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Abstract

Importance—The need for a more refined, molecularly-based classification model for 

glioblastoma (GBM) in the temozolomide era.

Objective—Refine the existing clinically-based recursive partitioning analysis (RPA) model by 

incorporating molecular variables.

Design, Setting, and Participants—NRG Oncology RTOG 0525 specimens (n=452) were 

analyzed for protein biomarkers representing key pathways in GBM by a quantitative molecular 

microscopy-based approach with semi-quantitative immunohistochemical validation. Prognostic 

significance of each protein was examined by single-marker and multi-marker Cox-regression 

analyses. In order to reclassify the prognostic risk groups, significant protein biomarkers upon 

single-marker analysis were incorporated into a RPA model consisting of the same clinical 

variables (age, KPS, extent of resection, and neurologic function) as the existing RTOG RPA. The 

new RPA model (NRG-GBM-RPA) was confirmed using traditional immunohistochemistry in an 

independent dataset (n=176).

Main Outcomes and Measures—Overall survival (OS)

Results—MGMT (HR=1.81, 95% CI(1.37, 2.39), p<0.001), survivin (HR=1.36, 95% CI(1.04, 

1.76), p=0.02), c-Met (HR=1.53, 95% CI(1.06,2.23), p=0.02), pmTOR (HR=0.76, 95% 

CI(0.60,0.97), p=0.03), and Ki-67 (HR=1.40, 95% CI(1.10, 1.78), p=0.007), were found to be 

significant upon single-marker multivariate analysis of OS. To refine the existing RPA, significant 

protein biomarkers together with clinical variables (age, performance status, extent of resection, 

and neurological function) were incorporated into a new model. Higher MGMT protein was 

significantly associated with decreased MGMT promoter methylation and vice-versa. Further, 

MGMT protein expression had greater prognostic value for OS compared to MGMT promoter 

methylation. The refined NRG-GBM-RPA consisting of MGMT protein, c-Met protein, and age 

revealed greater separation of OS prognostic classes compared to the existing clinically-based 

RPA model and MGMT promoter methylation in NRG Oncology RTOG 0525. The prognostic 

significance of the NRG-GBM-RPA was subsequently confirmed in an independent dataset 

(N=176).

Conclusions and Relevance—The new NRG-GBM-RPA model significantly enhances 

outcome stratification over both the current RTOG RPA model and MGMT promoter methylation, 

respectively, for GBM patients treated with radiation and temozolomide and was biologically 

validated in an independent dataset. The revised RPA has the potential to significantly contribute 

to improving the accurate assessment of prognostic groups in GBM patients treated with radiation 

and temozolomide and also influence clinical decision making.
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Introduction

Glioblastoma (GBM), the most aggressive primary brain tumor, has a current five-year 

survival rate of 5% in the United States.1 However, a small subset of patients do experience 

longer survival, suggesting underlying heterogeneity, and therefore, development of better 

prognostic classification models is crucial. The first effort to comprehensively analyze GBM 

patient survival by prognostic grouping was published in 1993, using recursive partitioning 

analysis (RPA), a non-parametric statistical technique that creates distinct prognostic groups 

based on combinations of variables.2 This initial RPA analysis included both GBM and 

anaplastic astrocytoma patients, who received radiation with and without chemotherapy or a 

radiation sensitizer. Based on clinical and histological characteristics, this analysis identified 

six prognostic classes (I – VI) with distinct survival outcomes.2 Subsequently, a follow-up 

study involving only GBM patients revised the original RPA model into three classes (III, 

IV, and V/VI),3 and this has been applied to many recent GBM clinical trials. Although the 

current RPA appears to accurately stratify patients in the temozolomide era,4 the original 

classes were not identified using a training set of temozolomide-treated patients and may not 

reflect the most accurate prognostic classes. Moreover, as recent studies have revealed key 

molecular pathways associated with pathogenesis of GBM, it was hypothesized that 

inclusion of corresponding proteins could enhance the discriminatory power of the current, 

RPA model. Therefore, we incorporated potential protein-based variables using specimens 

NRG Oncology’s (RTOG) 0525 trial, a phase III trial that compared standard adjuvant 

temozolomide versus a dose-dense (dd) schedule in newly diagnosed GBM.5 No statistical 

difference in survival outcomes was found between the two arms of NRG Oncology RTOG 

0525.

Analyzing the relative expression levels, subcellular distributions, and post-translational 

modifications of biomarker proteins may be a powerful approach to generate information to 

predict outcome in GBM. In this regard, signal transduction proteins that are commonly 

deregulated in GBM along with MGMT were analyzed. Multiple signal transduction 

pathways are deregulated in GBM, including RTK/PI3K/Akt, RTK/RAS/MAPK, and Stat3 

among others,6–10 which promote cell proliferation, survival, invasion, angiogenesis and 

resistance to radiation and chemotherapy.11 In the current study, 452 of 833 randomized 

patients (NRG Oncology RTOG 0525) were used to measure the expression of 22 proteins 

associated with GBM pathogenesis to assess whether these were associated with outcome 

and if the addition of proteins to the current clinically-based GBM RPA could strengthen the 

prognostic classification. To accurately assess protein expression at subcellular levels, 

quantitative fluorescence immunohistochemistry (AQUA) was used, a method that 

previously showed high reproducibility and accuracy similar to ELISA assays.12 Further, to 

enhance the clinical applicability, these findings were confirmed in an independent dataset 

using traditional semi-quantitative immunohistochemistry (IHC).

Methods

Quantitative Fluorescence Immunohistochemistry

A total of 452 patients from NRG Oncology RTOG 0525 had available specimens and were 

used for preparation of four tissue microarrays (TMAs). These TMAs were analyzed for 12 
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high priority protein biomarkers (based on literature6–10): EGFR, NFKBp65, pNFKBp65, 

pAKT, pERK, pmTOR, IGF1R, MGMT, PTEN, survivin, Ki-67, and Src. Additionally, 294 

patients had remaining tissue available for further protein analysis and were stained for 

VEGFR1, VEGFR2, pSRCY419, pSRCY529, CD24, CD44, p16, p53, PARP-1, and c-Met. 

RTOG patients utilized in this study provided informed consent based on an institutional 

review board (IRB)-approved protocol. See the Supplemental Appendix for additional 

methods.

Validation Studies

Four TMAs comprised of GBM patients (n=176) with known survival outcomes and clinical 

characteristics treated at the University Medical Center of Utrecht were analyzed by 

traditional IHC for c-Met (Abcam-EP1454Y; 1:500) and MGMT (Millipore-clone MT3.1; 

1:100) protein. Patients were scored manually using the Allred method13 by two 

independent pathologists. Institutional samples were used under an IRB-approved waiver of 

consent due to the retrospective nature of the study.

Statistical Analysis

Cox proportional hazards regression analysis was used to explore the relationship between 

marker expression and overall survival (OS).14 All models were forced to retain age, 

Karnofsky Performance Status (KPS), resection status, and treatment to control for possible 

confounding marker effects.15 Non-nested models were compared with Aikaike’s 

Information Criteria (AIC)16 and were limited to patients with non-missing covariates in the 

models being compared. AIC uses maximum likelihood and the number of parameters to 

assess the relative quality of statistical models with the superior model having the lower 

AIC. OS rates were estimated using the Kaplan-Meier method,17 and differences were tested 

using the log-rank test.18 Means were compared using the t-test. The RPA included only 

randomized patients treated on NRG Oncology RTOG 0525 with data available for all six 

significant proteins; therefore, a reduced sample size, n=166, was used in the RPA. Variables 

in the clinical RPA, age, KPS, resection status, and neurofunction status, were also 

considered for inclusion in this RPA. The resulting RPA class was biologically validated in a 

separate dataset. In order to determine the best cut-points for markers with continuous values 

significantly associated with survival for inclusion in the RPA model, the technique of 

utilizing receiver operating characteristic (ROC) curves was applied.19 Because the area 

under the ROC curve for all markers was ≤ 0.65 limiting the ability to determine optimal 

cut-points, methods using quartiles, tertiles, and medians were used. For RPA class 

determination, each class was chosen based on minimizing the conditional probability 

standard error of the pruned tree. Two classes had overlapping survival curves and were 

combined into a single class. SAS/STAT® software and R Statistical Software was used for 

all analyses and the ‘rpart’ package in R Statistical Software was used for the RPA Class 

determination .20 Explanation of variance21, specifically the Schemper-Henderson predictive 

measure, the concordance index, and net classification improvement (NRI) were used to 

compare the effect of OS between each RPA class within the framework of the Cox 

proportional hazards model 22–25. For explanation of variance, the predictive inaccuracy of 

the model is used to determine the percent of variance explained. For interpretation, the 

smaller the predictive inaccuracy indicates better prediction.
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Results

Single- and Multi-marker Modeling

All 22 proteins were quantified (eTable 1) and correlated with OS in randomized patients. 

No significant differences were detected between OS for patients with and without tissues 

(eTable 2). Single-marker Cox-regression modeling was performed and identified six 

significant (p<0.05) proteins (pAKT, MGMT, Ki-67, pmTOR, survivin, and c-Met) that 

associated with OS when represented as a continuous variable (eTable 3). Pre-treatment 

characteristics of NRG Oncology RTOG 0525 randomized patients with data from all 

significant proteins with identified cut-off points are shown in Table 1. When investigated as 

discrete categorical variables formed by division at specific quantiles, five of the six proteins 

yielded cut-off points that were significantly associated with OS: MGMT, Ki-67, pmTOR, 

survivin, and c-Met (Table 2).

In Figure 1 and eFigure 1, high MGMT protein within the tumor (MGMT tumor) measured 

by AQUA and split by the median was shown to significantly correlate with decreased OS 

(Fig. 1A; Hazard Ratio [HR] =1.73, 95% Confidence Interval [CI] (1.32, 2.27), p<0.001). 

High c-Met protein within the cytoplasmic (c-Met cyto) when split by the top quartile 

significantly correlated with decreased OS (Fig. 1B; HR=1.56, 95% CI (1.08, 2.24), p=0.02). 

A high cytoplasmic/nuclear ratio of survivin protein when split by the median trended 

toward significance with decreased OS (eFig. 1A; HR=1.29, 95% CI (1.00, 1.67), p=0.05). 

High Ki-67 protein within the nucleus (Ki-67 nuc) when split by the median also 

significantly associated with decreased OS (eFig. 1B; HR=1.34, 95% CI (1.05, 1.70), 

p=0.02). Conversely, a high nuclear/cytoplasmic ratio of pmTOR protein when split by the 

median also trended toward significance with increased OS (eFig. 1C; HR=0.81, 95% CI 

(0.63, 1.03), p=0.08).

Due to involvement of MGMT in response to temozolomide treatment,26 MGMT protein 

levels were evaluated in relation to MGMT promoter methylation. As shown in eTables 4.1–

4.2 and eFigure 2, MGMT tumor and MGMT nuclear protein expression are significantly 

different by MGMT promoter methylated vs unmethylated (1425.1 vs. 1828.0 for MGMT 

tumor and 2195.1 vs. 2917.1 for MGMT nuclear mask, p<0.001). However, MGMT protein 

expression within the tumor (HR=1.84, 95% CI (1.38, 2.43); p<0.001) demonstrated a 

stronger prognostic effect compared to MGMT promoter methylation (HR=1.77, 95% CI 

(1.28, 2.44); p<0.001) on OS upon single marker modeling based on AIC, and thus protein 

expression was the only MGMT marker incorporated into the revised RPA.

Multi-marker Cox-regression modeling was performed on the protein biomarkers that were 

statistically significant (p<0.05) under single-marker Cox-regression modeling (when 

evaluated as discrete variables; for biomarkers with multiple candidate cut-points, the 

representation with higher significance level was used). Thus, five proteins, pmTOR, 

MGMT, Ki-67, c-Met, and survivin, were tested in a multi-marker model, with stepwise 

selection. As shown in Table 2, MGMT tumor ((≥median vs <median) HR=1.91; 95% CI 

(1.27, 2.88); p= 0.002,), Ki-67 nuclear ((≥median vs <median) HR=1.50; 95% CI (1.01, 

2.22); p= 0.04), and c-Met cytoplasmic ((≥top quartile vs <top quartile) HR=1.65; 95% CI 

(1.10, 2.48); p=0.02) were all found to be significant.
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MGMT and c-Met Protein Expression Strengthens Recursive Partitioning Analysis for 
Glioblastoma

Protein biomarkers that were significant upon single-marker modeling were incorporated 

into a RPA model consisting of the same variables of the current RTOG RPA classification 

to determine if protein biomarkers can help stratify patients into prognostic groups. The 166 

patients used for RPA modeling, which required patients to be randomized and have non-

missing data for all of the biomarkers considered for inclusion, was stratified by the three 

current RPA2 classes (based on age, KPS, resection status, neurofunction status) relative to 

OS (Figure 2A; eTable 5). The newly developed NRG-GBM-RPA classes are shown in 

Figures 2B–D: Class I (MGMT tumor < median or (MGMT tumor ≥ median & age < 50)), 

Class II (MGMT tumor ≥ median & age ≥ 50 & c-Met cyto < top quartile), and Class III 

(MGMT tumor ≥ median & age ≥ 50 & c-Met cyto ≥ top quartile).

The median OS times for these three classes are 21.9 (95% CI: 16.4, 29.9), 16.6 (95% CI:

13.3, 20.0), and 9.4 months (95% CI (5.6, 11.6)), respectively, demonstrating that these 

classes are significantly different (I vs. II: HR=1.83, 95% CI (1.21, 2.76), p=0.004, I vs. III: 

HR = 5.19, 95% CI (3.07, 8.79), p<0.001). Survival estimates and confidence intervals are 

shown in eTable 6. Explanation of variance, concordance index, and NRI were computed to 

compare the two RPAs. The NRG-GBM-RPA explains a higher percent of the variance 

(11.09 vs. 3.78) and has a lower value of predictive inaccuracy (0.33 vs. 0.36) as compared 

to the currently used clinical RPA for OS. Although the concordance index and NRI were in 

favor of the model with NRG-GBM-RPA compared to the clinical RPA, there was no 

significant difference between the two models with respect to concordance index (0.64, 95% 

CI: 0.55, 0.72 for clinical RPA, 0.70, 95% CI: 0.63, 0.77 for NRG-GBM-RPA, p=0.93) or 

NRI (7.89%, 95% CI: -0.11, 0.49). Importantly, KPS and extent of resection did not add any 

additional information to the NRG-GBM-RPA. In addition, the NRG-GBM-RPA (I vs II; 

HR=1.59, 95% CI (1.00, 2.54); p=0.05; I vs III; HR=4.56 95% CI (2.55, 8.17); p<0.0001) 

demonstrated a stronger prognostic effect compared to MGMT promoter methylation 

(HR=1.58, 95% CI (1.01, 2.47); p=0.05) on OS upon single marker modeling based on AIC 

(eTable 7.1). The NRG-GBM-RPA also explains a higher percent of the variance (11.11 vs 

1.68) as compared to MGMT methylation (eTable 7.2). Furthermore, Class I (which 

represents the best prognostic group) in the NRG-GBM-RPA is comprised of both 

methylated and unmethylated MGMT patients (eTable 7.3).

To validate the biological significance of the NRG-GBM-RPA, 176 patients treated at the 

University of Utrecht were examined on TMAs utilizing traditional IHC staining. Pre-

treatment characteristics of the validation cohort (49% received radiation and temozolomide) 

are shown in eTable 8. As shown in Figure 3, the NRG-GBM-RPA was confirmed to be a 

statistically significant prognostic classifier using traditional IHC for all patients (Fig. 3A; 

n=176; I vs. II: HR=1.46, 95% CI (1.01, 2.11), p=0.04, I vs. III: HR = 1.88, 95% CI (1.20, 

2.96), p=0.006) and for patients who received radiation and temozolomide (Fig. 3B; n=87; I 

vs. II: HR=1.91, 95% CI (1.10, 3.32), p=0.02, I vs. III: HR = 3.68, 95% CI (1.84, 7.35), 

p<0.001). Classification of patients who received radiation and temozolomide based on the 

current RPA is shown in Fig. 3C. Concordance between Pathologists’ analyses for the Allred 

score (0–8) were moderate and varied from c-Met (weighted kappa = 0.4) to MGMT 
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(weighted kappa = 0.6)27–30. Effects of IDH were then analyzed in the validation cohort as 

IDH status was unavailable for NRG Oncology RTOG 0525. Removing known IDH-mutant 

glioblastomas (n = 9) from the analysis did not affect these findings; the new RPA trended or 

remained statistically significant in all treatments (n=167; I vs. II: HR=1.37, 95% CI (0.94, 

1.97), p=0.10, I vs. III: HR = 1.87, 95% CI (1.18, 2.98), p=0.007) and in patients treated 

with radiation and temozolomide (n=82; I vs. II: HR=1.65, 95% CI (0.95, 2.87), p=0.07, I 

vs. III: HR = 3.24, 95% CI (1.62, 6.48), p<0.001) as shown in eFigure 3.

Discussion

The current RPA classification system for GBM was created using trials conducted in the 

pre-temozolomide era.2,3 The goal of this study was to refine the current RPA by 

incorporating both clinical and protein parameters using radiation- and temozolomide-

treated GBM patients. The findings of this study have important implications for GBM 

patients as a new RPA was identified based upon underlying molecular markers, some 

putatively involved in GBM pathogenesis. Importantly, these newly-identified prognostic 

risk groups may help guide decision-making as well as yield insights into possible 

underlying resistance mechanism(s) to radiation and temozolomide treatment. Most notably, 

the NRG-GBM-RPA classification (Figure 2) dramatically improved the separation among 

prognostic groups relative to the current system as well as MGMT promoter methylation, 

and therefore this could potentially serve as a superior stratification variable in clinical trials. 

Prognostic biomarkers identified to be significant upon single marker modeling (pAKT, 

pmTOR, MGMT, Ki-67, survivin, and c-Met) with a p-value < 0.05 validated previous 

findings, with regards to their respective prognostic values. Prognostic protein biomarkers 

identified to be significant (p< 0.05) after multi-marker modeling for GBM were Ki-67, c-

Met, and MGMT. Each of these protein biomarkers has been previously associated with 

worse outcome in GBM,31–33 but most of these studies have failed to determine whether 

these proteins are independent prognostic factors through comprehensive multivariate 

analysis. High c-Met protein expression (detected by traditional IHC) has been previously 

shown to be significantly associated with poor OS .31 Our study further validates these 

findings in an independent, larger cohort of 196 patients all treated with radiation and 

temozolomide on NRG Oncology RTOG 0525. Notably, c-Met inhibitors are currently in 

multiple clinical trials for solid tumors including GBM, and high-expressing c-Met GBM 

patients may be good candidates for this targeted therapy as evidenced by in vitro and in 
vivo models34,35 as well as a single case report.36 Although the upper quartile cutoff for c-

Met appears to be clinically relevant in the NRG-GBM-RPA, it may not be the best cut-off 

point for selection of patients who may be treated with and respond to c-Met inhibition.

Furthermore, MGMT promoter methylation has been one of the most studied prognostic 

biomarkers in GBM patients; however, MGMT protein expression has not been well 

characterized in large data sets and there are conflicting results regarding expression level of 

the protein and its prognostic significance.33,37 Therefore, we sought to determine whether 

MGMT protein expression levels using a quantitative fluorescence IHC approach could 

determine prognostic significance similar to that of MGMT promoter methylation. 

Importantly, MGMT protein tumor expression appeared to be of greater prognostic 

significance with OS than MGMT promoter methylation even after multi-marker modeling. 
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Further, MGMT protein expression in tumor was found to be significantly associated with 

MGMT promoter methylation. This result confirms a previous publication where we 

demonstrated that decreased MGMT protein expression was correlated with increased 

sensitivity to radiation and temozolomide in vitro.38 Intriguingly, MGMT protein appeared 

to have greater prognostic value versus MGMT promoter methylation. This is likely due to 

MGMT protein expression being a better surrogate of MGMT activity as there were multiple 

instances of tumors with methylated MGMT expressing higher levels of MGMT protein as 

well as multiple tumors with unmethylated MGMT expressing lower levels of MGMT 

protein (eFigure 2).

Of importance, both c-Met and MGMT demonstrated statistical significance upon multi-

marker modeling and in the RPA providing evidence that both proteins are necessary in the 

newly developed RPA model and add independent value specifically for patients older than 

50 years. Our biological validation of the NRG-GBM-RPA (including MGMT protein, c-

Met protein, and age) using traditional semi-quantitative IHC with an independent patient 

cohort shows that the NRG-GBM-RPA has the potential to be implemented as a routine 

histopathological test accessible to the majority of routine clinical pathology laboratories. 

Furthermore, the NRG-GBM-RPA displayed greater prognostic value relative to both 

MGMT promoter methylation and the existing clinically-based RTOG RPA in NRG 

Oncology RTOG 0525. The prognostic significance of MGMT protein expression and the 

NRG-GBM-RPA identified warrants further studies on its clinical applicability using large 

sample sizes as it is possible that the small sample size limited the ability to find a 

statistically significant difference compared to the current RPA using NRI and concordance 

index. Further validation will also determine if semi-quantitative or quantitative methods 

will be required to overcome reproducibility and subjectivity of traditional IHC.39,40 

However, our approach for traditional IHC differed from previous studies as we used a 

sophisticated scoring method13 to assess proportion and intensity of protein expression 

(eFigure 4). Further, protein analysis by traditional IHC may potentially be more accessible 

and cost-effective to community-based practices world-wide. The validation study, which 

was comprised of patients treated with radiation and temozolomide, radiation alone or 

surgery alone, further demonstrated the validity of the NRG-GBM-RPA in patients treated 

with radiation and temozolomide compared to the heterogeneous treated group and the 

ability of the refined RPA to separate out the poor and intermediate prognostic classes. By 

validating the known signal transduction proteins and MGMT protein expression as 

independent prognostic factors as well as deriving a new RPA (NRG-GBM-RPA) 

incorporating MGMT protein and c-Met protein expression, our current study has the 

potential to significantly contribute to improving the accurate assessment of prognostic 

groups in GBM patients treated with radiation and temozolomide and also influence clinical 

decision making.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. MGMT and c-Met correlate with OS in randomized NRG Oncology RTOG 0525 study 
participants
High MGMT tumor protein staining when split by the median significantly associate with 

decreased OS (A). High levels of c-Met cytoplasmic protein staining when split by the top 

quartile significantly associate with decreased OS (B).
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Figure 2. Protein biomarker data strengthens current GBM RPA classification
Current and New RPA classification of NRG Oncology RTOG 0525 study participants. The 

cohort of 166 randomized patients used is shown stratified by the three current RPA classes 

relative to OS, respectively for the current RPA (A) the new NRG-GBM-RPA (B) and both 

RPA models overlayed (C). A decision tree for the NRG-GBM-RPA classification (D). 

Current RPA Class III (age <50 and KPS 90–100) vs. Class IV (age <50 and KPS <90 OR 

age ≥ 50 and partial or total resection with no worse than minor neurofunction impairment) 

vs Class V (age ≥ 50 and partial or total resection with worse than minor neurofunction 

impairment, OR age ≥ 50 and biopsy only, OR age ≥ 50, KPS ≥ 60, and normal mental 

status). NRG-GBM-RPA Class I: MGMT tumor < median or (MGMT tumor ≥median & age 

<50) vs Class II: MGMT tumor ≥ median & age ≥ 50 & c-Met cyto < top quartile vs. Class 

III: MGMT tumor ≥ median & age ≥ 50 & c-Met cyto ≥ top quartile.
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Figure 3. Biological validation of the NRG-GBM-RPA classification in an independent GBM 
cohort
A) NRG-GBM-RPA classification correlated to OS in all GBM patients with heterogeneous 

treatments, B) NRG-GBM-RPA classification correlated to OS in GBM patients treated with 

radiation and temozolomide, and C) Current RPA classification correlated to OS in GBM 

patients treated with radiation and temozolomide.
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Table 1

Pre-treatment Characteristics of the 166 patients from NRG Oncology RTOG 0525 included in the biomarker 

study with all 5 protein marker data included for the NRG-GBM- RPA.

ARM 1
(Standard TMZ)
(n=82)

ARM 2
(Dose-dense TMZ)
(n=84)

Chi-square
p-value

Age (years) 0.80

 <50 21 (25.6%) 23 (27.4%)

 ≥ 50 61 (74.4%) 61 (72.6%)

Gender 0.77

 Male 47 (57.3%) 50 (59.5%)

 Female 35 (42.7%) 34 (40.5%)

KPS 0.49

 60–80 27 (32.9%) 32 (38.1%)

 90–100 55 (67.1%) 52 (61.9%)

Surgery 0.99

 Biopsy   3 (  3.7%)   3 (  3.6%)

 Partial Resection 28 (34.1%) 28 (33.3%)

 Total Resection 51 (62.2%) 53 (63.1%)

Neurologic Function No vs. Minor vs. Moderate/Severe 0.29

 No symptoms 25 (30.5%) 24 (28.6%)

 Minor symptoms 33 (40.2%) 43 (51.2%)

 Moderate symptoms 24 (29.3%) 15 (17.9%)

 Severe symptoms   0 (  0.0%)   2 (  2.4%)

RPA class 0.40

 III 18 (22.0%) 17 (20.2%)

 IV 42 (51.2%) 51 (60.7%)

 V 22 (26.8%) 16 (19.0%)

RPA = Recursive Partitioning Analysis.
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Table 2

Cox models of protein biomarkers by cut-off points in NRG Oncology RTOG 0525 specimens.

(Bolded value has unfavorable outcome) p-value Hazard Ratio (95%CI)

Single Marker Maximum pmTOR Nuclear/Cytoplasm Ratio (≥median vs <median) 0.03 0.76 (0.60, 0.97)

Models MGMT Tumor Mask (≥median vs <median) <0.001 1.81 (1.37, 2.39)

MGMT Tumor Mask (≥top tertile vs <top tertile) 0.003 1.57 (1.17, 2.10)

MGMT Tumor Mask (≥top quartile vs <top quartile) 0.005 1.55 (1.14, 2.11)

Maximum Survivin Cytoplasm/Nuclear Ratio (≥median vs <median) 0.02 1.36 (1.04, 1.76)

Average Ki-67 in Nuclear Mask (≥median vs <median) 0.007 1.40 (1.10, 1.78)

Average Ki-67 in Nuclear Mask (≥top tertile vs <top tertile) 0.008 1.40 (1.09, 1.79)

Average Ki-67 in Nuclear Mask (≥top quartile vs <top quartile) 0.05 1.32 (1.01, 1.72)

Minimum c-Met Cytoplasm Mask (≥top tertile vs <top tertile) 0.03 1.48 (1.04, 2.09)

Minimum c-Met Cytoplasm Mask (≥top quartile vs <top quartile) 0.02 1.53 (1.06, 2.23)

Multi-Marker Treatment Arms (Arm 1 vs Arm 2) 0.09 0.72 (0.50, 1.05)

Model Age (Continuous) <0.001 1.03 (1.01, 1.05)

KPS (60–80 vs 90–100) 0.14 1.38 (0.90, 2.11)

Surgery (biopsy/partial resection vs total resection) 0.99 1.00 (0.67, 1.51)

MGMT Tumor Mask (≥median vs <median) 0.002 1.91 (1.27, 2.88)

Average Ki-67 in Nuclear Mask (≥median vs <median) 0.04 1.50 (1.01, 2.22)

Minimum c-Met Cytoplasm Mask (≥top quartile vs <top quartile) 0.02 1.65 (1.10, 2.48)

For single marker models: All models are adjusted by RX, age, KPS, and surgery. Only markers with p-value less than 0.05 are listed in the above 
table.

For multi-marker model: Model derived from stepwise selection by forcing RX, age, KPS, and surgery included in the model. pmTOR - maximum 
nuclear/cytoplasm ratio, survivin - cytoplasm/nuclear mask ratio were dropped out during stepwise.
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