= 〈Ψ0|L̂†e−T̂ . (8)

Here, the excitation operators R̂ and L̂ are truncated at the
same level as T̂ , meaning that they include 1-hole (1h) and
2-hole-1-particle (2h1p) excitations in EOMIP-CCSD. Inser-
tion of Eq. (7) into the Schrödinger equation and projection
onto the 1h and 2h1p excitation manifolds results in an eigen-
value equation for H̄. The total decay width Γ is directly ob-
tained from the imaginary part of the eigenvalues according
to Eq. (2). The optimal scaling angle is also determined from
these eigenvalues of the EOMIP-CCSD equations.
The computational cost of both approaches scales as N6 with
system size. However, while ∆CCSD involves two separate
CCSD calculations with N2

occN4
virt cost, one needs to carry

out only one such calculation for the reference state in the

EOMIP-CCSD approach; the EOMIP step itself scales as
N2

occN3
virt. As a consequence, the EOMIP-CCSD approach typ-

ically entails lower computational cost.
All calculations presented in this article were carried out with
the complex-variable CCSD and EOM-CCSD codes44,46 im-
plemented in the Q-Chem software.88

C. Structure of the core-ionized wave function

Fig. 2 displays the structures of the complex-scaled CCSD
and EOMIP-CCSD wave functions of a core-ionized state,
which shows that both methods are capable of describing
Auger decay: this is primarily achieved by means of the
doubly-excited determinants marked in red, where the core
hole has been filled with an electron, while a second valence
electron has been excited into the virtual space.
Our numerical results (see Sec. III) confirm that the red con-
figurations in Fig. 2 are almost exclusively responsible for
the decay width in the ∆CCSD approach as one would expect.
This is, however, not the case in EOMIP-CCSD as we will
discuss also in Sec. III. In both approaches, the red determi-
nants are of very minor relevance for the real part of the energy
and their amplitudes are typically orders of magnitude smaller
than those of the blue configurations. This corroborates the
validity of CVS methods since the CVS projector precisely
removes the red determinants from the wave function.27

The green determinants represent zeroth-order descriptions of
the core-vacant state and, while they carry by far the largest
weight in the wave functions, are not relevant to our further
analysis. The blue determinants comprise single and double
excitations and represent orbital relaxation as well electron
correlation effects. They play different roles in ∆CCSD and
EOMIP-CCSD: In the latter approach, the HF wave function
|Ψ0〉 is optimized for the neutral ground state and electron
correlation is subsequently treated for this state as well. The
blue determinants are thus indispensable in EOMIP-CCSD to
model the substantial relaxation in the charge distribution due
to the core hole as well as differential electron correlation. In
the former approach, i. e. ∆CCSD, relaxation effects are al-
ready contained in |Ψ0〉 through changed orbital shapes and
energies. The doubly-excited blue determinants thus describe
primarily electron correlation and their singly-excited coun-
terparts secondary relaxation effects resulting therefrom.

D. Energy decomposition analysis and partial decay widths

To substantiate the qualitative discussion from the preceding
section, we use energy decomposition analysis. This allows
us to identify contributions from individual excitations to the
imaginary energy, that is, the total decay width. In addition,
we get access to partial widths corresponding to decay into
particular channels.
For ∆CCSD, we use two approaches. We either decompose
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FIG. 2. Determinants included in CCSD (upper part) and EOMIP-CCSD (lower part) wave functions for a core-ionized state in a Hilbert space
spanned by 5 orbitals. See text for further explanation.

directly the CCSD energy

E = EHF + ∑
i jab

(1
4

tab
i j +

1
2

ta
i tb

j

)
〈i j||ab〉 (9)

or, alternatively, use an expression in terms of the reduced
one-electron and two-electron CCSD density matrices DCCSD

and ΓCCSD. The latter reads

E = 〈Ψ0 |(1+ Λ̂)e−T̂ ĤeT̂ |Ψ0〉

= EHF +∑
pq

fpq 〈Ψ0|(1+ Λ̂)e−T̂{p†q}eT̂ |Ψ0〉

+
1
4 ∑

pqrs
〈pq||rs〉〈Ψ0|(1+ Λ̂)e−T̂{p†q†sr}eT̂ |Ψ0〉

= EHF + ∑
pq

DCCSD
pq fpq +

1
4 ∑

pqrs
Γ

CCSD
pqrs 〈pq||rs〉 (10)

with Λ̂ as the well-known deexcitation operator from CC gra-
dient theory66 and fpq and 〈pq||rs〉 as elements of the Fock
matrix and antisymmetrized two-electron integrals, respec-
tively.

For EOMIP-CCSD, the corresponding expression reads

E = 〈Ψ0 | L̂† e−T̂ ĤeT̂ R̂ |Ψ0〉

= EHF +∑
pq

fpq 〈Ψ0|L̂† e−T̂{p†q}eT̂ R̂|Ψ0〉

+
1
4 ∑

pqrs
〈pq||rs〉〈Ψ0|L̂† e−T̂{p†q†sr}eT̂ R̂|Ψ0〉

= EHF + ∑
pq

DEOMIP
pq fpq +

1
4 ∑

pqrs
Γ

EOMIP
pqrs 〈pq||rs〉 (11)

and differs from Eq. (10) thus only in the definition of the
density matrices DEOMIP and ΓEOMIP.
To compute partial widths from Eq. (9), we use a modified
T̂2 operator, where amplitudes corresponding to a particular
decay channel have been set to zero. For the corresponding
decomposition based on Eqs. (10) and (11), we use modified
density matrices: After convergence of the CCSD or EOMIP-
CCSD equations, we set to zero the amplitudes in T̂ and Λ̂ or
R̂ and L̂ that correspond to a particular decay channel. For
EOMIP-CCSD, this is done such that spin-completeness is
preserved. We note that decay into a particular channel is
usually represented by multiple excitations that differ in the
energy of the virtual orbital (see Fig. 2). Using these ap-
proaches, we can disable Auger decay channel by channel un-
til we arrive at versions of T̂ , Λ̂, R̂, and L̂ that are used in CVS-
CCSD and CVS-EOMIP-CCSD. When evaluated from these
CVS-like operators, Eqs. (9)–(11) yield zero decay widths.
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TABLE I. Energies and half-widths of Ne+ (1s−1) computed with
CS-EOMIP-CCSD and CS-∆CCSD using different basis sets. The
basis-set suffix +3s3p refers to the addition of 3 diffuse s and p shells
with an even-tempered exponent spacing of 2. Energies in eV. Half-
widths in meV. Results for additional basis sets can be found in the
SI.

Method Basis set θopt/
◦ Re(E) Im(E)

EOMIP-CCSD aug-cc-pCVTZ+6s6p6d No minimum in |dE/dθ |
EOMIP-CCSD cc-pCVQZ No minimum in |dE/dθ |
EOMIP-CCSD aug-cc-pCVQZ 10 871.26 −73
EOMIP-CCSD cc-pCV5Z 11 871.22 −113
EOMIP-CCSD aug-cc-pCV5Z 13 871.20 −114
EOMIP-CCSD aug-cc-pCV5Z+3s3p 14 871.20 −109
EOMIP-CCSD cc-pCV6Z 12 871.22 −97
∆CCSD aug-cc-pCV5Z 12 869.53 −104
∆CCSD aug-cc-pCV5Z+3s3p 13 869.53 −101
Fano 870.12a −109b

Experiment — — 870.17a −129c

a From Ref. 91, theoretical value computed using CI wave functions.93

b From Ref. 24, computed using Fano’s theory based on EOMIP-CCSD and
EOMDIP-CCSD wave functions.

c From Ref. 92.

III. NUMERICAL ANALYSIS OF AUGER DECAY OF Ne+
(1s−1)

As alluded to in Sec. II A, the application of computational
protocols developed for other types of resonances works well
for CS but not for CBF methods. To analyze this further,
we use the 1s−1 state of the neon atom as a test case. This
system is a simple and frequently studied example of Auger
decay.24,89–92 There are five main decay channels leading to
the 1D (2p−2), 1S (2p−2), 3P (2s−12p−1), 1P (2s−12p−1), and
1S (2s−2) states of Ne2+.

A. Total Auger decay width from complex scaling

Tab. I shows core-ionization energies and Auger decay widths
of Ne+ computed with CS-EOMIP-CCSD and CS-∆CCSD.
This confirms the conclusion from Sec. II C that both methods
are able to describe Auger decay. ∆CCSD yields a somewhat
more accurate result for the ionization energy as compared to
EOMIP-CCSD, which is in line with previous findings using
real-valued CC methods.72,79 The decay widths differ by less
than 10 % and are well in line with earlier theoretical results.24

The underestimation of the decay width by 10-20 % as com-
pared to the experimental value9 can be related to the fact that
double Auger decay and other processes involving more than
two electrons are not described within the CCSD approxima-
tion. The corresponding decay channels are not present in our
calculations.
Tab. I also illustrates that extra diffuse shells are not needed
to describe Auger decay of Ne+. This is unlike to low-lying
temporary anions and Stark resonances formed in static elec-
tric fields, where these extra shells are vital to obtain accurate
decay widths with CS methods.47,49,57 On the other hand, re-

TABLE II. Partial decay half-widths for the 5 decay channels of Ne+

(1s−1). All values in meV.

Decay channel CS/∆a CS/∆b CS/EOMc Fanod Experimente

all 122.3 133.7 210.9 109.1 128.5(30)
1D (2p−2) 74.7 81.5 133.4 58.8 78.2(21)
1P (2s−12p−1) 27.7 29.3 21.6 19.6 22.1(7)
3P (2s−12p−1) 6.6 6.6 43.2 11.9 8.1(3)
1S (2s−2) 9.3 8.8 1.0 13.6 7.9(3)
1S (2p−2) 7.0 7.6 12.8 5.3 12.2(4)

a This work, computed using CS-∆CCSD/aug-cc-pCV5Z and Eq. (10).
b This work, computed using CS-∆CCSD/aug-cc-pCV5Z and Eq. (9).
c This work, computed using CS-EOMIP-CCSD/aug-cc-pCV5Z and Eq.

(11).
d From Ref. 24, computed using Fano’s theory based on EOMIP-CCSD and

EOMDIP-CCSD wave functions.
e From Refs. 90,92.

quirements towards the valence part of the basis set are as high
as in CS calculations of other types of resonances. It appears
that aug-cc-pCVQZ is the smallest basis set that is able to cap-
ture the decaying character of the wave function and even this
basis set recovers only 2/3 of the decay width computed with
aug-cc-pCV5Z.

B. Partial Auger decay widths from complex scaling

To compute partial decay widths, we decomposed the total
CS-CCSD decay width of Ne+ (1s−1) on the basis of Eqs. (9)
and (10) by setting to zero amplitudes in T̂2 and Λ̂2 that create
the “red” determinants in Fig. 2. Our results are compiled
in Tab. II and compared with results obtained using a combi-
nation of Fano’s approach with EOM-CC theory24 as well as
with experimental values.90,92 As branching ratios and total
decay widths are usually determined by separate experiments,
we derived the experimental values for the partial widths in
Tab. II by multiplying branching ratios from Ref. 90 with the
result of a recent measurement of the total decay width.92

Tab. II illustrates overall excellent agreement between our CS-
CCSD partial widths and those from experiment; the experi-
mental values are reproduced with a root mean square devia-
tion of 4 meV. However, there are several issues that deserve
a discussion:
First, the half-widths computed with Eqs. (9) and (10) are
not identical. This is due to the structure of the CCSD den-
sity matrices in Eq. (10): A term such as Λ̂d-decay · T̂s-decay is
set to zero when computing the partial widths for either de-
cay channel and thus counted twice. This also causes that the
sum of the partial half-widths of the 5 channels (125 meV) is
not identical to the total half-width in Tab. II (122 meV). On
the other hand, no double counting occurs in Eq. (9) and the
corresponding partial widths are strictly additive.
A second observation is that neither Eq. (9) nor Eq. (10)
yield half-widths that sum up to the total CS-CCSD half-width
reported in Tab. I. When removing all determinants marked in
red in Fig. 2, we obtain values of 134 and 122 meV from Eqs.
(9) and (10), respectively, whereas the value from Tab. I is
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104 meV.
This discrepancy stems from three origins: First, Γ/2 in
Tab. I is evaluated from the energy difference between the
core-ionized and the neutral ground state, whereas Eqs. (9)
and (10) are applied only to the core-ionized state. Second,
the “red” determinants in Fig. 2 contribute to Γ/2 not only
through T̂2 but also through T̂1 · T̂1. Third, the determinants
marked in blue and purple in Fig. 2 deliver a non-negligible
contribution to Γ/2, but their assignment to a particular de-
cay channel is not straightforward. We neglected these con-
tributions in the values reported in Tab. II but we note that
the “blue” determinants are related to shake-up and shake-off
processes, which are well known in the context of interchan-
nel coupling in Auger decay.89,94

An equivalent decomposition of the EOMIP-CCSD decay
width was performed on the basis of Eq. (11) by setting to
zero elements of R̂2 and L̂2. These results are also contained
in Tab. II. It is apparent that the EOMIP-CCSD partial widths
are very unreliable: By removing all excitations into the “red”
determinants from R̂2 and L̂2, we obtain for Γ/2 a value of
211 meV from Eq. (11), whereas the imaginary part of the
eigenvalue of the EOMIP-CCSD equations is 114 meV (see
Tab. I).
The reasons for this failure are similar in origin to the much
smaller discrepancies between the CCSD values discussed be-
fore. First, Eq. (11) is an expression for E −EHF, while the
EOMIP-CCSD equations yield E−ECCSD as eigenvalue. Al-
beit zero in exact theory, the imaginary energy of the neutral
CCSD reference state amounts to ∼ 1.3 ·10−3 a.u. or 35 meV
in our calculations. Second, the “blue” and “purple” deter-
minants from Fig. 2 are again neglected. Third, the “red”
determinants in Fig. 2 cannot only be created by R̂2 but also
by combinations of R̂1 and T̂2 as well as R̂1 and T̂1. These con-
tributions to Γ/2 are substantial and their neglect is the reason
that we observe much larger discrepancies between Tabs. I
and II for EOMIP-CCSD than for ∆CCSD.

C. Analysis of the orbital basis

To understand the basis-set dependence documented in Tab. I,
we decomposed the CS-CCSD partial decay width of the
1D(2p−2) channel further into contributions from different ex-
citations. The 8 d shells in the aug-cc-pCV5Z basis for Ne
give rise to 8 sets of virtual orbitals with d-symmetry. We
computed their contributions to Γ/2 by setting to zero in
Eq. (10) those amplitudes tab

i j and λ
i j
ab where i = j = 2p and

a = 1s, b = nd or a = nd, b = 1s. The results are presented in
Tab. III together with the corresponding orbital energies.
Tab. III illustrates that the 1D partial decay width arises al-
most exclusively from excitations into determinants in which
the 5d, 6d, and 7d orbitals are occupied, while excitations into
the remaining d orbitals contribute only 6 %. We note that
for the 7d orbital, which delivers the largest contribution to
Γ/2, Re(ε) ≈ 860 eV, which is close to the kinetic energy of
the emitted Auger electron (804 eV).90 This observation of-
fers an explanation why scaling of diffuse basis functions is
necessary for the description of low-lying temporary anions,

TABLE III. Contributions ∆Im(E) of different d orbitals (n = 3−10)
in meV to the CS-CCSD partial half width of the 1D(2p−2) channel
of Ne+(1s−1) computed with the aug-pCV5Z basis set at θopt = 12◦.
All orbital energies ε in a.u. and the three-particle overlaps O (in Å3

Bohr−4.5) of the d orbitals with the 2p orbitals are also given. See
text for further details.

n ∆Im(E) Re(O) Im(O) Re(ε) Im(ε)
3 −0.1 −0.9 2.8 ·10−8 0.60 −0.27
4 −1.6 3.5 −7.3 ·10−8 1.88 −0.79
5 −6.5 7.4 1.4 ·10−7 4.79 −2.12
6 −18.0 8.8 5.8 ·10−7 12.11 −5.74
7 −46.7 5.8 7.2 ·10−7 31.61 −15.81
8 −2.6 −1.9 −4.5 ·10−7 88.28 −45.27
9 −0.1 0.4 9.6 ·10−8 259.60 −132.53
10 −0.0 0.1 1.5 ·10−8 791.25 −399.75
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FIG. 3. Plots of the 2pβx and selected dαxy orbitals along the xy diag-
onal obtained from a CS-UHF calculation for Ne+(1s−1

α ) using the
aug-cc-pCV5Z basis set.

where the outgoing electron has just a few eV, while functions
with larger exponent need to be scaled to describe Auger de-
cay. This is the reason why calculations in which only diffuse
functions are scaled are blind to Auger decay.
To analyze this further, we computed the values of the dαxy or-
bitals along the xy diagonal at z = 0 and compared them to
those of the 2pαx and 2pβx orbitals. Along this line, the afore-
mentioned orbitals have no nodal plane due to the angular part
that would complicate the analysis. Plots of the real and imag-
inary parts of the 2pβx orbitals and a few selected dαxy orbitals
are presented in Fig. 3. As shown in the SI, the differences
between the 2pαx and 2pβx orbitals are small and not relevant
for the further discussion.
The d orbital with the lowest energies (e. g. 3dxy) are very
diffuse and reach their maximum amplitude at a distance of
1.3 Å from the nucleus, where the amplitude of the 2px or-
bital is negligible. On the other hand, the d orbitals with high
energies (e. g. 10dxy) have strong oscillations close to the nu-
cleus. Only the d orbitals in between (e. g. 6dxy, 7dxy), which
together yield more than 90 % of the decay width, have large
amplitudes close to the nucleus and at the same time no node
less than 0.3 Å away from it so that their overlap with the 2px
orbital is large.
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We quantify this overlap by integrating over the radial coordi-
nate of the product of three orbitals as follows:

O =
∫

∞

0
dr 4πr2

ϕ
α
2p,x(r) ϕ

β
2p,y(r) ϕ

α
nd,xy(r) . (12)

Eq. (12) is formulated for decay into the 1D state of Ne2+

but can be easily generalized to other systems. We note that,
because p orbitals are ungerade and d orbitals are gerade,
only the three-orbital overlap defined according to Eq. (12)
is nonzero, whereas the integral over a simple product of 2px
and ndxy along the xy diagonal would vanish.
The values for O calculated from Eq. (12) are listed in Tab. III.
This shows that Re(O) and Im(O) are indicators of the contri-
bution of a particular d orbital to the decay width; the d or-
bitals with the largest overlaps with 2px also contribute most
to Γ/2. The description of Auger decay in the CS-CCSD
wave function thus relies on the overlap between the valence
orbitals which are emptied during the decay process and the
virtual orbitals, in which the outgoing electron is quenched.
The quantity O from Eq. (12) is presumably useful as well
for analyzing the description of other states that decay by a
two-electron process, i. e., Feshbach resonances in general.
Our calculations show that the largest contribution to Im(O)
stems from [Im(ϕ2p,x) · Re(ϕ2p,y) + Re(ϕ2p,x) · Im(ϕ2p,y)] ·
Re(ϕnd,xy). For the values in Tab. III, this term is more than
10 times larger than those involving Im(ϕnd,xy), in line with
the nodal structures of the orbitals shown in Fig. 3.
As a further step, we analyzed the molecular orbital coeffi-
cients of the d orbitals that deliver the largest contributions to
the 1D decay width (5d, 6d, 7d). The results are compiled in
Tab. IV; it is evident that basis functions with intermediate ex-
ponents between 1 and 10 are responsible for the largest share
of the decay width.
This explains again the basis-set dependence documented in
Tab. I: Diffuse basis functions produce low-lying virtual or-
bitals that do not overlap with the occupied valence orbitals,
while steep basis functions lead to virtual orbitals with high
energy, whose overlap with the occupied orbitals cancels out
due to oscillations. Only the intermediate virtual orbitals with
an energy in the range of that of the emitted Auger electron
overlap substantially with the valence orbitals and thus con-
tribute to the Auger decay width.

D. Total and partial Auger decay widths from complex basis
functions

Having identified the most important basis functions for the
description of Auger decay in in CS-CC calculations, we are
now in a position to conduct CBF-CCSD and CBF-EOMIP-
CCSD calculations; the results are shown in Tab. V. We
started by scaling all functions in the aug-cc-pCV5Z basis
set and then proceeded by scaling fewer and fewer functions
as illustrated in Tab. V. For technical reasons, the unscaled
STO-2G basis had to be added to some calculations. Some
additional results computed with other choices of scaled basis
functions are available from the SI.

TABLE IV. Real parts of molecular orbital coefficients of selected dα

orbitals obtained from a CS-UHF calculation for Ne+ (1s−1
α ) using

the aug-cc-pCV5Z basis set.a

Exponent Contribution to MO
of bf 5d 6d 7d
212 −0.0009 0.003 −0.01
75.8 0.005 −0.01 0.06
27.0 −0.02 0.07 −0.2
9.84 0.1 −0.2 1.7
3.84 −0.2 1.7 –1.7
1.50 1.6 –1.7 1.0
0.587 –1.4 0.8 −0.4
0.213 0.5 −0.3 0.1

a The corresponding imaginary parts, which are much smaller, as well as
the coefficients for the remaining d orbitals are available from the SI.

TABLE V. Energies and half-widths of Ne+ (1s−1) computed with
CBF-EOMIP-CCSD and CBF-∆CCSD by scaling different parts of
the basis set. Energies in eV. Half-widths in meV.

Method Scaled bfsa θopt/
◦ Re(E) Im(E)

Basis set: STO-2G + aug-cc-pCV5Z
∆CCSD aug-cc-pCV5Z 10 869.53 −109
EOMIP-CCSD aug-cc-pCV5Z 11 871.20 −116
EOMIP-CCSD 4D, 2D, 0.6D, 0.2D, 13 871.18 −118

1P, 2S, 3F, 1F
Basis set: aug-cc-pCV5Z

∆CCSD 4D 17 869.49 −100
EOMIP-CCSD 10D, 4D, 2D 18 871.21 −71
EOMIP-CCSD 4D 21 871.18 −89
EOMIP-CCSD 4S 24 871.04 −20
EOMIP-CCSD 4D, 2D, 0.6D, 0.2D, 6 871.08 −124

1P, 2S, 3F, 1F
Reference values

CS-∆CCSD / aug-cc-pCV5Z 12 869.53 −104
CS-EOMIP-CCSD / aug-cc-pCV5Z 13 871.20 −114
Fano 870.1291 −10924

Experiment 870.1791 −12992

a The numbers in the basis-set specification refer to the rounded exponent
of the basis function in atomic units while the letter indicates the angular
momentum.

The results in Tab. V demonstrate that CBF-∆CCSD and
CBF-EOMIP-CCSD both reproduce the CS reference values
from Tab. I to an excellent degree when all basis functions are
scaled. When we instead scale only the three d shells with the
largest contribution to Γ/2 (see Tab. IV), we still reproduce
95 % of the 1D partial decay width from Tab. II. However,
our results indicate that the scaled part of the basis set can
be reduced further: With a single scaled d shell (exponent =
3.844), we obtain 120 % of the CS-CCSD value for the 1D
partial width. The same procedure is also successful for the
two 1S decay channels: Scaling one s function (exponent =
4.327) results in 120 % of the CS-CCSD partial widths for
these channels. Furthermore, by scaling a total of 8 s, p, d,
and f shells, we recover the total decay width up to a few per-
cent.
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It thus appears that one can compute partial decay widths
with CBF methods by scaling only basis functions of the re-
spective angular momentum. However, for decay into the
1P and 3P channels, we encountered convergence problems
or obtained qualitatively incorrect results in calculations with
a single scaled p shell. This problem presumably arises be-
cause decay into the 1P and 3P channels involves the occupied
2p orbital and additionally some virtual p orbitals. Complex
scaling a p shell thus affects the description of the occupied
2p orbital, whereas for the 1D (2p−2) and 1S (2p−2) channels
the involved occupied orbitals (2p) are of a different angular
momentum than the relevant virtual orbitals (d or s, respec-
tively). As documented in the SI, a solution to this problem is
to add complex-scaled functions to a basis set instead of scal-
ing functions that are already contained in the basis set. In this
way, the consistency of the predefined basis is preserved.
A further detail in Tab. V worth mentioning are the differences
in θopt between the decay channels. Using Eqs. (9) and (10),
the CS-CCSD partial widths are evaluated at the same θ and
thus not at the respective θopt but this does not seem to affect
the quality of the partial widths obtained with this approach
as Tab. II illustrates.

E. Truncation of the complex-scaled basis set

At this point, two questions still need to be answered to com-
pute Auger decay rates in a black-box fashion with CBF meth-
ods: First, how to choose the complex-scaled functions that
are added to a predefined basis set and, second, how to trun-
cate the aug-cc-pCV5Z basis set that we used so far without
compromising accuracy.
To investigate the requirements on the complex-scaled expo-
nents, we performed series of CBF-EOMIP-CCSD calcula-
tions where we added one additional s, p, or d shell with
varying exponent to the aug-cc-pCV5Z basis set. For each
value of the exponent, a trajectory E(θ) was computed. This
procedure is equivalent to optimizing the exponent of the ex-
tra shell in the complex number plane.25 The resulting decay
half-widths are presented in Fig. 4 together with the value of
|dE/dθ | at the respective θopt.
All three panels of Fig. 4 have in common that the decay
width is only captured when the exponent of the complex-
scaled shell falls in a specific range spanning ca. one order of
magnitude. Outside these ranges, Im(E) quickly approaches
zero. The extrema in Im(E) observed in Fig. 4 at 18 meV
(scaled s function, exponent 4.33), at 29 meV (scaled p shell,
exponent 4.00), and at 66 meV (scaled d shell, exponent 2.72)
are very well in line with the partial widths obtained through
decomposition of the CS-CCSD energy and also accurate es-
timates of the experimental values (see Tab. II). In the SI,
we demonstrate through decomposition of the CBF-CCSD en-
ergy according to Eq. (10) that decay widths obtained as in
Fig. 4 indeed stem from only those channels that correspond
to the angular momentum of the complex-scaled shell.
To determine to what degree the unscaled basis can be trun-
cated, we performed CBF-EOMIP-CCSD calculations with
different Dunning and Pople basis sets supplemented by two
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FIG. 4. Decay half-widths −Im(E) and stabilizations |dE/dθ | of
Ne+ (1s−1) computed with CBF-EOMIP-CCSD/aug-cc-pCV5Z as
a function of the exponent of the single complex-scaled shell that
was added to the basis set. θ was optimized for each exponent. The
complex-scaled shell is an s, p, d shell in the upper, middle, and lower
panel, respectively.

complex scaled shells. The results are summarized in Tab. VI
and in the SI. The exponents of the extra shells are chosen
such that they minimize |dE/dθ | in the aug-cc-pCV5Z basis
or, alternatively, in the basis set used in the respective calcu-
lation; all exponents are available in the SI.
Tab. VI illustrates that the results quickly deteriorate when
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TABLE VI. Partial decay half widths of Ne+ (1s−1) computed with
CBF-EOMIP-CCSD and various basis sets. All values in meV.

# of Complex − Im(E)
Basis set b.f.s shellsa D P S allb

aug-cc-pCV5Z 181 opt. 64 31 19 114
aug-cc-pCVQZ 109 opt. 67 51 15 132
aug-cc-pCVQZ 109 from 5Z 67 19 20 106
aug-cc-pCVTZ 59 opt. 90 4 36 130
aug-cc-pCVTZ 59 from 5Z 77 3 13 93
aug-cc-pCVTZ (unc.)c 71 opt. 89 101 18 208
aug-cc-pCVTZ (unc.)c 71 from 5Z 80 42 18 140
6-311+G(3df) (unc.)c 52 opt. 118 59 60 237
6-311+G(3df) (unc.)c 52 from 5Z 82 20 29 131
aug-cc-pCVTZ (5sp)d 75 opt. 91 31 18 139
aug-cc-pCVTZ (5sp)d 75 from 5Z 80 34 18 131
CS-∆CCSD / aug-cc-pCV5Z, from Tab. II 75 35 17 126
Fano / EOM-CCSD, from Ref. 24 59 32 19 109
Experiment, from Refs. 90,92 79 30 20 129

a Two complex-scaled shells are used in all calculations, their exponents are
either optimized for the aug-cc-pCV5Z basis set or the basis set given in
the first column of the table. The values are available from the SI. See text
for further explanation.

b Evaluated as sum of the values in the 3 preceding columns. See Sec. III B
for further discussion.

c Fully uncontracted basis set.
d aug-cc-pCVTZ with all s and p shells replaced by those from

aug-cc-pCV5Z.

the basis set is truncated in a straightforward way. The total
decay width is somewhat insensitive, but the branching ra-
tios are qualitatively wrong already with aug-cc-pCVQZ in-
dependent of reoptimizing the exponents of the two complex-
scaled shells. Somewhat better results are obtained with the
uncontracted aug-cc-pCVTZ basis set, but uncontraction does
not seem to give reliable results universally: With the uncon-
tracted 6-311+G(3df) basis set, which was recently identified
as a good compromise between accuracy and computational
cost for core-ionization energies,95 the total decay width is
acceptable but the branching ratios are still distorted.

However, there is another way to truncate the basis set: aug-
cc-pCV5Z includes a lot of shells with L > 2 that neither con-
tribute to the occupied orbitals nor are they involved in Auger
decay. Since we thus need primarily s- and p shells to improve
the description, we opted to replace the s- and p- shells of
aug-cc-pCVTZ with those from aug-cc-pCV5Z. The resulting
basis is denoted “aug-cc-pCVTZ (5sp)” and capable of pro-
ducing accurate branching ratios and total widths as Tab. VI
demonstrates.

Notably, reoptimization of the exponents of the complex-
scaled shells does not help but impairs the results. This shows
again that the exponents of these extra functions bear a mean-
ing independent of the unscaled basis set; specifically, they are
related to the energy of the Auger electron. This conclusion
is analogous to the analysis of the CS-CCSD wave function in
Tab. III.

IV. MOLECULAR AUGER DECAY

A. General considerations

Several aspects deserve attention when applying CBF-CC
methods to Auger decay in molecules instead of atoms: Since
for molecules [Ĥ, L̂2] 6= 0, partial widths cannot be determined
through scaling only shells of a particular angular momentum.
A priori, it is unclear if this mixing of different angular mo-
menta raises or lowers the requirements towards the basis set.
In addition, we need a procedure to determine the exponents
of the complex-scaled shells for different atoms without the
costly optimization that we carried out for Ne in Fig. 4. A re-
lated question is whether it is sufficient to add complex-scaled
shells only to the basis set of the atom with the core vacancy
or if these extra shells are needed at the other atoms as well.
In the following, we investigate these aspects by the examples
of core-ionized H2O, N2, and C6H6. We find that choosing the
exponents of the complex-scaled shells is most critical. As es-
tablished in Sec. III, the virtual orbitals constructed from these
basis functions need to overlap with the occupied orbitals that
are emptied during the decay process in order to describe the
quenching of the outgoing electron. Since the diffuseness of
the virtual orbitals strongly depends on the nuclear charge,
the exponents of the complex-scaled shells need to be chosen
carefully.
In this work, we use the geometric mean ζ̄ = (∏N

i ζi)
1/N

of the exponents in a basis set as a measure of diffuseness.
For basis functions contracted from M primitive Gaussians
with exponents η j, we assign to them a ζi calculated as
ζi = (∏M

j η j)
1/M . We then use the ratio between the ζ̄ val-

ues of different atoms as a scaling factor to adjust the expo-
nents of the complex-scaled shells starting from the values for
Ne established in Sec. III E. For the aug-cc-pCV5Z basis, the
values of ζ̄ are 0.64, 2.55, 3.52, 4.48, and 6.99 for H, C, N,
O, and Ne, respectively, but differences between basis sets are
small. All exponents used in our calculations on H2O, N2, and
C6H6 as well as the molecular structures can be found in the
SI.

B. Water

As a first example, we consider the core-ionized state of wa-
ter, which has the electronic configuration 1a1

12a2
11b2

23a2
11b2

1.
There are 16 main decay channels that can be distinguished
by the spin and spatial symmetry of the dicationic target
state. We performed CBF-∆CCSD and CBF-EOMIP-CCSD
calculations with the basis sets aug-cc-pCVTZ (5sp) and 6-
311+G(3df) (unc.) introduced in Sec. III E. Both basis sets
were augmented by 2 complex-scaled s, p, and d shells.
The results can be found in Tab. VII. For energies, EOMIP-
CCSD yields values that are ca. 2 eV higher as compared
to ∆CCSD, which is similar to neon (see Tab. I) and has
been discussed elsewhere in detail.72,79 The decay widths ob-
tained with the two basis sets differ by ca. 10 % but the sta-
bilization is much better with aug-cc-pCVTZ (5sp) (|dE/dθ |
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TABLE VII. Energies and half-widths of H2O+ (1s−1) computed
with CBF-EOMIP-CCSD and CBF-∆CCSD. Energies in eV. Half-
widths in meV.

Unscaled Complex- θopt/
◦ Re(E) Im(E)

basis set scaled shells EOMIP-CCSD
6-311+G(3df) (unc.) 2×(spd) on O, H 13 541.4 −85
6-311+G(3df) (unc.) 2×(spd) on O 14 541.3 −82
aug-cc-pCVTZ (5sp) 2×(spd) on O, H 26 541.4 −75
aug-cc-pCVTZ (5sp) 2×(spd) on O 29 541.4 −78

∆CCSD
6-311+G(3df) (unc.) 2×(spd) on O, H 14 539.6 −90
aug-cc-pCVTZ (5sp) 2×(spd) on O, H 41 539.7 −78

Reference values
EOM-CCSD + Fano24 — −61
MRCI + Fano21,22,96 539.6 −73
Experiment96 539.8 −80(2)

= 7.5 · 10−6/◦) than with 6-311+G(3df) (unc.) (|dE/dθ | =
1.3 · 10−4/◦). Removal of the complex-scaled shells at the
hydrogen atoms makes only a marginal impact in both bases.
To compute the partial widths of the 16 decay channels, we
applied Eq. (10) to the CBF-CCSD wave function of H2O+

(1s−1). Tab. VIII shows results obtained with the aug-cc-
pCVTZ (5sp) basis set, which delivers accurate branching
ratios for the neon atom (see Table VI), and with the 6-
311+G(3df) (unc.) basis set used in Ref. 24. In both cases,
CBFs were placed on all atoms. Our results obtained in the
two different basis sets agree well with each other and also
with those from the Fano-EOM-CCSD and Fano-MRCI treat-
ments from Refs. 24 and 21, respectively. Interestingly, the re-
sults obtained with the 6-311+G(3df) (unc.) basis set are very
close to those calculated with the Fano-EOM-CCSD method
within the same basis set24 while those calculated with aug-
cc-pCVTZ (5sp) are closer to the Fano-MRCI results21,22

where the cc-pVTZ basis set was used.
All approaches find that decay into singlet states is much more
probable than into triplet states, the latter account for a mere
5-10 % of the total decay width. There is also good agreement
about individual channels with one conspicuous exception:
Our computations and Ref. 24 assign to the 2a12a1 channel
the largest partial width, whereas this channel is of minor im-
portance in the Fano-MRCI treatment. This may be due to the
mixing of this state with multiple shake-up states,97 which can
be described better by MRCI than by EOM-CCSD or ∆CCSD.
It should be noted that the CBF-∆CCSD partial widths in Tab.
VIII add up to a value of 146.2 meV, i. e., not the value re-
ported there as “all” (142.5 meV), which was obtained by re-
moving all Auger-like transitions at once from T and Λ before
evaluating Eq. (10). Moreover, this value is different from
the total width of H2O+ (1s−1) in Tab. VII (180 meV). The
reasons are the same that we discussed in detail for neon in
Sec. III B. We point out that the second discrepancy is not
entirely spurious; the total width from Tab. VII contains con-
tributions related to satellite states and interchannel coupling
(see Sec. III B). Remarkably, the partial widths from Refs. 24
and 21 computed using Fano’s theory also do not add up to the
respective total widths, presumably because of contributions

TABLE VIII. Partial decay widths of H2O+ (1s−1) computed with
different methods. All values in meV.

Decay CBF- CBF- Fano Fano
channel ∆CCSDa ∆CCSDb MRCIc EOM-CCSDd

3a11b1 (triplet) 0.3 0.2 0.4 0.5
1b11b1 12.2 18.0 19.0 13.3
3a11b1 (singlet) 14.8 19.6 18.0 12.7
1b11b2 (triplet) 0 0 0 0
3a13a1 10.0 12.2 13.1 8.9
1b11b2 (singlet) 12.1 15.7 15.2 10.7
3a11b2 (triplet) 0.2 0.2 0.3 0.4
3a11b2 (singlet) 10.1 13.4 13.2 9.5
1b21b2 7.0 8.7 9.8 7.1
2a11b1 (triplet) 3.6 2.8 3.0 4.1
2a13a1 (triplet) 3.3 2.5 2.6 3.8
2a11b2 (triplet) 2.6 2.2 1.6 2.9
2a11b1 (singlet) 13.9 9.6 10.0 9.5
2a13a1 (singlet) 15.1 12.7 11.0 13.6
2a11b2 (singlet) 2.6 6.8 6.6 6.3
2a12a1 19.0 21.6 4.1 15.3
All 129.9 142.5 145.6 121.7

a This work. Computed using the aug-cc-pCVTZ (5sp) basis set and
Eq. (10).

b This work. Computed using the 6-311+G(3df) (unc.) basis set and
Eq. (10).

c From Ref. 21,22.
d From Ref. 24.
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FIG. 5. Contributions of virtual orbitals of a1 symmetry to the CBF-
CCSD decay width of the 2a12a1 channel of H2O+ (1s−1). The anal-
ysis was done with the aug-cc-pCVTZ (5sp) basis and 2 complex-
scaled s, p, and d shells on all atoms.

from satellite states as well.

As a further analysis step, we decomposed the decay width of
the 2a12a1 channel into contributions from individual virtual
orbitals. The result is shown in Fig. 5. Similar to neon (see
Tab. III) a few orbitals account for the largest share of Γ. The
most important orbital 59a1, which contributes 3.3 meV, has
an energy of 475 eV; a value that represents a good approxi-
mation to the energy of the emitted Auger electron (456 eV).98
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TABLE IX. Energies and half-widths of the 2Σ+
g and 2Σ+

u core-
ionized states of N+

2 computed with CBF-EOMIP-CCSD. Energies
in eV. Half-widths in meV.

Unscaled Complex-
basis set scaled shellsa θopt/

◦ Re(E) Im(E)
2Σ+

g state
aug-cc-pCV5Z 3×(spd) 18 411.28 −55
aug-cc-pCVQZ 3×(spd) 12 411.29 −50
aug-cc-pCVTZ 3×(spd) 8 411.24 −58
aug-cc-pCVTZ (5sp) 3×(spd) 22 411.24 −63

Experiment 409.96b −58c

2Σ+
u state

aug-cc-pCV5Z 3×(spd) 25 411.19 −55
aug-cc-pCVQZ 3×(spd) 12 411.19 −53
aug-cc-pCVTZ 3×(spd) 8 411.14 −54
aug-cc-pCVTZ (5sp) 3×(spd) 19 411.14 −63

Experiment 409.88b −62c

a Exponents determined according to Sec. IV A.
b From Ref. 102, vibrationally averaged.
c From Ref. 101, vibrationally averaged.

C. Dinitrogen

As a second example, we examined the core-ionized states
of the nitrogen molecule. The neutral ground state has the
electronic configuration 1σ2

g1σ2
u2σ2

g2σ2
u1π4

g3σ2
g. Two core-

ionized states 2Σ+
g and 2Σ+

u can be distinguished depending
on whether an electron is removed from the 1σg or the 1σu or-
bital. The energy splitting between these two orbitals is very
small (ca. 80 meV in an RHF calculation) so that one expects
the two core-ionized states to overlap in terms of their widths.
This aspect has been discussed elsewhere before.99–102

Our CBF-EOMIP-CCSD results in Tab. IX confirm that the
two resonances overlap indeed. The widths of both states are
computed to be ca. 120 meV in good agreement with exper-
imental values,101 whereas the energy gap is 100 meV. The
experimental value for the energy gap is 80 meV102 meaning
the overlap is somewhat more pronounced. The ionization en-
ergies themselves are again systematically overestimated sim-
ilar to what we found for neon and water.
We found that it is necessary to scale three s, p, and d shells in
order to obtain converged results for the decay widths. When
doing so, a standard basis set such as aug-cc-pCVTZ is al-
ready able to capture most of the total decay width. In con-
trast, when scaling only two shells, which works well for wa-
ter, the decay widths deviate by more than 20% from the ex-
perimental values and no basis set convergence is observed
when going from aug-cc-pCVTZ to aug-cc-pCV5Z. This is
documented in the Supporting Information. One may specu-
late that the need to scale a third shell is related to the presence
of two heavy nuclei in N2. The target states of Auger decay
are presumably not well described when only two shells are
complex scaled.
A further aspect of the core-ionized states of N2 is vibrational
progression resulting from the dependence of the energy and
decay width on the bond length.99–102 The experimental val-

Re(E), 2Σg+ Im(E), 2Σg+ Re(E), 2Σu+ Im(E), 2Σu+
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FIG. 6. Dependence of energies and decay widths of the 2Σ+
g and

2Σ+
u core-ionized states of N+

2 on the NN bond distance computed
with CBF-EOMIP-CCSD/aug-cc-pCVTZ (5sp) and three complex-
scaled s, p, and d shells on each atom.

ues for Γ/2 in Tab. IX are vibrationally unresolved while our
theoretical results in the same table are computed at R(NN)=
1.1 Å and do not account for any vibrational effects.
To get an estimate of the dependence of E and Γ on the bond
length, we recomputed these quantities in the range R(NN) =
1.00–1.20 Å. The results in Fig. 6 illustrate that the widths of
both resonances depend only weakly on R(NN), only a slight
increase is observed at shorter bond lengths. This finding is
consistent with the core orbitals not participating in the bond
between the two nitrogen atoms and can be contrasted with
valence resonances such as the 2Πg state of N−2 where Γ de-
pends strongly on the molecular structure.26 In contrast to the
decay width, the ionization energies change by ca. 1 eV in
the range of R(NN) that we investigated. Also, the energy gap
between the two states decreases at stretched bond lengths.

D. Benzene

To demonstrate the applicability of our approach to larger
molecules, we investigated the lowest core-ionized state of
benzene using CBF-EOMIP-CCSD and the 6-311+G(3df)
(unc.), aug-cc-pCVTZ, and aug-cc-pCVTZ (5sp) basis sets.
We placed 2 or 3 complex-scaled s, p, and d shells at all car-
bon atoms. The resulting numbers of basis functions and com-
pute times as well as results of all computations can be found
in Tab. X.
The results exhibit a similar trend as those for N2: aug-cc-
pCVTZ and aug-cc-pCVTZ (5sp) yield almost identical ion-
ization energies, again somewhat higher than the experimental
value of 290.42 eV103. The decay widths differ by about 10
% from each other, which is also reminiscent of N2, whereas
the 6-311+G(3df) (unc.) basis produces a 50% larger width.
Given that aug-cc-pCVTZ (5sp) yields the smallest value for
dE/dθ and also led to the best agreement with reference val-
ues for the other examples discussed in the previous sections,
we conclude that our final result for the Auger decay width of
benzene is 83 meV. This value is in good agreement with the
decay width of core-ionized methane;24 a rigorous assessment
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TABLE X. Energies and half-widths of the 2A1g core-ionized state
of C6H+

6 computed with CBF-EOMIP-CCSD.

Unscaled 6-311+G(3df) aug-cc- aug-cc-
basis set (unc.) pCVTZ pCVTZ (5sp)
Complex- 2×(spd) 3×(spd)
scaled shells at all C atoms at all C atoms
Basis functions 450 654 798
Compute timea/h 4.6 16.4 45.8
θopt / ◦ 18 8 13
dE/dθ /Hartree/◦ 3.4 ·10−5 1.5 ·10−4 2.0 ·10−6

Re(E)/eV 291.88 291.98 291.99
Im(E)/meV −58.5 −37.8 −41.6

a Compute time for one complex energy on an Intel Xeon E5-2667 v4 CPU
using 16 cores.

is, however, difficult because no experimental or theoretical
values are available for the decay width of benzene although
the Auger spectrum has been studied theoretically before.104

We note that it takes almost two days on a state-of-the-art 16-
core machine to compute one complex EOMIP-CCSD energy
in the aug-cc-pCVTZ (5sp) basis set (798 basis functions).
Since 10 to 20 computations are necessary to determine the
optimal scaling angle, this illustrates the size of the calcula-
tions that are possible with our current hardware.

V. CONCLUSIONS AND OUTLOOK

We have shown how to compute total and partial Auger decay
widths in the framework of complex-variable coupled-cluster
theory. We discussed the evaluation of these quantities based
on CCSD and EOMIP-CCSD wave functions using complex
scaling of the Hamiltonian or, alternatively, of parts of the ba-
sis set. The latter approach extends the formalism of complex
scaling to molecular resonances and, in addition, is superior
in terms of numerical performance. This manifests itself in
smaller decay widths of bound states, whose lifetime is infi-
nite in the complete basis-set limit, and faster convergence of
the HF and CCSD equations.
In complex-variable methods, the total decay width is ob-
tained as imaginary part of the eigenvalue of a non-Hermitian
Hamiltonian without the need to make any assumption about
the wave function of the emitted electron. Our applications
of complex-scaled basis functions to core-ionized states of
Ne, H2O, and N2 demonstrated excellent agreement for to-
tal Auger decay widths with experimental and previous the-
oretical investigations with errors of only a few percent. We
also reported the first value for the Auger decay width of core-
ionized C6H6; the result is in good agreement with the Auger
decay width of CH4. A caveat regarding the accuracy of our
results is that the basis-set requirements of complex-scaled
calculations on core-vacant states are not yet fully explored.
While two complex-scaled s, p, and d shells appear to be suf-
ficient for describing Auger decay of Ne and H2O, three sets
are required for N2.
We gained access to partial decay widths and branching ratios

by decomposing the imaginary part of the CCSD or EOM-
CCSD energy, respectively, in terms of individual amplitudes.
This analysis illustrated that –as one would expect– the largest
share of the decay width is delivered by those excitations,
which are removed from the wave function in CVS methods.
However, other excitations yield non-negligible contributions
in EOMIP-CCSD, which complicates the analysis. In addi-
tion, there is a nonadditivity of the partial widths in our ap-
proach. Overall, we found that partial widths computed with
∆CCSD are more reliable than those computed with EOMIP-
CCSD.
The analysis of the imaginary part of the energy also gave in-
sight into the requirements towards the basis set that the treat-
ment of Auger decay poses. We found that it is sufficient to
add 1–3 complex-scaled s, p, and d shells to an unscaled basis
set that is suitable for the treatment of core-vacant states. The
exponents of these extra shells need to be chosen carefully
to capture the decaying character of a core-ionized state, but
their values can be estimated from the energy of the emitted
Auger electron. This means in effect that the complex-scaled
shells have exponents in the range 1–10, which is in contrast
to resonances that decay by emission of slow electrons, where
extra diffuse shells are pivotal.
We consider our work a critical extension of CC theory for
core-vacant states. In our view, the prospects for apply-
ing complex-variable methods to core-vacant states are rather
bright. A particular strength of complex-variable methods is
that they offer a unified treatment of different types of reso-
nances and are equally applicable to Feshbach and shape reso-
nances. The latter are relevant for low-energy electron attach-
ment and tunnel ionization but also of interest in the context
of X-ray spectroscopy.102 Alternative approaches for decay-
ing states based on Fano’s theory work well for Feshbach res-
onances but face problems when applied to shape resonances.
Their main advantage is lower computational cost; all relevant
states are modeled as bound states and the decay is treated sep-
arately afterwards. One may speculate that methods based on
Fano’s theory will emerge as superior for cases where the par-
tition of the Hilbert space into a bound and a continuum part
poses no problems. The main advantage of complex-scaled
calculations, in contrast, is that they can be used in a black-
box fashion because no explicit treatment of the continuum is
necessary. The need for the optimization of the scaling angle,
however, increases the computational cost. In this work, we
usually found 10 calculations to be sufficient to determine it
to sufficient accuracy. The largest calculation that we carried
out comprised 798 basis functions.
In order to treat larger systems with complex-scaled meth-
ods, two strategies appear worthwhile to pursue: On the one
hand, our approach can be easily adapted to related electronic-
structure methods such as the second-order CC model105 or
algebraic diagrammatic construction (ADC) schemes39 which
entail lower computational cost. On the other hand, complex-
variable CCSD and EOMIP-CCSD can be combined with
quantum embedding.106

We add that our approach to extract partial widths from
complex-variable calculations is not specific to Auger de-
cay. In complex systems, not only Auger decay is of interest
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but also related non-local phenomena such as intermolecular
Coulombic decay and electron-transfer mediated decay. We
anticipate that our approach can be applied to these processes
as well. Finally, we mention that nuclear motion will need to
be taken into account in order to model the vibrational pro-
gression observed in experimental Auger electron spectra.

SUPPLEMENTARY MATERIAL

See supplementary material for molecular structures, details
about the basis sets used in our calculations as well as further
results.
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nusson, F. Tarantelli, P. Kolorenč, and V. Averbukh, “Ultrafast molecular
three-electron auger decay,” Phys. Rev. Lett. 116, 073001 (2016).

12L. S. Cederbaum, J. Zobeley, and F. Tarantelli, “Giant intermolecular de-
cay and fragmentation of clusters,” Phys. Rev. Lett. 79, 4778–4781 (1997).

13T. Jahnke, U. Hergenhahn, B. Winter, R. Dörner, U. Frühling, P. V. De-
mekhin, K. Gokhberg, L. S. Cederbaum, A. Ehresmann, A. Knie, and
A. Dreuw, “Interatomic and intermolecular Coulombic decay,” Chem. Rev.
120, 11295–11369 (2020).

14J. Zobeley, R. Santra, and L. S. Cederbaum, “Electronic decay in weakly
bound heteroclusters: Energy transfer versus electron transfer,” J. Chem.
Phys. 115, 5076–5088 (2001).

15R. Manne and H. Ågren, “Auger transition amplitudes from general many-
electron wavefunctions,” Chem. Phys. 93, 201–208 (1985).

16K. Zähringer, H.-D. Meyer, and L. S. Cederbaum, “Molecular scattering
wave functions for Auger decay rates: The Auger spectrum of hydrogen
fluoride,” Phys. Rev. A 45, 318–328 (1992).

17K. Zähringer, H.-D. Meyer, and L. S. Cederbaum, “Angularly resolved
Auger rates of LiF and HF,” Phys. Rev. A 46, 5643–5652 (1992).

18F. Tarantelli, A. Sgamellotti, and L. S. Cederbaum, “The calculation of
molecular Auger spectra,” J. Electron Spectrosc. 68, 297–312 (1994).

19V. G. Yarzhemsky and A. Sgamellotti, “Auger rates of second-row atoms
calculated by many-body perturbation theory,” J. Electron Spectrosc. Re-
lat. Phenom. 125, 13–24 (2002).

20P. Kolorenc and V. Averbukh, “K-shell Auger lifetime variation in doubly
ionized Ne and first row hydrides,” J. Chem. Phys. 135, 134314 (2011).

21L. Inhester, C. F. Burmeister, G. Groenhof, and H. Grubmüller, “Auger
spectrum of a water molecule after single and double core ionization,” J.
Chem. Phys. 136, 144304 (2012).

22L. Inhester, C. F. Burmeister, G. Groenhof, and H. Grubmüller, “Erratum:
“Auger spectrum of a water molecule after single and double core ioniza-
tion” [J. Chem. Phys. 136, 144304 (2012)],” J. Chem. Phys. 141, 069904
(2014).

23W. Skomorowski and A. I. Krylov, “Feshbach–Fano approach for calcula-
tion of Auger decay rates using equation-of-motion coupled-cluster wave
functions. I. Theory and implementation,” J. Chem. Phys. 154, 084124
(2021).

24W. Skomorowski and A. I. Krylov, “Feshbach–Fano approach for calcula-
tion of Auger decay rates using equation-of-motion coupled-cluster wave
functions. II. Numerical examples and benchmarks,” J. Chem. Phys. 154,
084125 (2021).

25N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge University
Press, 2011).

26T.-C. Jagau, K. B. Bravaya, and A. I. Krylov, “Extending quantum chem-
istry of bound states to electronic resonances,” Annu. Rev. Phys. Chem.
68, 525–553 (2017).

27L. S. Cederbaum, W. Domcke, and J. Schirmer, “Many-body theory of
core holes,” Phys. Rev. A 22, 206–222 (1980).

28S. Coriani and H. Koch, “Communication: X-ray absorption spectra and
core-ionization potentials within a core-valence separated coupled cluster
framework,” J. Chem. Phys. 143, 181103 (2015).

29M. L. Vidal, X. Feng, E. Epifanovsky, A. I. Krylov, and S. Cori-
ani, “New and efficient equation-of-motion coupled-cluster framework for
core-excited and core-ionized states,” J. Chem. Theory Comput. 15, 3117–
3133 (2019).

30T. Fransson, I. E. Brumboiu, M. L. Vidal, P. Norman, S. Coriani,
and A. Dreuw, “XABOOM: an X-ray absorption benchmark of organic
molecules based on carbon, nitrogen, and oxygen 1s → π* transitions,” J.
Chem. Theory Comput. 17, 1618–1637 (2021).

31J. García, T. R. Kallman, M. Witthoeft, E. Behar, C. Mendoza, P. Palmeri,
P. Quinet, M. A. Bautista, and M. Klapisch, “Nitrogen K-shell photoab-
sorption,” Astrophys. J. Suppl. S. 185, 477–485 (2009).

32T. W. Gorczyca, “Auger decay of the photoexcited 1s−1np Rydberg series
in neon,” Phys. Rev. A 61, 024702 (2000).

33U. Fano, “Effects of configuration interaction on intensities and phase
shifts,” Phys. Rev. 124, 1866–1878 (1961).

34H. Feshbach, “A unified theory of nuclear reactions. II,” Ann. Phys. (N.Y.)
19, 287–313 (1962).

35P. W. Langhoff and C. T. Corcoran, “Stieltjes imaging of photoabsorption
and dispersion profiles,” J. Chem. Phys. 61, 146–159 (1974).



15

36V. Carravetta and H. Ågren, “Stieltjes imaging method for molecular
Auger transition rates: Application to the Auger spectrum of water,” Phys.
Rev. A 35, 1022–1032 (1987).

37V. Averbukh and L. S. Cederbaum, “Ab initio calculation of interatomic
decay rates by a combination of the Fano ansatz, Green’s-function meth-
ods, and the Stieltjes imaging technique,” J. Chem. Phys. 123, 204107
(2005).
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65J. Čížek, “On the use of the cluster expansion and the technique of dia-
grams in calculations of correlation effects in atoms and molecules,” Adv.
Chem. Phys. 14, 35–89 (1969).

66I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry and
Physics: MBPT and Coupled-Cluster Theory (Cambridge University
Press, 2009).

67K. Emrich, “An extension of the coupled cluster formalism to excited
states (I),” Nucl. Phys. A 351, 379–396 (1981).

68H. Sekino and R. J. Bartlett, “A linear response, coupled-cluster theory for
excitation energy,” Int. J. Quantum Chem. 26, 255–265 (1984).

69J. F. Stanton and R. J. Bartlett, “The equation of motion coupled-cluster
method. A systematic biorthogonal approach to molecular excitation ener-
gies, transition probabilities, and excited state properties,” J. Chem. Phys.
98, 7029–7039 (1993).

70M. Nooijen and J. G. Snijders, “Coupled cluster Green’s function method:
Working equations and applications,” Int. J. Quantum Chem. 48, 15–48
(1993).

71J. F. Stanton and J. Gauss, “Analytic energy derivatives for ionized states
described by the equation-of-motion coupled cluster method,” J. Chem.
Phys. 101, 8938–8944 (1994).

72X. Zheng and L. Cheng, “Performance of delta-coupled-cluster meth-
ods for calculations of core-ionization energies of first-row elements,” J.
Chem. Theory Comput. 15, 4945–4955 (2019).

73Y. C. Park, A. Perera, and R. J. Bartlett, “Equation of motion coupled-
cluster for core excitation spectra: Two complementary approaches,” J.
Chem. Phys. 151, 164117 (2019).

74F. Frati, F. de Groot, J. Cerezo, F. Santoro, L. Cheng, R. Faber, and S. Co-
riani, “Coupled cluster study of the x-ray absorption spectra of formalde-
hyde derivatives at the oxygen, carbon, and fluorine K-edges,” J. Chem.
Phys. 151, 064107 (2019).

75J. Liu, D. Matthews, S. Coriani, and L. Cheng, “Benchmark calcula-
tions of K-edge ionization energies for first-row elements using scalar-
relativistic core–valence-separated equation-of-motion coupled-cluster
methods,” J. Chem. Theory Comput. 15, 1642–1651 (2019).

76K. D. Nanda, M. L. Vidal, R. Faber, S. Coriani, and A. I. Krylov, “How
to stay out of trouble in RIXS calculations within equation-of-motion
coupled-cluster damped response theory? Safe hitchhiking in the excita-
tion manifold by means of core–valence separation,” Phys. Chem. Chem.
Phys. 22, 2629–2641 (2020).

77M. L. Vidal, P. Pokhilko, A. I. Krylov, and S. Coriani, “Equation-of-
motion coupled-cluster theory to model L-edge X-ray absorption and pho-
toelectron spectra,” J. Phys. Chem. Lett. 11, 8314–8321 (2020).

78M. L. Vidal, A. I. Krylov, and S. Coriani, “Dyson orbitals within the
fc-CVS-EOM-CCSD framework: theory and application to X-ray photo-
electron spectroscopy of ground and excited states,” Phys. Chem. Chem.
Phys. 22, 2693–2703 (2020).



16

79D. A. Matthews, “EOM-CC methods with approximate triple excita-
tions applied to core excitation and ionisation energies,” Mol. Phys. 118,
e1771448 (2020).

80N. A. Besley and F. A. Asmuruf, “Time-dependent density functional the-
ory calculations of the spectroscopy of core electrons,” Phys. Chem. Chem.
Phys. 12, 12024–12039 (2010).

81N. A. Besley, A. T. B. Gilbert, and P. M. W. Gill, “Self-consistent-field
calculations of core excited states,” J. Chem. Phys. 130, 124308 (2009).

82J. Wenzel, M. Wormit, and A. Dreuw, “Calculating core-level excitations
and X-ray absorption spectra of medium-sized closed-shell molecules with
the algebraic-diagrammatic construction scheme for the polarization prop-
agator,” J. Comput. Chem. 35, 1900 (2014).

83J. Wenzel, M. Wormit, and A. Dreuw, “Calculating X-ray absorption spec-
tra of open-shell molecules with the unrestricted algebraic-diagrammatic
construction scheme for the polarization propagator,” J. Chem. Theory
Comput. 10, 4583 (2014).

84J. Wenzel, A. Holzer, M. Wormit, and A. Dreuw, “Analysis and compar-
ison of cvs-adc approaches up to third order for the calculation of core-
excited states,” J. Chem. Phys. 142, 214104 (2015).

85B. Simon, “The definition of molecular resonance curves by the method of
exterior complex scaling,” Physics Letters A 71, 211 (1979).

86A. U. Hazi and H. S. Taylor, “Stabilization method of calculating reso-
nance energies: Model problem,” Phys. Rev. A 1, 1109–1120 (1970).

87H. S. Taylor and A. U. Hazi, “Comment on the stabilization method: Vari-
ational calculation of the resonance width,” Phys. Rev. A 14, 2071–2074
(1976).

88E. Epifanovsky, A. T. B. Gilbert, X. Feng, J. Lee, Y. Mao, N. Mardirossian,
P. Pokhilko, A. F. White, M. P. Coons, A. L. Dempwolff, Z. Gan, D. Hait,
P. R. Horn, L. D. Jacobson, I. Kaliman, J. Kussmann, A. W. Lange, K. U.
Lao, D. S. Levine, J. Liu, S. C. McKenzie, A. F. Morrison, K. D. Nanda,
F. Plasser, D. R. Rehn, M. L. Vidal, Z.-Q. You, Y. Zhu, B. Alam, B. J.
Albrecht, A. Aldossary, E. Alguire, J. H. Andersen, V. Athavale, D. Bar-
ton, K. Begam, A. Behn, N. Bellonzi, Y. A. Bernard, E. J. Berquist,
H. G. A. Burton, A. Carreras, K. Carter-Fenk, R. Chakraborty, A. D.
Chien, K. D. Closser, V. Cofer-Shabica, S. Dasgupta, M. de Wergifosse,
J. Deng, M. Diedenhofen, H. Do, S. Ehlert, P.-T. Fang, S. Fatehi, Q. Feng,
T. Friedhoff, J. Gayvert, Q. Ge, G. Gidofalvi, M. Goldey, J. Gomes, C. E.
González-Espinoza, S. Gulania, A. O. Gunina, M. W. D. Hanson-Heine,
P. H. P. Harbach, A. Hauser, M. F. Herbst, M. H. Vera, M. Hodecker,
Z. C. Holden, S. Houck, X. Huang, K. Hui, B. C. Huynh, M. Ivanov,
Ádám Jász, H. Ji, H. Jiang, B. Kaduk, S. Kähler, K. Khistyaev, J. Kim,
G. Kis, P. Klunzinger, Z. Koczor-Benda, J. H. Koh, D. Kosenkov, L. Kou-
lias, T. Kowalczyk, C. M. Krauter, K. Kue, A. Kunitsa, T. Kus, I. Lad-
jánszki, A. Landau, K. V. Lawler, D. Lefrancois, S. Lehtola, R. R. Li,
Y.-P. Li, J. Liang, M. Liebenthal, H.-H. Lin, Y.-S. Lin, F. Liu, K.-Y.
Liu, M. Loipersberger, A. Luenser, A. Manjanath, P. Manohar, E. Man-
soor, S. F. Manzer, S.-P. Mao, A. V. Marenich, T. Markovich, S. Mason,
S. A. Maurer, P. F. McLaughlin, M. F. S. J. Menger, J.-M. Mewes, S. A.
Mewes, P. Morgante, J. W. Mullinax, K. J. Oosterbaan, G. Paran, A. C.
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