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I. Introduction

HERE is increasing awareness among scientists, clini-
cians, policy makers, and the general public of the costs
and health care problems associated with osteoporosis, the
most common metabolic bone disease. If the disease could be
prevented or effectively treated, then deaths, disabilities, and
costs due to osteoporosis would be substantially reduced. To
this end, considerable emphasis has been placed on devel-
oping and improving indicators of bone remodeling for 1)
identifying people at risk, 2) early diagnosis, and 3) deter-
mining effective therapy for those with established disease.
Although the clinician’s ability to diagnose and monitor bone
disease has improved in the past decade, there is still a need
for more specific methods of assessing disturbances in bone
metabolism.
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Bone status can be assessed by dynamic histomorphom-
etry of a biopsy specimen, but the technique is invasive, and
results from a single core biopsy may not apply to other sites
in the skeleton. Quantitative bone absorptiometry offers an
accurate assessment of bone mass, but only of structural
changes that occur over several years in the individual pa-
tient. Direct serum measurements are useful because they
allow for easy and frequent assessment without undue risk
or discomfort. However, the classic biochemical markers of
bone disease, serum total alkaline phosphatase activity and
urinary total hydroxyproline excretion, are strongly influ-
enced by nonosseous metabolism and are subject to inter-
ference from systemic disorders. Furthermore, the changes
observed are often modest. Therefore, there is a compel-
ling need for new and/or improved biochemical markers
that would accurately assess dynamic changes in bone
remodeling.

Here we will review recent progress in refining and im-
proving diagnostic markers of bone metabolism and their
status in clinical application. The aim is not to provide com-
prehensive review of clinical studies involving old and new
markers. The literature is too vast and increasing rapidly.
Rather, we will describe the biochemical basis and develop-
ment of each marker and compare different assay methods.
Clinical findings will be summarized with an emphasis on
areas of controversy and specific needs for further research
and assay development. After the various markers are de-
scribed individually, comparative studies that evaluate the
relative clinical usefulness of the various markers are re-
viewed. Finally, from our perspective, we make suggestions on
the current and potential use of bone markers. We begin with
a brief summary of bone biology and collagen biochemistry
to orient the reader, since four of the seven markers described
are based on collagen metabolism.

A. Overview of the basic biology and biochemistry of bone

1. Biology. The skeleton provides the mechanical support of
the body and a reservoir for normal mineral metabolism. In
both capacities, bone is an active tissue constantly being
remodeled and changing metabolically. The cells that me-
diate change, osteoblasts and osteoclasts, have been exten-
sively studied. The resident cells, osteocytes, are less well
understood. Although cells account for only a small fraction
of bone volume, their function is essential. In concert with
calciotropic hormones, they regulate the balance of mineral
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between bone and blood, keeping serum calcium and phos-
phorus in narrow concentration ranges (1).

Bone cells also participate in the growth, modeling, and
remodeling of bone. The two major types of bone are tra-
becular or cancellous bone, a bony lattice that has a spongy
appearance, and cortical bone, a layered solid structure. In
addition to these structural differences, trabecular and cor-
tical bone differ in the spatial arrangement of their cells, in
the density of the mineralized matrix, and in the distribution
of blood vessels and marrow that bathe and nurture the bone
cells. For both types of bone, osteoblasts and osteoclasts
move freely along the surface, and the osteoblasts may ul-
timately become embedded in the mineralized tissue as an
osteocyte. Osteocytes remain in limited contact with the
blood supply and extracellular fluids. Trabecular bone has a
larger surface area and is more metabolically active than
cortical bone (2).

During childhood and adolescence growth of the skeleton
involves accumulation of skeletal mass. Bone growth and
modeling ends with epiphyseal closure, but additional min-
eral is deposited during a period of consolidation. Through-
out life the skeleton undergoes continuous remodeling (turn-
over) of bone with removal of old bone and replacement with
new bone. This allows the skeletal system to respond to
outside mechanical forces or molecular signals. In the normal
adult skeleton, this process takes place at discrete sites (re-
modeling units) and over a fixed period of time (usually
about 90 days)(3). Bone turnover is always initiated by os-
teoclasts eroding a mineralized surface. This process is fol-
lowed by the recruitment of successive teams of osteoblasts
to the outer edge of the erosion cavity that secrete new bone
matrix (osteoid) and gradually fill in the resorption cavity (4).

Both systemic and local factors influence bone growth and
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turnover. PTH and the active form of vitamin D, 1,25-
(OH),D; (calcitriol), stimulate bone resorption, while calci-
tonin inhibits it (5). Bone resorption by osteoclasts and bone
formation by osteoblasts are also regulated by a variety of
cytokines and growth factors. In the steady state, this “cou-
pling” of bone formation and resorption maintains bone
mass. After growth ceases, any unbalance can lead to debil-
itating bone disease. Resorption that exceeds formation, for
example, after the menopause, results in osteoporosis.

2. Biochemistry. Osteoid matrix consists principally of colla-
gen (90%), other smaller matrix proteins, and proteoglycans.
It is rapidly mineralized in close apposition to and through-
out the collagen fibrils. The main structural protein of bone
is type I collagen. By definition, all collagens contain mo-
lecular domains of triple-helical conformation that require
the repeating sequence (Glycine-X-Y) where X and Y are most
often proline and hydroxyproline, respectively. Three
a-chains fold to form the triple helix. Type I contains two a1
(D chains and one a2 (I) chain (6). Figure 1 summarizes the
intracellular events in type I collagen synthesis. The newly
translated polypeptide, a pre-pro-a-chain, includes a signal
sequence and amino (N)- and carboxyl (C)-terminal propep-
tide extensions (7). Before translation is complete, it appears
that most of the prolyl and lysyl residues on the nascent
a-chains are hydroxylated. Before the triple helix folds, cer-
tain hydroxylysyl residues are glycosylated to galactosylhy-
droxylysyl or glucosyl-galactosyl-hydroxlysyl residues (8).
In type I collagen, intramolecular disulfide bonds form be-
tween the three carboxyl propeptides. These extension do-
mains may guide triple helical formation. The procollagen
molecule is then transported from the rough endoplasmic
reticulum to the Golgi for additional glycosylation and sub-
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F1G. 1. The intracellular pathway of type I collagen synthesis. A, Type I collagen polypeptides are synthesized as pre-pro-a-chains that contain
a peptide-secretory sequence and amino (N)- and carboxyl (C)- terminal extension peptides. B, Many of the prolyl and lysyl residues on the
nascent a-chains are hydroxylated before translation is complete. C, The resulting hydroxylysyl residues are glycosylated to form GHYL or
Gle.GHYL residues. D, Three pro-a-chains are associated into a triple helical molecule that is stabilized by disulfide bonds between the carboxyl
propeptides. E, These extension peptides guide helical folding of the molecule which, once this has occurred, is transported to the Golgi for
subsequent secretion. After secretion, the N- and C-terminal extension peptides are cleaved by specific peptidases, and the extension peptides
can enter the circulation. A fraction of the N-terminal peptides, however, may bind to bone matrix.
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sequent secretion into the extracellular space (9). Once se-
creted, and during fibrillogenesis and fibril maturation, the
N- and C-terminal propeptides are cleaved by specific pep-
tidases, and these can enter the circulation. In bone, the
N-propeptide of the a1 (1) chain has been found in extracts
of the mineralized matrix.

Collagen molecules aggregate in a staggered array to form
fibrils that are strengthened by covalent cross-links. These
are catalyzed by the action of lysyl oxidase, which forms
aldehydes from certain lysine and hydroxylysine side chains.
The condensation of lysyl and hydroxylysyl residues in ad-
jacent molecules results in various types of cross-linking
residues. When the aldehydes are derived from hydroxyl-
ysine, the mature cross-links are 3-hydroxypyridinium struc-
tures called pyridinolines (10)(Fig. 2).

When osteoclasts resorb bone, they secrete a mixture of
acid and neutral proteases that act sequentially to degrade
the collagen fibrils into molecular fragments. The precise
extent of degradation by the osteoclast alone is unknown.
Circulating products containing the pyridinoline cross-links
range in size from the free amino acids to segments of the
N-telopeptide and C-telopeptide domains (10). Presumably
the initial fragments produced by osteoclasts are further
metabolized by the liver and kidney so that eventually all the
cross-link-containing fragments are of sufficiently small mo-
lecular weight to be cleared by the kidneys and excreted in
the urine. In summary, circulating peptides of type I collagen
can arise from two sources: osteoblastic synthesis of bone
matrix (N- and C-propeptides) and degradation products
from osteoclastic activity (cross-linked N- and C-telopep-
tides).

Other markers of bone turnover are not related to collagen
synthesis or catabolism. Osteocalcin is a small protein syn-
thesized by osteoblasts that becomes part of the bone matrix.
Some of it spills over into the circulation where its concen-
tration is a commonly used marker of bone formation. Mark-
ers of bone metabolism also include enzyme levels in serum

Cross-linked C-telopeptides

Cross-linked N-telopeptides
(NTx)

Fic. 2. Cross-linked N- and C-telopeptides of type I collagen. The
pyridinoline cross-links occur essentially at two intermolecular sites
in the collagen fibril: two aminotelopeptides are linked to a helical site
at or near residue 930 (NTx), and two carboxytelopeptides are linked
to helical residue 87 (CTx).
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that arise from osteoblast or osteoclast activity. Examples
include bone-specific alkaline phosphatase, a formative
marker, and tartrate-resistant acid phosphatase, a resorptive
marker.

B. Criteria for ideal markers of bone turnover

The most critical characteristic of an effective resorption or
formation test is that it is minimally invasive. Blood sampling
and urine collection allow for easy and frequent measure-
ment over time without undue risk or discomfort to the
patient. Ideally, the analyte should be unique to bone, or
more specifically to the osteoblastic formation process or the
osteoclastic resorption process. To be validated, the marker
should 1) correlate with a standard reference of bone-re-
modeling activity such as stable isotopes, radio-calcium ki-
netics (¥’Ca), and bone histomorphometry; 2) correlate to
measured changes in bone mass; and 3) respond appropri-
ately after treatment in diseases known to affect bone for-
mation or resorption. Unlike localized measurements of bone
turnover that reflect activity at a specific site, systemic bio-
chemical markers will reflect collective remodeling through-
out the entire skeleton and may not be confined to cortical or
trabecular bone. Factors that affect the marker’s levels, in-
cluding circadian rhythmicity, diet, age, gender, body and
bone mass differences, physical and metabolic activity, renal
function, comorbid conditions, and drugs, should be clearly
defined and appropriately adjusted whenever possible.

Most of the traditional and new markers for bone resorp-
tion measure the collagen degradation products from oste-
oclast activity and include urinary hydroxyproline, hydroxy-
lysine glycosides, total or free pyridinoline cross-links, and
cross-linked N- or C-telopeptides. Only one marker, serum
tartrate resistant-acid phosphatase, is based on an enzyme
secreted by osteoclasts. The formation markers are all os-
teoblast products that enter the circulation. These include
serum alkaline phosphatase, osteocalcin, and type I procol-
lagen peptides. Fasting urinary calcium, used by some in-
vestigators to measure bone resorption, is not discussed, and
readers are referred to other works for discussion of this
parameter (11, 12).

II. Indices of Bone Resorption
A. Hydroxyproline

1. Biochemistry. Urinary hydroxyproline, the most performed
measure of bone resorption, has the longest history of use.
Both hydroxyproline and hydroxylysine are amino acids es-
sentially unique to collagenous proteins. Bone may be the
primary store of collagen in the body, but both hydroxypro-
line and hydroxylysine are present in essentially all tissues
and all genetic types of collagen. The majority of hy-
droxyproline derived from the breakdown of collagen is
reabsorbed by the renal tubules and broken down in the liver.
Only about 10% of hydroxyproline-containing products
from collagen breakdown are excreted in the urine. Of that,
most is contained in peptides, the majority of which are di-
and tripeptides (13-15). The remaining peptides in the urine
are of approximately 5 kDa and may be derived from the
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N-terminal extension peptide of procollagen (N-propeptide).
There is a small amount of the free imino acid in urine.

Hydroxyproline can never be reincorporated into newly
synthesized collagen (16). However, both collagen synthesis
and tissue breakdown contribute to urinary hydroxyproline.
Early studies using [**C]proline showed that one-third to
one-half of the hydroxyproline excreted by young rats orig-
inated from the catabolism of newly synthesized collagen
that was not incorporated into tissue. In contrast, most of the
hydroxyproline excreted by older rats came from structural
collagen breakdown (16, 17). The small pool of urinary hy-
droxyproline peptides thought to originate from the
N-propeptide of type I collagen was proposed as a marker
of bone formation, but this has not been pursued (18-21).

In addition to all structural collagens, hydroxyproline also
occurs in certain serum proteins, the most noteworthy of
which is a component of complement, Clq (22, 23). As part
of a minor serum protein, its contribution to the total load of
hydroxyproline excreted in the urine is small compared with
dietary sources. Normal ingestion of gelatin or collagen-rich
foods such as meat can increase the level of urinary hy-
droxyproline (24). The urinary peptides containing hy-
droxyproline from endogenous collagen breakdown are
indistinguishable from the dietary peptides (21). Conse-
quently, to use urinary hydroxyproline most effectively,
some experts suggest restricting intake of gelatin and other
collagen-rich foods for 2448 h before a 24-h urine collection
(25). Table 1 lists the factors that contribute to urinary
hydroxyproline.

Urinary hydroxyproline excretion shows a circadian
rhythm with peak excretion after midnight; therefore, col-
lection times need to be standardized if 24-h urine collections
are not used (26-28). Also, Mautalen and Casco (28) noted a
change in the the hydroxyproline-creatinine ratio over 24 h.
They and others suggested using spot urines taken at the
same time of day or expressing the hydroxyproline content
of 24-h samples per square meter of body surface for mean-
ingful comparisons (28, 29). Currently the accepted collection
method for hydroxyproline analysis is 1- to 2-h “spot” urines
made after a 10- to 12-h fast (26, 27).

2. Methods. Many methods for the assay of hydroxyproline in
urine have been published. Discussion here focuses on the
simpler methods in clinical use (30—41). Despite considerable
improvements in precision, the assays are still tedious and

TABLE 1. Factors contributing to variations in urinary hydroxyproline
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time consuming. Since 90% of urinary hydroxyproline is
peptide-bound, an initial hydrolysis step is required. Color-
imetric techniques are based on the oxidation of the amino
acid to pyrrole 2-carboxylic acid, which is converted to pyr-
role upon heating (30-37). The pyrrole is then extracted
(usually with toluene) and reacted with p-dimethylamino-
benzaldehyde (Ehrlich’s reagent) to form a chromophore that
is quantified spectrophotometrically. In these colorimetric
assays, interfering chromophores are the main source of er-
ror. Although conveniently adapted to the autoanalyzer, the
method remains tedious due to the acid hydrolysis step (33,
36). A modified colorimetric assay is available as a commer-
cial kit, Hypronosticon (Organon Teknika Inc, Scarborough,
Ontario, Canada) (35). This procedure uses a patented resin
tablet to remove interfering substances and hydrolyze pep-
tides (40). Colorimetric methods report inter- and intraassay
coefficients of variation of 10 and 12%, respectively, with
detection limits of 5-10 wmol/liter (26, 37).

Newer HPLC methods for total urinary hydroxyproline
derivatize the amino acid with phenylisothiocyanate and
quantify the phenylthiohydantoin derivative by reversed
phase-HPLC and UV absorbance. This method eliminates
tedious sample clean-up and is easily adapted for use with
an automatic sample processor for overnight assay. For the
HPLC method, total coefficients of variation are 5.3% for a
high pool and 3.9% for a low pool. The assay is of sufficient
sensitivity such that only 50 ul of urine are necessary for
samples to fall within the linear range (0-660 wmol/liter)
The normal range for hydroxyproline excretion in men on
unrestricted diets is 123-308 wmol/24 h. (38, 39, 41).

3. Clinical correlates. Despite its lack of tissue specificity, poor
ability to differentiate between bone formation and degra-
dation, and many confounding influences, urinary hy-
droxyproline has been one of the most widely used biological
markers of bone turnover. In several studies in which his-
tomorphometry or calcium kinetics have been used, hy-
droxyproline excretion correlated with calcium accretion and
bone resorption in subjects with osteoporosis, Paget’s’ dis-
ease, hyperparathyroidism, hyperthyroidism, and hypothy-
roidism (42, 43). Strong correlations between urinary hy-
droxyproline excretion and both mineralization and
resorption rates (43) reflect the tight coupling between bone
formation and bone resorption.

Age and gender influence hydroxyproline excretion (44,

Diet All types of meat, fish, and poultry (highest sources: hot dogs, bologna,
sausages, and poultry prepared with the skin on); gelatin, and gelatin added to
products like yogurt; gelatin capsules used to administer fecal markers or test
compounds or as coatings on medications.

Collagen synthesis
during growth.

Collagen degradation

All connective tissues contribute (skin, tendon, fascia, bones, etc.) especially

All connective tissues contribute; can be elevated in chronic disease states

without bone involvement such as arthritis and in weight loss.

Larger body size
Circadian rhythm

Reflects greater connective tissue mass; requires normalization with creatinine.

Highest excretion at night; requires complete 24 h or standardized times for

incomplete urine collections.

Serum proteins

C1q component of complement contains hydroxyproline; others may exist, but

noncollagenous sources are minor contributors.
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45). Gender differences in hydroxyproline excretion relate to
body size and disappear when normalized to creatinine. The
normal ranges for urinary hydroxyproline-creatinine ratios
(mg/ mg/24 h) for men and women on restricted diets are
0.019-0.032 and 0.022-0.036, respectively. Levels are highest
in infants, with a mean of approximately 0.5 at 2-3 days of
age to 2.0 at 33 days. Levels decline steadily until age 5 (0.38
at 6 months to 0.125 at 5 yr). Excretion remains stable until
puberty, after which point it declines to the adult levels. No
racial differences were noted between black and white chil-
dren (46), but hydroxyproline-creatinine ratios were lower in
healthy postmenopausal black women than in age-matched
white women (12). In growing children, the higher levels
probably reflect both bone collagen synthesis and resorption.
In adults and the elderly, urinary hydroxyproline levels are
influenced by total bone mass, body size, and renal function
(26, 47-49). To correct for these influences, urinary hy-
droxyproline is often expressed in relation to bone mass,
body weight, total surface area, 24-h creatinine excretion, or
glomerular filtration rate.

Urinary hydroxyproline has been used effectively to di-
agnose and monitor the effects of therapeutic treatment of
Paget’s disease (50) and osteoporosis (51) and to monitor the
short- and long-term changes in bone turnover caused by
calcium supplementation in postmenopausal women (52-54)
and normal men (55). Several studies report higher urinary
hydroxyproline excretion in postmenopausal and amenor-
rheic women (56-62). Bone mineral content of the distal
radius was inversely correlated to hydroxyproline-creatinine
ratio in postmenopausal women (63). Hyldstrup and co-
workers (47) demonstrated an increase in bone resorption
per unit of bone in postmenopausal women after correcting
hydroxyproline-creatinine ratio for bone mineral content. In
women with surgically induced menopause (64), hy-
droxyproline excretion was strongly correlated to the rate of
bone loss. Deacon et al. (65) validated the use of hydroxypro-
line as a marker of bone resorption in osteoporotic women
by comparing its rate of excretion with kinetic estimations of
bone resorption (*Sr isotope tracer). Hydroxyproline excre-
tion measured over 5 days was comparable to the isotopic
method.

It can be argued that hydroxyproline excretion is not a
sensitive enough marker of bone resorption for routine di-
agnostic and therapeutic monitoring in individual patients
(57) because it lacks specificity and is easily confounded by
diet. Nevertheless, in group studies, hydroxyproline excre-
tion has been used recently to demonstrate increased bone
resorption with immobilization (66), to monitor calcitonin
treatment in postmenopausal women (51, 67-69), and to
evaluate rate of bone resorption and formation in osteopo-
rotic women during continuous or intermittent PTH therapy
(70). In a study that used biochemical markers to evaluate
intermittent PTH injections, urinary hydroxyproline cor-
rected for glomerular filtration rate was the most consistent,
and the only marker to increase progressively during PTH
injection, to correlate with osteoclast number, and decrease
with calcitonin therapy (70). However, it will be apparent
from the following discussion of new bone resorption mark-
ers that hydroxyproline excretion does not perform as con-
sistently as the newer resorptive markers. It is important to
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note, however, that in only a few of these clinical studies was
urinary hydroxyproline collected under conditions that
would limit confounding influences such as diet. Informa-
tion is rarely given about the precision of the hydroxyproline
assay, and interassay coefficient of variations (CVs) are re-
ported as high as 20%. While hydroxyproline excretion as a
marker of bone resorptive activity is clearly less than ideal,
when measured correctly, it can provide useful information.

B. Galactosyl hydroxylysine (GHYL)

1. Biochemistry. Hydroxylysine, another modified amino acid
peculiar to collagens, is glycosylated to varying degrees de-
pending on the tissue type (71). Two glycosides are formed,
GHYL and glucosyl galactosyl hydroxylysine (Glc.GHYL),
which also appear in the urine (Fig. 3). While hydroxylysine
and its glycosides are less abundant than hydroxyproline in
bone collagen, certain properties make hydroxylysine theo-
retically a better marker of bone turnover than urinary hy-
droxyproline. Glycosylated hydroxylysine residues appear
not to be reused or catabolized when collagen is degraded;
therefore, urinary glycosylated hydroxylysines may repre-
sent the total pool of degraded collagen in the body. Fur-
thermore, they do not appear to be absorbed in significant
levels from a normal diet (71).

Because of tissue-specific differences in the ratios of GHYL
and Glc.GHYL, GHYL is considered relatively specific to
bone collagen degradation (72). Thus, about one third of the
hydroxylysine residues in bone and skin collagens are gly-
cosylated, but in humans Glc. GHYL predominates in skin,
whereas GHYL is the main glycoside in bone (73). The ratio
of Gle.GHYL/GHYL in skin is 1.6:1 whereas the ratio in bone
is 1:7 (72, 73). The ratio of Glc.GHYL/GHYL in urine is

-NH-EH-E:-
H,
tHz CHOH
CH-0 0—3\OH
OH H

GALACTOSYLHYDROXYLYSINE

-NH-GH-C-

H,

H, CHOH
¢H-0 0—\OH
CHNH. Kd o),

H
CHOH
H,0 H
OH, OH
H H

GLUCOSYLGALACTOSYLHYDROXYLYSINE
Fic. 3. Structure of hydroxlysine glycosides.
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therefore influenced by the predominant type of collagen
being degraded and also by the age of the subject.

However, as with hydroxyproline, hydroxylysine glyco-
sides are present in proteins other than structural collagens,
e.g. the C1q component of complement. Their contribution to
the urine pool is thought to be small. Clq contains only five
residues each of hydroxyproline and hydroxylysine (22, 23),
and most of the glycosylated hydroxylysine is Glc. GHYL.
Another potential problem is degradation of the Glc. GHYL
to GHYL (74). However, the a-glucosidase present in the rat
renal cortex that can convert diglycosides to monoglycosides
was shown to be absent from human kidneys (75). In hu-
mans, GHYL appears to be specific for bone collagen deg-
radation, and both Glc.GHYL and GHYL seem to be the final
metabolic products of collagen degradation.

In normal urine, 80% of the total hydroxylysine is in the
form of hydroxylysine glycosides, 10% is free and unglyco-
sylated, and the remainder is peptide-bound, which suggests
that free hydroxylysine is largely metabolized and not ex-
creted (76). Age influences these ratios. Free and peptide-
bound hydroxylysine are most prominent in the urine of
infants and children. Urinary hydroxylysine glycosides in-
crease from 6 months of age (7.1 = 1.3 umol/day) to puberty
when the highest values are observed (45 + 4.7 umol/day)
(76). Normal adults excrete more Glc.GHYL than GHYL
(21.5 + 1.4 vs. 13.7 £ 0.7 umol/day). The Glc.GHyl/GHyl
ratio is always higher in adults than in children, indicating
a greater contribution of bone collagen in children due to
their rapid growth and modeling (76). Recent studies have
focused less on the glycoside ratio in the urine and more on
the urinary level of GHYL, the more bone-specific glycoside,
to identify individuals with increased rates of bone resorp-
tion (77, 78).

2. Methods. Analytical methods for GHYL are complex and
time consuming. Early methods required clean-up steps, res-
olution using an amino acid analyzer, and detection of the
hexoses by orcinol-sulfuric acid (71). In the latest method,
urine is used directly. Hydroxylysine is dansylated and the
fluorescent derivatives are resolved and detected by re-
versed-phase HPLC (79, 80). The necessary dansylated
GHYL standard can be prepared from human urine (81).
Commercial availability of such a standard may expand
study and application of GHYL as a bone resorption marker.

3. Clinical correlates. Although results are promising, GHYL
has not been widely studied or validated as a marker of bone
resorption. Levels are elevated in children and Paget’s dis-
ease patients (82). Differences in 24-h excretion between men
and women were attributed to differences in body size and
could be normalized to creatinine excretion or body surface
area (76). In young girls midpubertal GHYL/creatinine lev-
els were 4.02 = 0.2 wmol/mol before menarche, approxi-
mately 5.3-fold higher than adult levels, and dropped to
3.1 £ 0.2 umol/mol after menarche (83). Urinary GHYL/
creatinine levels increase at menopause and correlate nega-
tively with bone density in women (77, 78). In a study of 160
women, GHYL/creatinine levels also correlated with serum
alkaline phosphatase, but not with urinary hydroxyproline/
creatinine levels (77). Suppressed GHYL levels were noted in
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osteoporotic women in response to oral vitamin D, calcito-
nin, and rehabilitation exercise therapy (84).

In a comparison of urinary GHYL, urinary hydroxypro-
line, and serum alkaline phosphatase, GHYL was the only
marker that could predict metastases in premenopausal
women with breast cancer (85). The clinical performance of
GHYL, hydroxyproline, and total pyridinolines as bone re-
sorptive markers were recently compared (82, 86). All
showed similar discriminating power in subjects with high
resorption (Paget’s disease and children). Only GHYL and
the pyridinoline cross-links were able to discriminate post-
menopausal osteoporotic women. While it is a promising
marker of bone resorption, GHYL requires further validation
against bone histomorphometry and calcium kinetics. The
validity of using spot urines rather than 24-h urine collections
also needs investigation.

C. Pyridinoline cross-links: total, telopeptide, and free forms

1. Biochemistry. In the last decade, collagen cross-links have
evolved as the most promising markers of bone resorption.
Pyridinoline (Pyr) and deoxypyridinoline (Dpy) residues
originally received the most attention. Newly deposited col-
lagen fibrils in the extracellular matrix are stabilized by cross-
links formed by the action of lysyl oxidase on lysine and
hydroxylysine residues in telopeptide domains of the colla-
gen molecules. The resulting aldehydes condense with hy-
droxylysyl or lysyl residues on adjacent collagen molecules
to form divalent cross-links, which can mature by further
condensation with telopeptide aldehydes to the trivalent
structures Dpy (also referred to as lysyl pyridinoline, LP) and
Pyr (also refered to as hydroxylysyl pyridinoline, HP) as
shown in Fig. 2.

Pyridinolines act as mature cross-links in types I, II, and
IIT collagens of all major connective tissues other than skin
(87, 88). This includes type I collagen of bone, dentin, liga-
ments, fascia, tendon, vascular walls, muscle, intestine, etc.
In all tissues, Pyr predominates, with Dpy, the minor com-
ponent. Dpy is found in highest concentration relative to Pyr
in bone and dentin at a Pyr/Dpy ratio of 3.5:1 (22% Dpy) in
human bone. The pyridinoline cross-links occur essentially at
two intermolecular sites in the collagen fibril: two aminote-
lopeptides are linked to a helical site at or near residue 930
and two carboxytelopeptides to helical residue 87 (Fig. 2).
The two helical sites are thus placed symmetrically at about
90 residues from the ends of the 1000-residue helical domain.
Dpy is derived from two hydroxylysines and one lysine
residue, while Pyr is derived from three hydroxylysine res-
idues. The combined concentration of Dpy and Pyr in bone
is only 0.3 mol/mol of collagen. Most nonmineralized con-
nective tissues (other than skin) contain higher concentra-
tions of the total cross-links (Table 2). When mature collagen
is degraded, the peptide fragments will include those that
contain pyridinoline cross-links. The products of collagen
degradation containing the Dpy and Pyr cross-links in urine
range in size from the free cross-linking amino acids to seg-
ments of the N-telopeptide and C-telopeptide sequences.
These small peptides (<2 kDa) and free pyridinoline cross-
linking structures are presumably readily cleared by the
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TasLE 2. Distribution of pyridinoline cross-links in human bone
and joint tissues in moles/mole collagen = SD*

Pyr/D,

n Pyr Doy Ratio
Bone, cortical 18  0.26 =0.09 0.07 = 0.02 3.5:1
Bone, cancellous 18 0.18+0.08 0.05*0.02 3.5:1
Articular cartilage 18  1.48 = 0.32 0.03 >40:1
Meniscus 24 1.40=*0.14 0.05 >20:1
Joint capsule 14 0.86 = 0.17 0.07 >12:1
Annulus fibrosus 6 166 =*0.14 0.03 >50:1
Nucleus pulposus 21 159044 0.03 >50:1

@ Values are from Ref. 89 for bone and articular cartilage, and Eyre
et al. (unpublished). The low content of pyidinolines in bone collagen
reflects incomplete maturation of borohydride-reducible cross-links.

kidneys. To our knowledge, there is no current evidence that
the pyridinolines themselves can be metabolically degraded.
Pyridinoline cross-links in urine are thought to originate
primarily from bone resorption. This conclusion is supported
by the observed similarity in ratio of Pyr/Dpy in adult hu-
man bone (22% Dpy) and urine (from 13-33% Dpy), com-
pared with most nonbone connective tissues. In these tissues,
Dpy is usually present at less than 10% of Pyr. The contri-
bution to urinary Pyr and Dpy from soft tissue degradation
has not been established. However, it should be noted that
even though the Pyr/Dpy ratio is much higher in all other
connective tissues, the actual concentration of Dpy in certain
soft tissue collagens may be as high as it is in bone (88-91).
When expressed as moles of Dpy/mol of collagen, vascular
tissue and skeletal muscle have similar concentrations of Dpy
as bone. In skeletal muscle, the ratio of Pyr/Dpy is only twice
that in bone, and it is estimated that half the Dpy in urine
could come from such nonbone sources (91). Although it is
possible that soft tissues contribute to the normal excretion
of Dpy and Pyr, bone represents the major reservoir of total
collagen in the body and turns over faster than most major
connective tissues. On the other hand, the contribution to
urinary pyridinolines from nonbone sources in specific dis-
ease states, e.g. muscle atrophy, remains to be established.
Pyridinolines and cross-linked collagen peptides have sev-
eral theoretical advantages over hydroxyproline as markers
of bone resorption. They can only come from mature, extra-
cellular collagen fibrils, not newly made molecules that are
terminated at synthesis. Unlike hydroxyproline, the pyri-
dinoline amino acids are fully excreted with no known path-
way of metabolic degradation. Usually about two-thirds of
the pyridinolines in urine are in the form of small peptides
(<2 kDa). These peptides have sequences specific to the
parent collagen molecules (e.g. collagen type I), providing a
basis for added specificity as molecular markers of bone.
Osteoclasts cultured on human bone particles generate cross-
linked peptides but not free pyridinoline cross-links (92).
Other tissues that contain type I collagen, such as skin, will
also produce immunoreactive peptides in vitro (91, 93). It is
not clear where in the body the peptides are broken down to
yield the pool of free pyridinolines in urine (~30% of total)
and whether bone collagen is the only source of the free
pyridinolines. Similar to hydroxyproline, the pyridinolines
are present in the diet, but unlike hydroxyproline, they ap-
pear not to be absorbed (93, 94). Therefore, no dietary re-
strictions are necessary, which is a major advantage.
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2. Methods.

a. Total pyridinolines. The first and most applied method for
measuring urinary Pyr and Dpy involves acid hydrolysis of
the urine sample, solid-phase extraction, resolution by
HPLC, and quantification of their natural fluorescence (87,
95, 96). Method variations include modifications of the chro-
matographic conditions and of the extraction method after
acid hydrolysis (97-100). For total pyridinolines, the urine
must first be hydrolyzed to the free amino acids. In most
cases, equal volumes of urine and 12 m HCI are mixed and
heated under standard protein hydrolysis conditions. This
step is a potential source of destruction of pyridinolines and
may contribute to the variability in results seen among lab-
oratories (89). However, in a recent study, simply increasing
the hydrolysis time (tested range 18—120 h) did not affect the
recovery of total urinary Dpy and Pyr (94).

Total pyridinolines measured by the HPLC method are
stable when urine is stored at —20 C in the dark for at least
18 months (94, 98). The cross-links are also stable to repeated
(10 times) freezing and thawing cycles (101). However, other
reports indicate a significant lability to both natural and
artificial light, particularly UV wavelengths, of pyridinolines
in urine samples exposed for even brief periods (102). Use of
spot urine samples may be preferred over 24-h urine collec-
tions because of ease of collection, particularly in large sur-
vey studies. A strong correlation between pyridinoline cross-
links in spot urines and 24-h collections was found in most
(94, 103, 104), but not all, studies (105).

A basic problem in comparing results of the HPLC method
among laboratories is the lack of a common reference stan-
dard. A variety of external standards of undefined purity
have been used, including Pyr and Dpy isolated from bovine
(98), ovine (95, 103), canine (101, 106), and human bone (99,
100, 107, 108) or urine from patients with Paget’s disease of
bone (94). The HPLC method needs to be standardized
among laboratories before fully meaningful comparisons of
results can be made. Assay precision has been improved
using internal standards such as acetyl Pyr, a semisynthetic
derivative (109, 110), or other fluorescent products prepared
from elastin (94). Inter- and intraassay CVs for the HPLC
technique differ greatly among reporting laboratories but are
usually both less than 15%. Use of an internal standard low-
ered interassay CVs from 15.1% to 5.3% for Pyr and from
20.8% to 4.6% for Dpy (109).

b. Free pyridinolines. Clinical application of pyridinoline
assays has been limited by the inconvenience of the HPLC
method. Although an early enzyme linked immunosorbent
assay (ELISA) was developed for Pyr in urine, it required
acid hydrolysis before assay (111). Recently a polyclonal
antibody-based ELISA that recognizes the free Pyr and Dpy
in urine was reported, which correlated well with total Pyr
measured by HPLC. This antibody does not distinguish be-
tween Pyr and Dpy or recognize peptide-bound Pyr to a
significant degree. Studies have reported intra- and interas-
say variations for free Pyr below 10% and 15%, respectively,
and a sensitivity of 25 nm (103, 112-114).

Because of the abundance of Pyr in tissues other than bone,
a selective immunoassay for Dpy should be more specific as
a bone-resorption marker. An antibody- based ELISA and an
RIA (115-117) for Dpy have been developed. For the ELISA,
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Robins et al. (116) report less than 1% cross-reactivity with
free Pyr and no interaction with peptide forms of the cross-
link. The intra- and interassay variations were less than 10%
and 15%, respectively, and the assay sensitivity is 2 nM Dpy.

The availability of these assays in a commercial form
(Pyrilinks, Collagen Crosslinks Immunoassay and
Pyrilinks-D, Deoxypyridinoline Immunoassay, Metra Bio-
systems, Palo Alto, CA) has advanced the clinical research
application of these urinary resorptive markers.

c. Cross-linked telopeptides. Because the pyridinolines are
known to be excreted predominantly in peptide-bound form,
several laboratories have developed assays for pyridinoline-
containing peptide fragments. One monoclonal antibody
based-ELISA was developed that recognizes a discrete pool
of cross-linked N-telopeptides of collagen type I isolated
from urine (118). This region was chosen because the Pyr/
Dpy ratio in this peptide pool indicated an origin in bone.
(Two-thirds of Dpy in bone collagen is at the N-telopeptide
and only one-third at the C-telopeptide site.) The monoclonal
antibody recognizes a peptide conformation in the a2(I)N-
telopeptide. This implies further bone specificity since the
pyridinoline cross-link in bone primarily involves the a2(I)
chain whereas in other tissues the a1(I) chain predominates.
The antibody does not recognize the uncross-linked linear
telopeptide precursor, free pyridinolines, or the pyridinoline
residue itself (118). The analyte, NTx, contains the cross-
linked a2(I)N-telopeptide sequence, QYDGKGVG, which is
a product of osteoclastic proteolysis and in which K is em-
bodied in a trivalent cross-linkage (91). Collagen must be
broken down to small cross-linked peptides that contain this
exact sequence before the antibody can bind to the NTx
antigen. The antibody also recognizes such peptides in cul-
ture medium conditioned by osteoclasts that are resorbing
human bone particles in vitro (91, 92). This suggests that the
NTx peptide is a direct product of osteoclastic proteolysis,
does not require further metabolism in the liver or kidney for
generation, and is rapidly cleared by the kidney.

The NTx-ELISA requires no hydrolysis or pretreatment of
the urine and is available in a commercial, microtiter-plate
format (Osteomark, Ostex International Inc., Seattle, WA).
The assay measures the NTx peptide analyte in spot urines,
calibrated in molar equivalents of bone type I collagen. Re-
sults are expressed normalized to creatinine. The calibration
curve is based on standards prepared from bacterial colla-
genase-digested human bone collagen. Studies using this
commercially available NTx-ELISA report inter- and intraas-
say CVs of less than 10% and a sensitivity of 20 nm.

Another ELISA for measuring type I collagen telopeptides
in urine has recently been introduced in commercial form
(CrossLaps, Osteometer, Rodrove, Denmark) and evaluated
in healthy pre- and postmenopausal women and several
disease states (119, 120). This assay is based on a polyclonal
antiserum raised against a synthetic eight-amino acid pep-
tide (EKAHDGGR) having an amino acid sequence that
matches a segment of the C-telopeptide of the collagen «1(I)
chain and is referred to as CTx. The assay developers chose
this particular sequence of amino acids as the antigen be-
cause it contains the lysine of the C-telopeptide domain that
participates in intermolecular cross-linking and because they
anticipated that it would be protected from degradation
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when embodied in pyridinoline-containing structures ex-
creted into urine (120). This C-telopeptide structure is com-
mon to all tissues in which type I collagen is cross-linked by
pyridinoline. Such domains, when part of compact, cross-
linked peptides, were proposed to resist degradation in the
kidney (118). Users of the commercial assay, CrossLaps, re-
port intra- and interassay CVs of less than 10% and 13%,
respectively, with sensitivity of 0.5 ug/ml (119).

An immunoassay that is applied to serum rather than
urine has also been developed for the C-telopeptide cross-
linking domain of human type I collagen (ICTP) (121). Re-
sults from the clinical application of this assay are disap-
pointing and suggest that it lacks needed specificity as a
marker of bone resorption. The assay uses a polyclonal an-
tiserum raised against a purified cross-linked fragment pre-
pared by digesting human bone collagen with bacterial col-
lagenase and trypsin. The RIA for use in serum is available
from Orion Diagnostica (Espoo, Finland and Incstar, Still-
water, MN). Studies using this commercial immunoassay
report nonspecific binding of approximately 10%, intra- and
interassay CVs of 5-8% and 6-9%, respectively (122, 123),
and a detection limit of 0.34 pg/liter (121). A listing of all the
commercially available assays of bone resorption are given
in Table 3.

3. Clinical correlates. It is difficult to compare results from the
clinical application of these various methods because differ-
ent analytes and different units are used and they may each
reflect the consequences of distinct biological processes. To
avoid confusion, therefore, the clinical results will be dis-
cussed separately for each of the above analytical ap-
proaches.

a. HPLC assay. Urinary excretion of total pyridinolines (free
plus peptide-bound Pyr and Dpy) measured by HPLC varies
with age, i.e. higher levels in children than adults. Mean
values (*+sp) for children normalized to creatinine were
372 * 74 and 106 = 21 nmol/mmol for Pyr and Dpy, re-
spectively, and 27.2 * 19 and 8.8 + 0.8 nmol/mmo], respec-
tively, for adults 21-70 yr of age (98). From group data, the
Pyr:Dpy ratio in urine does not appear to vary with age or
gender in adults, although significant variations among in-
dividuals are evident. This was also noted when individual
samples of human bone were analyzed for these cross-links
(88). After skeletal growth ceases, excretion is relatively con-
stant, but in women increases again after menopause (105,
106, 124, 125) and is reported to gradually increase further
until the ninth decade (126). Estrogen replacement restores
urinary levels of Pyr and Dpy to premenopausal values (105).

Studies using the HPLC method report individual day to
day variations in urinary excretion of 16-26% (94, 104). A
circadian rhythm in urinary excretion of both Pyr and Dpy
normalized to creatinine was reported, with peak excretion
in the early morning (0300-0800 h) and a nadir in the af-
ternoon to late evening (1400-2300 h) (127, 128). Nocturnal
increases in urinary Dpy of 10% for men (104) and 48% for
postmenopausal women (129) have also been reported. This
latter study found that postmenopausal women with osteo-
porosis excreted high levels of Dpy during both day and
night and with no pronounced nocturnal increases (129).
With spot urines or limited collections, therefore, the time of
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TaBLE 3. Commercially available assays for resorptive markers of bone turnover

Assay name Manufacturer Analyte Assay method Sample requirements® Sensitivity

Hypronosticon Organon Teknika, Inc., Free and peptide-bound  Colorimetric 0.5 ml urine (24 h urine
Scarborough, Ontario, Canada;  hydroxyproline collection); dietary restrictions,
Boxtel, Holland collagen free

Pyrilinks Metra Biosystems, Inc., Free Pyr and free Dpy EIA 100 pl urine (first morning 7.5 nM
Mountain View, CA void, 24 h or second morning

void); no diet restrictions

Pyrilinks D Metra Biosystems, Inc., Free Dpy EIA 100 pl urine (first morning 1.1 nm

Mountain View, CA void, 24 h or second morning
void); no diet restrictions

Total Dpy Nichols Institute Diagnostics, Total Dpy RIA 0.5 ml urine (store in amber 0.06 nmol/
San Juan Capistrano, CA container) liter

Free Dpy Nichols Institute Diagnostics, Free Dpy RIA 0.5 ml urine or 0.1 ml serum or  0.06 nmol/
San Juan Capistrano, CA EDTA plasma liter

Osteomark Ostex International, Inc., Cross-linked N- ELISA 25 wl urine (second morning 20 nM
Seattle, WA telopeptide of type I void or 24 h urine collection) BCE/iter?

collagen

ICTP Incstar Corporation Stillwater,  Cross-linked C- RIA 100 ul serum 0.5 ug/
MN; and Orion Diagnostica, telopeptide of type I liter
Espoo, Finland collagen

Crosslap Osteometer Rpdovre, Denmark; Cross-linked C- ELISA 25 ul urine (fasting second 0.2 mg/
and Diagnostic System telopeptide of type I morning void) liter

Laboratories, Webster, TX collagen

¢ Sample requirements are per tube or well; assays usually require samples to be run in duplicate or triplicate.

% Bone collagen equivalents.

sampling requires careful attention to minimize the potential
confounding effects of circadian rhythms. The contribution
of creatinine rhythmicity to the observed circadian variations
in urinary markers may also be a dominant factor as a recent
study indicates (130).

Pyr and Dpy levels in urine correlate with histological
measures of bone turnover from bone biopsies (131) and with
radioisotopically determined bone resorption (132). In-
creases were seen in diseases known to accelerate bone turn-
over, including primary hyperparathyroidism (103), Paget’s
disease (99), rheumatoid arthritis (133), osteoporosis (57, 131,
134, 135), and hyperthyroidism (136, 137). The ability of
urinary Pyr and Dpy to monitor antiresorptive therapies has
also been explored. Bisphosphonate therapy for increased
bone resorption in metastatic bone disease suppressed uri-
nary Pyr and Dpy markedly (107, 108). Compared with total
serum alkaline phosphatase and urinary calcium, urinary
Pyr was best able to discriminate between cancer patients
with and without bone metastases (138). Urinary Dpy was
suppressed in subjects who received salmon calcitonin in-
traperitoneally (139) but not in those who received it by
suppository (140). Total urinary Dpy measured in postmeno-
pausal osteoporotic women by HPLC was suppressed by
bisphosphonate treatment to the premenopausal range, and
the percent change from baseline correlated with the increase
in spinal bone mineral density for the group on therapy (141).

b. Immunoassays for free Pyr and free Dpy. The free Pyr ELISA
has shown increases in normal infants that correlated with
growth velocity (142). Urinary excretion of free Pyr measured
by ELISA increased with adult age in both men and women
but was higher in women (112, 113). Women showed higher
mean values after menopause compared with a group of
younger premenopausal women (43 vs. 59 nmol/mmol cre-

atinine) (113). Correlation coefficients of ELISA results for
free Pyr with total Pyr by HPLC vary significantly from high
(r = 0.82 t0 0.97) to moderate (r = 0.67 to 0.79) depending on
the subject group. When correlations include very high turn-
over states (Paget’s disease, hyperparathyroidism), the cor-
relation is higher than with a more homogeneous group of
subjects with relatively low turnover (112-114). It was also
reported to be a useful monitor of bone resorption in assess-
ing the activity of Paget’s disease (143).

Recent clinical studies in which free Pyr was compared
with other markers raise questions on the specificity of this
analyte to bone and the resorption process. In a study by
Garnero et al. (141), a comparison of premenopausal women
(mean age 40 yr, n = 46) and postmenopausal women of
determined low bone mass (mean age 63 yr, n = 85) found
that both total Pyr and total Dpy by HPLC and free Pyr by
ELISA were elevated in the postmenopausal group. In as-
sessing the response to bisphosphonate therapy in the same
study, however, free Pyr showed no significant suppression
despite highly significant decreases of 30% in total Pyr and
50% in total Dpy by HPLC. In another short-term study of
bisphosphonate suppression of bone resorption in young
adult males, free Pyr also proved to be relatively unrespon-
sive compared with other markers (144). Results of the same
study, using thyroid hormone (T5) to stimulate metabolism,
implied that other tissues or metabolic influences might be
contributing to urinary free Pyr. While free Pyr appears to be
insensitive to antiresorptive agents such as bisphosphonates
in osteoporosis, in Paget’s patients treated with bisphospho-
nate, free Pyr was suppressed but less markedly than total
pyridinolines or the cross-linked telopeptides (145). Free Pyr
was sensitive to changes in estrogen status in postmeno-
pausal women (119, 141, 146).
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The relative insensitivity of free Pyr could be explained if
nonosteoclastic pathways are responsible for generating the
free amino acid from peptide products of collagen degrada-
tion in the body. A greater contribution from nonosseous
tissues, which also turn over faster in such disease states as
hyperthyroidism and malignancy, has also been proposed
(91, 147). Despite these limitations, the convenience and ease
of the free Pyr ELISA assay may make it useful for certain
clinical applications, e.g. in monitoring disease activity in
Paget's disease or as a convenient marker for growth in
normal infants and children. It merits further study and
cautious consideration, however, when applied to osteopo-
rosis studies.

There is only one report of a serum assay for free Pyr. With
this assay, significantly higher serum levels were reported in
dialysis patients with high turnover bone disease, which
correlated with both dynamic and static parameters of bone
histomorphometry (148).

Only a few studies on the more recent ELISA for free Dpy
in urine have been published. A 5-fold higher excretion rate
in children than adults and higher levels in primary hyper-
parathyroidism, hyperthyroidism, and Paget’s disease com-
pared with premenopausal women are reported (116, 119).
As with free Pyr, free Dpy levels failed to respond to short-
term bisphosphonate therapy but were lowered by long-term
estrogen treatment (119). Full clinical evaluation of this assay
awaits the publication of results from several ongoing hu-
man studies.

¢. Immunoassays for cross-linked N- and C-telopeptides of col-
lagen type I in urine. These analytes are referred to as NTx and
CTx. A growing number of basic and clinical studies have
reported NTx results (118, 128, 130, 141, 144-146, 149-154)
and CTx results (120, 147, 155) in various clinical conditions.
Two studies have compared the results of both these te-
lopeptide assays and other bone markers (119, 145).

In summary, the cross-linked telopeptides in urine show
a greater increase at menopause than pyridinolines (total or
free) or other resorption markers and a greater degree of
suppression when used to monitor the effects of the antire-
sorptive agents, bisphosphonates and estrogen (119). The
simplest molecular explanation is that the cross-linked te-
lopeptides in urine are more specific products of bone, in
particular the proteolytic process of bone resorption brought
about by osteoclasts (91), than are either total or free pyr-
idinolines or hydroxyproline. Alternatively, it has been ar-
gued that bisphosphonates, but not estrogen, may alter the
degradation pattern of bone collagen by osteoclasts so that
the ratio of free pyridinolines to peptide pyridinolines is
altered (119). Effects of bisphosphonates on kidney clearance
have also been suggested (145). The full explanation may
include elements of all these concepts, which are not mutu-
ally exclusive, but in time, no doubt, new data will resolve
the issue.

Cross-linked N-telopeptide (NTx) levels in urine are high-
est in infancy and childhood (118), show a peak at the pri-
mary growth spurt in boys and girls (130), and fall to a
plateau in adulthood with a rise after menopause in women
(141, 156). Early postmenopausal women (6 months to 3 yr
post menopause) show a mean NTx/creatinine ratio 2- to
3-fold that of age-matched or younger premenopausal
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women (141). In bisphosphonate-treated patients, mean lev-
els were suppressed up to 70% with a dose dependence (141,
150). Young adult males showed an even higher percent
suppression of NTx from baseline when given short-term
pamidronate intravenously (144). The suppression of bone
resorption in Paget’s disease patients treated with bisphos-
phonates has also been monitored effectively (118, 153).
Other pathological conditions in which urinary NTx is ele-
vated include acromegaly (149), hyperthyroidism (119), and
metastatic malignancies (157).

Fewer independent studies have been reported on CTx
(CrossLaps assay from Osteometer), but, similar to NTx,
large postmenopausal increases and large decreases are ob-
served after bisphosphonate and estrogen therapy (119, 120,
145). Compared to controls, CTx appeared to differ from NTx
when both analytes were measured on the same samples.
Relative to NTx, CTx was less elevated in Paget’s disease
patients and more elevated in hyperthyroid patients, sug-
gesting greater bone specificity of NTx (119).

d. Immunoassay for C-terminal telopeptides of type I collagen in
serum. Serum levels of ICTP measured by immunoassay cor-
related well with histomorphometric indices of bone resorp-
tion and formation from iliac crest biopsies from patients
with disorders of high and low bone turnover (123). The
normal range of serum ICTP is reported to be 1.5 to 4.2
pg/liter, and disorders such as osteolytic metastases can
show 20-fold increases. Serum ICTP shows a circadian
rhythm, with 20% higher levels at night (0200-0550 h) than
in the afternoon (123, 158), similar to the rhythms of osteo-
calcin, pyridinoline cross-links, NTx peptides, and hy-
droxyproline, which all exhibit nocturnal increases.

Serum ICTP levels increased about 20% after menopause
but decreased only a modest 10% after 1 yr of hormone
replacement therapy (159). Consistent with this, ICTP levels
correlated with an index of calcium kinetics (retention of 99
m-technetium diphosphate), but not with histomorphomet-
ric measures of turnover in bone biopsies from postmeno-
pausal women with mild osteoporosis (160).

This marker was also elevated in primary hyperparathy-
roidism and after PTH infusion (161). However, in monitor-
ing bisphosphonate treatment in late postmenopausal osteo-
porosis, ICTP did not change after treatment. Neither
baseline serum levels nor changes in ICTP correlated with
bone mineral density changes (141). These findings support
a conclusion that while serum ICTP measurement may detect
changes in collagen metabolism due to disease or meno-
pause, it is not a sensitive or specific marker of bone resorp-
tion that responds to hormone replacement therapy or can
monitor the effects of other antiresorptive agents.

D. Tartrate-resistant acid phosphatase (TRAP)

During active bone resorption, osteoclasts secrete acid and
enzymes into the space between the ruffled border of the
osteoclast and the surface of the bone. The enzyme, TRAP,
has been identified in both the ruffled border of the osteoclast
membrane and the secretions in the resorptive space (162).
Measuring TRAP activity in serum should, therefore, serve
as an accurate index of osteoclast activity and bone resorp-
tion (163-167). While TRAP is promising, far less attention

220z 1snBny |z uo 1senb Aq G6G8FSZ/EEE/ /L L/9IOIME/AIPS/WOD"dNO"olWSpED.//:SRY WO} PEPEOjUMOQ



August, 1996

has been paid to TRAP because of the difficulty in measuring
the isoenzyme unique to osteoclast activity.

1. Biochemistry. The group of acid phosphatases to which
TRAP belongs is widely distributed with the greatest con-
centrations in prostate, liver, kidney, erythrocytes, platelets,
and osteoclasts (163). These enzymes are nonspecific hydro-
lases that hydrolyze phosphomonoesters at low pH (166).
Elevated serum acid phosphatase activity is clinically sig-
nificant in the diagnosis of prostatic disease, since acid phos-
phatase activity is 1000-fold greater in the prostate than in
other tissues. Serum acid phosphatase activity from the pros-
tate is inhibited by tartrate. Early methods, therefore, used
tartrate inhibition as a basis for more specific assays of the
prostatic enzyme and diagnosis of cancer and other disorders
of the prostate.

Six isoenzymes (types 0-5) of acid phosphatase have been
identified by electrophoresis of human tissues (167). The
isoenzyme expressed by osteoclasts is identical to the serum
type 5b isoenzyme (168), but other tissues also express this
component (169). All the band 5 acid phosphatases are re-
sistant to tartrate inhibition (169-172), but other classes of
acid phosphatases also have this property, e.g. erythrocyte.
Serum band 5 TRAP activity is normally expressed by os-
teoclasts, alveolar and monocyte-derived macrophages, and
the placenta (173). The spleen also shows activity in Gau-
cher’s disease and in hairy cell leukemia (169).

Unlike bone alkaline phosphatase, little is known about
tissue-related posttranslational modifications of TRAP. In
general, TRAPs are cationic glycoproteins of 30—40 kDa that
contain two atoms of iron and are thought to be the product
of a single gene (165-168). Recently Allen et al. (166) reported
the purification and characterization of TRAP from human
bone and produced immunopurified monospecific rabbit an-
tibody to human bone TRAP. These advances show promise
for the development of a bone-specific immunoassay for
TRAP activity in human serum.

2. Methods. Difficulty in distinguishing the osteoclastic en-
zyme in serum from other tissue acid phosphatases presents
the greatest technical barrier. TRAP activity in serum has
been measured kinetically (168-172) and, more recently, by
immunoassay (173-178), but these methods vary in speci-
ficity for the osteoclast-derived isoenzyme and need to be
validated. Kinetic assays are available commercially [Bio-
Merieux, Charbonnié-les-Bains, France (83) and Sigma, St.
Louis, MO (135)]; however, these assays measure TRAP ac-
tivity and are not specific for the bone isoenzyme. In order
to make meaningful comparisons between methodologies
and/or laboratories in the use of TRAP to monitor metabolic
bone disease, more studies are needed.

The most widely used kinetic assay (168) spectrophoto-
metrically monitors the hydrolysis of p-nitrophenyl phos-
phate in the presence of sodium tartrate. In this assay the
interference by serum factors that act as noncompetitive in-
hibitors of TRAP is avoided by diluting the serum and in-
creasing the substrate concentration. Interference by eryth-
rocytic TRAP activity released by hemolysis is reduced by
incubating the serum at 37 C for 1 h before assay. The pro-
cedure of Lam et al. (174) immunoprecipitates the band 5 acid
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phosphatases and then measures their enzyme activity ki-
netically. Kinetic assays are least specific for the osteoclast
enzyme and most susceptible to changes in serum stability.
The enzymatic activity of TRAP requires the presence of iron,
which can be supplied by transferrin. TRAP activity is also
sensitive to oxidizing and reducing agents. Lower serum
levels of TRAP were observed when a-naphthyl-phosphate
was used as a substrate (172).

Immunoassays for TRAP measure the protein concentra-
tion rather than its enzyme activity and resistance to tar-
trate. However, most applied immunoassays (173, 175)
were not developed using osteoclast TRAP. The earliest
assays used antisera raised against uteroferrin, which re-
sembles osteoclastic TRAP (169, 176). They showed
marked improvement over the kinetic assays and less in-
terference from the non-band 5 class of acid phosphatases.
More recently, Kraenzlin et al. (175) developed an ELISA
with antibodies raised to TRAP isolated from spleen cells
of patients with hairy cell leukemia, whereas Cheung et al.
(173) used TRAP from human cord plasma. Both ELISAs
showed promise as assays for bone-specific acid phos-
phatase as they cross-reacted with extract of bone, but not
with extracts of normal spleen, erythrocytes, platelets, os-
teoblasts, or prostrate. Serum levels were also appropri-
ately high in children, postmenopausal women, and in
conditions of increased bone turnover (169, 173). How-
ever, the enzymes from cord blood and hairy cells of the
spleen need characterizing in comparison with osteoclastic
TRAP. A purified source of osteoclast-derived TRAP is
needed as a reference standard to calibrate these immu-
noassays and compare their results.

3. Clinical correlates. Several studies show the potential of
measuring TRAP in serum to assess bone resorption activity.
Using kinetic methods (168) TRAP can distinguish normal
subjects from patients with skeletal diseases including
Paget’s, primary hyperparathyroidism, metastatic cancer,
hypoparathyroidism, advanced renal failure, involutional
osteoporosis, and osteomalacia (168, 179, 180). TRAP activity
was inversely correlated with bone mineral density of the
radius and lumbar spine (180), metacarpal cortical thickness,
and bone mass of the lumbar spine (64) in postmenopausal
women. TRAP and bone mineral content were inversely
related in postmenopausal women with osteoporosis (181).
TRAP activity is also elevated in growing children (182).
TRAP activity paralleled changes in three other bone mark-
ers in urine during and after 7 days of immobilization (66,
183).

Neither kinetic assays nor immunoassays have been fully
validated against traditional indices of bone resorption such
as histomorphometry or radio-calcium kinetics. The immu-
noassay against human bone TRAP (166) did correlate with
histological parameters of osteoclast activity in bone biopsies
from renal dialysis patients (177, 178). The newer immuno-
assays distinguished between normal individuals and those
with high bone turnover conditions, including Paget’s dis-
ease and hyperparathyroidism, hyperthyroidism, and renal
failure (173, 175, 184, 185). These ELISAs showed serum
TRAP differences between children and adults, and between
postmenopausal and perimenopausal women. TRAP activ-
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ity decreased in menopausal women receiving estrogen re-
placement therapy (173). Immunoassays of TRAP protein
rather than activity also need to be validated using histo-
morphometry and calcium kinetics in larger study groups,
and their ability to monitor antiresorptive agents needs to be
established.

II1. Biochemical Markers of Bone Formation
A. Serum alkaline phosphatase (ALP)

Serum ALP is one of the most frequently performed assays
in clinical medicine. Its elevation in various skeletal disorders
has been recognized for 60 yr. Changes in total ALP activity
are useful as a therapeutic marker in Paget’s disease, rickets
and osteomalacia, renal osteodystrophy, and for monitoring
the healing of new fractures but are less useful in osteopo-
rosis and other disorders of bone. Most requests for frac-
tionation of ALP result from the need to distinguish between
liver and bone as alternative or coexisting sources when there
is an unexplained elevated total ALP. On the other hand, an
ALP within the normal range may obscure an abnormal
isoenzyme pattern. Clearly the usefulness of ALP as a marker
of bone activity depends on the ability to quantitatively dis-
tinguish the activity of the bone isoform from that of other
tissues. Several recent reviews detail the biochemistry and
clinical relevance of ALP from all sources (186-191).

1. Biochemistry. Total ALP in serum includes several isoforms.
Elevated values result from increased activity of intestinal,
spleen, kidney, placental, liver, bone, or expression by tu-
mors. Germ cell ALP has low activity in its tissues of origin
(testis, thymus, and lung) but increases with development of
germ cell tumors (192). The ALP molecule from these dif-
ferent tissues varies in size, charge, and kinetic and physical
characteristics but displays the same broad catalytic prop-
erties, i.e. the liberation of phosphate. Four gene loci code for
ALP: the tissue-nonspecific (tns) gene, which is expressed in
numerous tissues (including bone, liver, kidney, and early
placenta), is located on the short arm of chromosome 1 (193);
the other three tissue-specific genes encode the ALP of the
intestine, mature placenta, and germ cell enzymes. They are
closely linked and located on the long arm of chromosome
2 (194). The close proximity of these alleles suggests a recent
gene duplication and divergence from a common ancestral
gene (188).

The tns gene has longer introns and is 5 times longer than
the other ALP genes. The proteins are similar in length (507-
513 amino acids) and contain a 17- to 21-amino acid signal
peptide. The sequence homology among the three tissue-
specific gene products (intestine, mature placenta, and germ
cell) ranges from 86-98%, whereas the homology between
the tissue nonspecific ALP and the others is approximately
50% (188, 195). The catalytic sites are considerably conserved.
Two zinc and one magnesium ion are bound in close prox-
imity to each other in the active site region in all the isoforms
(186). Tissue nonspecific ALPs are the products of a single
structural gene. However, tissue-specific differences are
found in their electrophoretic mobility, stability to heat, and
sensitivity to a variety of chemical inhibitors. These differ-
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ences are due to variations in their carbohydrate side chains
and degree of sialation.

ALP is a member of a large group of proteins that are
anchored to glycosyl-phosphatidylinositol moieties on the
extracellular surface of cell membranes (196). As such, itisan
“ecto-enzyme,” expressed and functioning on the outside of
the cell. The enzyme is a tetramer when membrane-bound
but circulates as a dimer (197). Phospholipase C or D (which
is abundant in plasma) potentially converts the membrane-
bound form to a soluble form (198, 199)(Fig. 4). Other high
molecular weight fractions comprised of liver ALP attached
to membrane fragments (fast-liver ALP) also circulate. These
are elevated in patients with hepatobiliary disease, being
produced by the detergent action of bile acids (190, 191).
Increases in serum ALP activity reflect increased translation
of mRNA, but it is not known whether changes in phospho-
lipase activity or the physical state of the phospholipid bi-
layer influence levels of ALP activity in particular disease
states (199, 200).

ALP is found in most species from bacteria to man, but its
physiological role is unknown. It most tissues, ALP is ex-
pressed in low levels, and it has been suggested that it serves
a “house-keeping” function in these tissues (195). However,
the protein is overexpressed in bone where it is thought to
have a specific function involved with mineralization (201).
Cells that express the tns gene at both low and high levels
have similar transcription rates, initiate mRNAs from the
same promoter, are equivalently spliced and transported
from the nucleus, and have equal cytoplasmic stability. It
appears that the expression of ALP is controlled at a very
early posttranscription step by sequences within the gene’s
introns, possibly by destabilization of the nuclear RNA (202).

An essential role for the ALP enzyme in bone mineraliza-
tion is evidenced by the disease hypophosphatasia, a rare
inherited autosomal recessive disorder of osteogenesis char-
acterized by defective mineralization of bones and teeth. The
biochemical hallmark of the disease is deficient tns-ALP ac-
tivity. No metabolic consequences in liver or kidney have
been identified, and activities of the tissue-specific isoen-
zymes are normal. Clinical severity is variable, ranging from
intrauterine death to fractures occurring in adulthood (201).
In five cases of severe hypophosphatasia, mutations were
identified as single point missense mutations in the con-
served regions of the peptide (203, 204).

00 (¢ HE
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F1G. 4. Schematic representation of the anchoring of ALP in the
plasma membrane. ALP is anchored to the cell membrane lipid bi-
layers [1, 2,diacyl-glycerol (DAG)] by a phosphatidylinositol-glycan
(GPI) moiety through an ethanolamine that is amide linked to the
carboxy terminus of the enzyme. The action of phospholipase C or D
(which is abundant in plasma) potentially converts the membrane-
bound form to a soluble form.
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Several possible roles for ALP in bone formation have been
proposed. It may increase local concentrations of inorganic
phosphate, destroy local inhibitors of mineral crystal growth,
transport phosphate, or act as a calcium-binding protein or
Ca?*-ATPase. In any of these cases, the high lateral mobility
of the enzyme attached to its glycosyl-phosphatidylinositol
anchor may be important to its function (196). In vitro, ac-
tively proliferating osteoblasts produce an extracellular ma-
trix of fibronectin and type I collagen but only low levels of
ALP. At confluence, ALP activity increases and mineraliza-
tion soon follows (205). Phospholipase C inhibits mineral-
ization of these cultures (206, 207). In human osteoblast-like
cells ALP activity is proportional to inorganic phosphate
concentration, and the release of the enzyme from its phos-
pholipid anchor is inversely proportional to calcium con-
centrations (208, 209). Together, these data suggest that the
enzyme may participate in the initiation of mineralization;
however, no definitive function has been established.

2. Methodology. The tissue nonspecific enzymes have identical
protein primary structures but differ in composition of their
- carbohydrate side chains. Since the two most common
sources of elevated ALP levels are liver and bone, a number
of techniques have been developed that rely on these dif-
ferences to distinguish between bone and liver isoforms.
These include heat denaturation, chemical inhibition of se-
lective activity, gel electrophoresis, precipitation by wheat
germ lectin, and immunoassays.

The heat denaturation method is based on the gradation
in heat stability at 56 C of the ALP enzymes found in serum,
which ranges from placental (completely heat stable) to liver
ALP, which has intermediate stability (half life = 7.6 + 1.5
min), and bone ALP, which is very labile (half life = 1.9 =
0.4 min). In this method, serum is heated to 56 C for 10 min
and immediately cooled, and activity is measured in heated
and unheated serum. When activity in heated serum is 20%
or less of that in unheated serum, ALP is attributed to the
bone enzyme, while heat-stable activity of 25-55% is attrib-
uted to the liver enzyme. This method demands precise
temperature control throughout the assay. The inclusion of
internal standards of skeletal and liver ALP activity allows
for calibration of rate of inactivation (210), but precise quan-
tification is difficult when high concentrations of both liver
and bone enzymes are present or when ALP originates from
placenta or intestine.

Another common method for distinguishing among ALP
isoenzymes is by PAGE. Liver ALP carries the highest net
negative charge, followed by the placental, bone, and intes-
tinal forms. Liver and bone ALP can be separated sufficiently
to allow visual assessment of their relative proportions, but
these methods are tedious and there is often overlap between
the two, making precise quantification difficult (189). Several
methods have used selective inhibition to improve the sep-
aration (211, 212).

Wheat germ lectin binds to N-acetylglucosamine and sialic
acid residues and provides a method by which to separate
liver and bone ALP. Based on their differing glycosylation
patterns, wheat germ lectin selectively binds the bone form
(213, 214). Proper standards and lectin concentrations are
necessary for accuracy. The lectin must precipitate more than
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95% of authentic bone ALP and less than 5% of the liver
isoform (214-216). Several studies have used serum samples
as standards, which contain primarily one form of the en-
zyme. Serum from patients with liver disease can be used as
liver standards, but serum from Paget’s patients, which has
been used as a bone standard, is not always suitable because
of variable liver contribution. In studies in which serum from
Paget’s patients was used to determine the quantity of lectin
needed for maximum precipitation of the bone isoform, skel-
etal and hepatic ALP were poorly resolved, and heat inac-
tivation performed better than wheat germ lectin precipita-
tion (217). Cord blood is a better bone standard because it
contains only the bone isoform, the liver enzyme being ab-
sent from cord blood. When cord blood was used as an assay
calibrator, values obtained by lectin precipitation and heat
inactivation agreed (218). Controlling lot-to-lot variation in
the lectin, reconstituting the lectin immediately before use,
and treating the samples with detergent (which converts any
potential biliary ALP to liver ALP, see below) has also im-
proved accuracy and reproducibility (216, 219). A commer-
cial kit using precalibrated lectin is available (Iso-ALP,
Boehringer-Mannheim, Mannheim, Germany). Several in-
vestigators have also included wheat germ lectin in electro-
phoresis equilibration buffers to improve resolution (220,
221).

Several recent attempts to produce tissue-specific mono-
clonal antibodies have resulted in antibodies with preferen-
tial, but not exclusive, recognition of the liver form (222, 223).
Antibodies with a 2- to 5-fold preference for liver ALP over
the bone isoform have been used in indirect methods to
estimate bone ALP, but the results have been disappointing.
Two commercial kits that utilize monoclonal antibodies with
preference for the bone isoform are currently available (224~
225). Alkphase-B (METRA Biosystems, Mountain View, CA)
uses a single monoclonal antibody made to purified ALP
from a human osteosarcoma cell line. The antibody, bound
to a microtiter plate, captures ALP from the sample, and
activity of the bound enzyme is measured directly. Cross-
reactivity to the liver form is about 10%, and there is a high
correlation (r = 0.99) between this kit and values obtained
with wheat germ lectin precipitation. In patients with Paget’s
disease and osteomalacia, mean bone ALP values were 8 and
2 times the upper limit of normal, respectively. In patients
with osteoporosis and primary hyperparathyroidism, how-
ever, 23/32 and 17/20 patients, respectively, fell within the
normal range (225).

A two-site immunoradiometricassay (IRMA) (Tandem-R-
Ostase, Hybritech, San Diego, CA) relies on the use of two
monoclonal antibodies, both of which react preferentially
with the bone isoform. Cross-reactivity with the liver ALP is
16% (226). Good correlation between this immunoassay and
agarose gel electrophoresis have been demonstrated (r >
0.9)(226-228). Variable correlations are found between this
kit and wheat germ lectin precipitation. In one study wheat
germ lectin was calibrated with cord blood, and a good
correlation was found (r = 0.87)(229), while a second study
used the commercial wheat germ lectin kit and a poorer
correlation resulted (r = 0.67)(230). We have found a good
correlation (r = 0.83, n = 120) between the Tandem-R-Ostase
kit and wheat germ lectin methods when our lectin was
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standardized against cord blood. (C. Gundberg, unpublished
observations). In patients with significant elevations in total
ALP (> 2-fold the upper limit of normal) cross-reactivity
between bone and liver may lead to falsely elevated increases
in skeletal ALP. In one study, 14 of 15 samples with elec-
trophoretic patterns indicating hepatic disease and two of
three with intestinal patterns gave elevated Ostase results
(227). It remains to be determined, with the various antibody-
based commercial kits, whether protein concentration or en-
zymatic activity provides the more accurate assessment of
bone status. A listing of all the commercial kits available for
bone formation markers is given in Table 4.

There are important caveats to be considered when using
any of these methods for ALP determination. 1) ALP of
intestinal origin is elevated after a fatty meal in normal peo-
ple of blood types B or O (~80% of the population)(231). For
methods that do not quantitatively separate the intestinal
from the bone and liver isoforms (heat inactivation and
chemical inhibition), accuracy is improved with fasting
blood samples. 2) Preparation of ALP from tissue sources
often yields membrane-bound enzyme (232), and there may
be glycosylation heterogeneity within tissues (233). There-
fore, ALPs prepared from organ sources for use as standards
or controls may be different from their corresponding forms
in serum. Furthermore, altered glycosylation forms are
present in disease states and particularly in malignancy, and
the tumor-producing forms can coprecipitate with the bone
form with wheat germ lectin (190). Extracts of human bone
from neonates and patients with Paget’s disease or osteo-
sarcoma have demonstrated a range of glycosylation pat-
terns (209, 232, 234). Finally, intrahepatic and bone ALP bind
similarly to wheat germ lectin (235), but membrane-localized
glycosyltransferases modify the hepatic ALP before it
reaches the circulation. In children less than 6 months old, the
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glycosyltransferases may be immature, and variable
amounts of this “pseudo-bone” form reach the circulation
(220). This may also occur in hepatitis (214). For all of these
reasons, when high bone ALP values are found with any
method, a second test (e.g. 5'-nucleotidase) should be em-
ployed to rule out liver involvement. To confirm bone in-
volvement, additional determinations of bone formation
should be employed (e.g. osteocalcin or PICP).

3. Clinical correlates. The major factors that modify ALP ac-
tivity are age, sex, and hormonal status (puberty or meno-
pause). From birth to 6 weeks, both bone and intestinal ALP
increase. No liver ALP is observed until 6 months of age
(220). In children a wide range of ALP activity exists and
correlates with height and weight, and until puberty the bone
isoenzyme represents 77-87% of the total (232). Activity in-
creases in children around the age of puberty, the maximum
being earlier in girls than in boys, and corresponds tempo-
rally with growth spurts in both sexes (220). A gradual in-
crease in total ALP activity is observed during the first 6
months of pregnancy, followed by a rapid increase in the last
trimester. This increase is primarily due to placental enzyme,
but bone ALP has been reported to increase during preg-
nancy as well (236).

In healthy adults, the ratio of bone to liver activity is
approximately 1:1. Total ALP activity is greater in men than
in women between the ages of 20 and 50. The difference was
thought to be due to the bone fraction, as assessed by wheat
germ lectin, heat inactivation, and electrophoresis (214, 232,
237, 238); however, assessment with the Tandem-R-Ostase
kit found the bone isoform to be equivalent in men and
women (226). In both sexes over the age of 50, total ALP
increases (237, 238). Bone ALP activity is generally found to
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Fic. 5. Serum ALP activity in normal males and females as a function of age. The solid line is the mean value while the stippled area represents
the 5% and 95% reference limits for the bone isoform. The slashed lines are the 5% and 95% reference limits for the liver isoform. Before puberty
the bone isoenzyme represents 77-87% of the total. Activity increases in children around the age of puberty, the maximum being earlier in
girls than in boys, and corresponds temporally with growth spurts in both sexes. In healthy adults, the ratio of bone and liver activity is about

1:1.
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be higher in postmenopausal women than in premenopausal
women (60, 226, 237)(Fig. 5).

There is a great deal of interindividual variation in ALP
levels, but for any one individual, values change little with
time. ALP is cleared from the blood very slowly; the half-life
varies from 40 h for bone to 7 days for placental isoforms
(187). Biological daily variation of total ALP is estimated to
be less than 4%. However, recent studies suggest that a slight
diurnal variation in ALP activity exists that may derive from
a circadian rhythm in the bone isoform (239).

Several books and comprehensive reviews have summa-
rized changes in total and fractionated ALP in subjects with
metabolic bone disease. These have focused on traditional
methods for the identification of increased bone activity (187,
190, 240). In general, early studies demonstrated increased
total ALP activity in patients with disorders characterized by
high bone turnover. When bone formation rates are assessed
by histomorphometry or isotopic calcium kinetics, weak cor-
relations are found with total ALP (240). Total ALP has been
useful when monitoring Paget’s disease because the majority
of activity is derived from bone (241). An elevated ALP is
often the hallmark of defective mineralization observed in
children with various forms of rickets or in adults with os-
teomalacia (242). However, in adults, because gastrointesti-
nal and liver disorders are often the causes of osteomalacia,
liver as well as bone ALP is also often elevated. In asymp-
tomatic primary hyperparathyroidism, bone ALP may be
elevated (243). In renal failure, increased ALP may be found
with progressive bone disease (244, 245).

Several recent studies have quantified bone-specific ALP
using the newer methods. Increased activity is found in pa-
tients with high bone turnover disorders when wheat germ
lectin precipitation is used (215, 216, 246, 247). This method
effectively predicts bone mineralization rates as determined
by “’Ca kinetics (60). Older methods (electrophoresis, heat
inactivation, or chemical inhibition) show small increases
(20%) in bone ALP activity in patients with osteoporosis
(248). The interpretation of small increases is difficult when
evaluating patients for osteoporosis because this enzyme
may be elevated in disorders of mineralization such as renal
osteodystrophy or osteomalacia. Using the newer methods,
substantial increases have been observed in bone ALP with
age and menopause in normal women. Eastell et al. (57, 60),
using the wheat-germ lectin, reported a 73% increase in bone
ALP in older women compared with women in their third
and fourth decade of life. Another study using Tandem-R-
Ostase found bone ALP to be increased by 77% in women

within 10 yr of menopause (226). Modern assay methods.

should provide a substantial body of evidence in the near
future regarding the utility of bone ALP in osteoporosis and
other metabolic bone diseases.

B. Serum osteocalcin

Osteocalcin is one of the most extensively studied biolog-
ical markers of bone formation. It is a small protein synthe-
sized by mature osteoblasts, odontoblasts, and hypertrophic
chondrocytes. While osteocalcin is primarily deposited in the
extracellular matrix of bone, a small amount enters the blood.
A large body of evidence indicates that serum osteocalcin is

BIOLOGICAL MARKERS OF BONE TURNOVER 347

a sensitive and specific marker of osteoblastic activity, and its
serum level reflects the rate of bone formation. There has
been an enormous increase in the use of osteocalcin as a
marker of metabolic bone disease, and serum osteocalcin
levels are an accepted index of a variety of physiological
states and metabolic bone disorders.

1. Biochemistry. Osteocalcin is one of the most abundant non-
collagenous proteins found in bone. It is a small protein of
49 amino acids and in most species contains three residues
(at 17,21, and 24) of y-carboxyglutamic acid (Gla), a calcium-
binding amino acid (249). This vitamin K-dependent post-
translational modification of newly synthesized proteins re-
sults in y-carboxylation of specific glutamate residues (Fig.
6). The reaction is comparable to the activation of vitamin
K-dependent blood coagulation factors and is inhibited by
warfarin. Several nonhuman species have one hydroxypro-
line residue in the primary sequence, and in humans, osteo-
calcin is only partially carboxylated at residue 17 (250). Two
major structural features of osteocalcin are 1) the “Gla helix,”
a compact Ca”*-dependent a-helical conformation in which
the Gla residues project the Ca-binding sites into the same
plane, thereby facilitating adsorption to hydroxyapatite; and
2) the COOH-terminal B-sheet, a locus for potential interac-
tion with cellular receptors and extracellular proteins (251).

The human osteoblast produces an 11-kDa molecule con-
sisting of a 23-residue hydrophobic signal peptide, a 26-
residue propeptide, and the 49-residue mature protein (252).
The pro-region contains a y-carboxylation recognition site
homologous to corresponding regions in the vitamin K-de-
pendent clotting factors (253). After the hydrophobic region
is cleaved by a signal peptidase, pro-osteocalcin is y-carbox-
ylated. Subsequently, the propeptide is removed and the
mature protein is secreted (254) (Fig. 7).

The human osteocalcin gene is a single-copy gene located
at the distal long arm of chromosome 1 (255). Multiple copies
of the gene, however, exist in rat and mouse (256, 257).
Various promoter elements contribute to basal expression
and osteoblast specificity. The gene is further modulated by
vitamin D and glucocorticoid response elements (258-261).

2. Function. The function of osteocalcin has not been defined,
but its chemical structure indicates interaction with hydroxy-
apatite. Early studies in embryonic bone demonstrated that
osteocalcin first appeared coincident with the onset of min-
eralization. Furthermore, increases in the protein occurred in
concert with hydroxyapatite deposition during skeletal
growth (262-264). It is less abundant in woven bone than in

Ca2+
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warfarin

FIiG. 6. Biosynthesis of y-carboxyglutamic acid (Gla). Vitamin K and
CO, are required for the carboxylation of specific glutamic acid res-
idues (17, 21, and 24) in osteocalcin (17 is only partially carboxylated
in humans). This reaction is inhibited by warfarin. The adjacent
carboxyl groups of Gla are binding sites for Ca%*.
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F1G. 7. Biosynthesis of osteocalcin. Pre-pro-osteocalcin consists of a
23-residue hydrophobic peptide, a 26-residue propeptide, and the
49-residue mature protein. After cleavage by the signal peptidase, the
resulting proosteocalcin is targeted for carboxylation by its 26-residue
propeptide. Gla (symbolized by “Y”) is normally formed at residues 17,
21, and 24. After carboxylation, the propeptide is removed and the
mature protein is secreted. In the presence of warfarin, partial or no
carboxylation results in defective osteocalcin.

lamellar bone (265). In vitro studies demonstrate that osteo-
calcin is a marker of late osteoblast differentiation. Osteo-
calcin synthesis increases with mineralization and with pro-
gressive osteoblastic differentiation (205, 266, 267). Chick
osteoblasts produce minimal levels of ALP and osteocalcin
until they reach confluence and accumulate a dense collag-
enous extracellular matrix (268, 269). Coincident with the
onset of mineralization of this matrix, ALP activity increases
followed by induction of osteocalcin synthesis. ALP activity
decreases rapidly after mineralization, but osteocalcin re-
mains high throughout the life of the culture (270, 271). These
studies suggest that osteocalcin may either limit mineraliza-
tion or participate in regulation of bone turnover.

Other in vivo and in vitro studies have suggested that
osteocalcin is involved in recruitment and activation of bone-
resorbing cells or chemotaxis (272). Subcutaneously im-
planted osteocalcin-deficient bone particles show a decrease
in progenitor cell recruitment, a decrease in multinucleated
osteoclast-like cells surrounding bone particles, and a de-
crease in TRAP activity compared with normal bone (273,
274). Although others were unable to reproduce these find-
ings, there were large inflammatory responses that may have
obscured the more specific osteoclastic response (275).

Recently, a transgenic mouse has been developed in which
the osteocalcin gene has been “knocked-out.” The phenotype
of these mice is characterized by a progressive increase in
bone mass leading to bone of better biomechanical quality.
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Histological and histomorphometric studies performed be-
fore and after ovariectomy showed that this phenotype is due
to an increase in osteoblast function without an increase in
osteoblast number. Bone mineralization and bone resorption
were not affected by this mutation (276).

3. Origin of osteocalcin in the circulation. Early studies sug-
gested that circulating osteocalcin originated from bone cells
and not from breakdown of bone matrix (277). Furthermore,
several studies have established that serum osteocalcin is
highly correlated with bone formation but not resorption, as
determined by histomorphometry or calcium kinetics (43,
278-281). However, these studies did not determine whether
serum osteocalcin specifically reflects matrix synthesis or
mineralization, a precise distinction that is difficult histo-
logically (282).

The in vitro studies cited above suggest that osteocalcin
synthesis is associated with matrix mineralization rather
than matrix synthesis. In vivo studies, however, are conflict-
ing. Growth and mineralization of deer antler occur in two
stages, providing a useful model to distinguish between ma-
trix synthesis and mineralization. During antler growth (soft
antlers), serum ALP and urinary hydroxyproline levels in-
crease, but osteocalcin is low. During hardening of the antlers
(mineralization), serum osteocalcin and 1,25-(OH),D in-
crease while ALP and urinary hydroxyproline levels decline
(283). These data provide evidence that osteocalcin is syn-
thesized and secreted during deposition and maintenance of
mineral rather than in relation to matrix synthesis per se. In
contrast, a study of osteomalacic subjects reported osteocal-
cin to be correlated with osteoid volume (i.e. unmineralized
matrix) but not mineralization rate as determined by tetra-
cycline labeling (284). Yet others have demonstrated a very
high correlation between osteocalcin and mineralization rate
determined by calcium kinetics in osteomalacic subjects (r =
0.92)(285). It is difficult to draw any conclusions from studies
of patients with osteomalacia, because such an abnormal
state is likely to confound regulation of osteocalcin biosyn-
thesis, secretion, or clearance. Indeed, in one study in which
rats were made osteomalacic by calcium, phosphate, or vi-
tamin D deprivation, the osteocalcin response varied with
the nature of dietary restriction, yet all animals had clearly
undermineralized bones (286).

Because matrix synthesis and mineralization are linked in
most clinical situations, it is appropriate to interpret osteo-
calcin data in terms of changes in bone formation. In fact, in
most clinical situations (osteoporosis being the most notable
exception), bone formation and resorption are tightly cou-
pled. Therefore, serum osteocalcin should be regarded as a
measure of bone formation in particular and bone turnover
in general.

4. Methodology. The first osteocalcin assays were competitive
RIAs using bovine osteocalcin, purified to homogeneity, as
the antigen. Antibody to bovine osteocalcin cross-reacts with
human osteocalcin, and purification of bovine osteocalcin is
more convenient and gives higher yields of protein (287-
291). For these reasons, most first generation assays used
bovine-directed antibody. Yet considerable inconsistency is
evident when comparing values from various laboratories
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using a variety of osteocalcin RIAs. Wide variations are re-
ported in control and patient populations. Although some
discrepancies can be attributed to heterogeneous sample
populations, analytical differences also account for some of
this variability. Chemical reagents and methodology may
contribute to differences among assays, but antibodies and
standards are the most likely source of variability. One re-
port, in which an osteocalcin standard and 10 unknown
serum samples were provided to eight different laboratories
each with their own in-house osteocalcin assays, clear differences
in absolute values of the shared samples were found. Dif-
ferences persisted even when the provided standard was
used to calibrate the individual assays, suggesting that the
major variability resided in the various antibodies. Never-
theless, the various assays gave reasonably consistent values
in a number of metabolic bone diseases when the results were
expressed as a percent of the laboratory’s normal value (292).
In a second study, on the other hand, eight commercially
available kits were used to determine osteocalcin levels in nine
healthy controls and 38 individuals with conditions known
to affect bone turnover. The results were discordant even
when they were normalized to healthy control values (Z
scores). Furthermore, recovery of added osteocalcin varied
widely (293).

In another study, four different antibodies were used to
measure osteocalcin in serum and bone. There were no dif-
ferences in the amount of osteocalcin detected in the bone,
but the amount in the serum varied (294). These data suggest
that various forms of osteocalcin circulate and that individ-
ual antibodies recognize them differently. There is a great
deal of interest in identifying the nature and source of this
circulating heterogeneity. We have identified fragments of
osteocalcin from serum of patients with end-stage renal dis-
ease and have suggested that limited proteolysis of osteo-
calcin occurs in extrarenal sites (295). Other laboratories have
verified this circulating heterogeneity of osteocalcin in other
disease states (Paget’s disease) and in normal individuals
(294, 296-299). It is clear that different antibodies detect
different subforms or fragments of osteocalcin. In some as-
says, epitope specificity and the degree of reactivity with
multiple circulating forms of the protein are unknown. In a
recent report, all tested commercial kits that employed a
single antibody RIA could recognize, to varying degrees,
cathepsin-derived fragments of osteocalcin (300). This vari-
ability among assays complicates the clinical interpretation
of osteocalcin results in patients with metabolic bone disease.

In an attempt to clarify this issue, several laboratories have
developed two-site immunoassays that recognize only the
intact molecule (301-307). Under controlled circumstances,
these correlated well with conventional “in-house” RIAs.
However, the first and last amino acids must be recognized
by the antibodies, or large fragments will be detected. This
is illustrated by the fact that one laboratory developed two
separate assays for intact osteocalcin both in two-site for-
mats. The same capture antibody was used in both assays but
two different monoclonal antibodies, both directed to the
same 12-amino acid sequence, were employed for read-out.
These assays gave correlated but different absolute values
with the same serum samples (and using the same standards)
(307). Even assays claiming to be similar are not interchange-
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able, and the precise molecular structure being detected
should be clearly defined when osteocalcin assays are em-
ployed.

Hemolysis and lipemia will confound assay results. Pro-
teases released by red cells degrade the protein, resulting in
reduced values (308). Osteocalcin may bind to lipid, render-
ing it nonimmunoreactive. Freeze-thawing considerably re-
duces values, and a decrease in concentration is often found
by the second or third freeze-thaw cycle (300, 308). Presum-
ably, osteocalcin is degraded by serum proteases during
sample handling, because purified osteocalcin is stable to
repeated freeze-thaw cycles. (C. Gundberg, unpublished ob-
servations). With some assays, differences are also observed
with serum or plasma (308, 309).

A new generation of assays is based upon the observation
that the major circulating forms of the protein appear to be
the intact and the large N-terminal fragment spanning res-
idues 1-43 (297, 310). Whether this major fragment is derived
from osteoblastic synthesis, catabolism of the intact protein
in bone, or by proteolysis in blood or other tissues is not
firmly established (294, 295, 297, 299, 311). Furthermore, it is
not known whether variable circulating fragments of osteo-
calcin occur in disease states. Nevertheless, several studies
have shown that these assays are robust and are specific for
bone formation. There are numerous commercial kits that
measure osteocalcin. These are listed in Table 4 along with
their specifications.

5. Clinical correlates. Serum osteocalcin is greater in infants
and children than in adults, with peak values occurring at
puberty. The changes in serum osteocalcin are more strongly
correlated with growth velocity than chronological age and
parallel related changes in ALP, urinary hydroxyproline, and
the N-telopeptide of collagen (130, 312-315). In adults, os-
teocalcin levels are relatively stable but start to rise in men
after the age of 60 (316 -324)(Fig. 8). Several studies in women
show a rise with menopause which is correlated with an
increase in bone turnover rate as assessed by histomorphom-
etry and calcium kinetics (278-280). Racial differences have
also been identified. Bell et al. (325) reported lower serum
osteocalcin in African-American adults compared with Cau-
casians; and Villa et al. (326) found that levels in Mexican-
American subjects were higher. We found higher osteocalcin
levels in Mexican-Americans than in non-Hispanic whites,
but no differences between (non-Hispanic) whites and blacks
in a large sample of 3016 men and women who participated
in the third National Health and Nutrition Examination Sur-
vey (327).

Osteocalcin is a relatively small protein that is rapidly
filtered by the kidney and degraded (277, 328). Serum levels
are reported affected by changes in renal function. When
renal glomerular function is impaired, circulating osteocalcin
increases (329). This occurs when glomerular filtration rate is
below 20-30 ml/min per 1.73 m? body surface area, or serum
creatinine is greater than 160 umol/liter (330). In children,
increases occur at glomerular filtration rate below 40 ml/min
per 1.73 m? (331). With advanced renal failure, serum os-
teocalcin is invariably elevated, ranging from 2-200 times
higher than normal, and correlated with serum creatinine
(332-336).
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TABLE 4. Commercially available assays for formative markers of bone turnover
Assay name Manufacturer Analyte Assay method reqsﬁ'r:rg}; £ Sensitivity
Iso-ALP Boehringer Bone-specific ALP ~ Wheat-germ-lectin Serum; volume Dependent
Mannheim, precipitation followed dependent upon upon
Mannheim, by colorimetric method colorimetric method colorimetric
Germany method
Tandem-R Ostase Hybritech Inc., Bone Specific ALP  IRMA, double antibody 100 ul serum 2 uglliter
San Diego, CA
Alkphase-B Metra Biosystems, Bone Specific ALP  ELISA, single 20 pl serum 0.7 Ulliter
Inc., Mountain monoclonal antibody
View, CA
Bovine osteocalcin Biomedical Bovine osteocalcin®?  RIA, polyclonal antibody 50 ul serum or 1.0 ug/liter
Technologies Inc., heparinized plasma
Stoughton, MA
Human osteocalcin Biomedical Human osteocalcin  RIA, polyclonal antibody 50 ul serum or 1.0 ugliter
Technologies Inc., heparinized plasma
Stoughton, MA
Intact osteocalcin Biomedical Intact human ELISA, double antibody 20 pl serum 0.5 ug/liter
Technologies Inc., osteocalcin
Stoughton, MA
Mid-Tact Osteocalcin  Biomedical Intact and N- ELISA, double antibody 20 ul serum 1.0 pgliter
Technologies Inc., terminal
Stoughton, MA osteocalcin
fragment
Ostk-PR CIS-bio Bovine osteocalcin® RIA, polyclonal antibody 100 ul serum or 1 pglliter
International, Gif- heparinized plasma
sur-Yvette, France
ELSA-OST-NAT CIS-bio Intact human IRMA, double antibody 50 pl serum 0.3 pg/liter
International, Gif- osteocalcin
sur-Yvette, France
ELSA-OSTEO CIS-bio Intact human IRMA, double antibody 50 ul serum 0.4 pgliter
International Gif- osteocalcin and
sur-Yvette, France; N-terminal mid
and CIS-US, Inc., molecule fragment
Bedford, MA
Osteocalcin Diagnostic Systems  Human osteocalcin  RIA, polyclonal antibody 50 ul serum 0.4 ug/liter
Laboratories,
Webster, TX
OSCAtest osteocalcin  Henning, Berlin, Human osteocalcin  RIA, polyclonal antibody 50 ul serum 0.5 pg/liter
Germany
Osteocalcin Inestar Corp., Bovine osteocalcin® RIA, polyclonal antibody 50 ul serum or 0.4 ugfliter
Stillwater, MN heparinized plasma
NovoCalcin Metra Biosystems, Bovine osteocalcin? ELISA, single 25 pl serum 0.45 pg/
Inc., Mountain monoclonal antibody liter
View, CA
Human osteocalcin Nichols Institute Intact human IRMA, double antibody 25 ul serum 0.1 pgliter
osteocalcin
Procollagen PICP Incstar Corp., PICP RIA 100 pl serum 0.2 ugliter
Stillwater, MN; and
Orion Diagnostica,
Espoo, Finland
Prolagen-C Metra Biosystems, PICP ELISA, double antibody 100 ul serum 1.0 ugliter

Inc., Palo Alto, CA

¢ Sample Requirements are per tube or well; assays require samples to be run in duplicate or triplicate.
b Cross reacts with human osteocalcin.

Osteocalcin levels also follow a circadian rhythm char-
acterized by a decline during the morning to a noontime
low followed by a gradual rise that peaks after midnight.
Observed differences between the peak and nadir range
from 10-30% (337-340). Serum osteocalcin levels have
been reported to vary during the menstrual cycle, with the

highest levels observed during the luteal phase. During
pregnancy, osteocalcin levels decrease throughout the first
and second trimester but return to normal just before
delivery (341-344).

Changes in serum osteocalcin in individuals with various
bone disorders are summarized in several comprehensive
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Fic. 8. Serum osteocalcin concentrations in normal males and females as a function of age. The solid line is the mean value while the stippled
area represents the 5% and 95% reference limits. Serum osteocalcin is higher in children than in adults. Peak values occur during the pubertal
growth spurt. In adults, osteocalcin levels are relatively stable but start to rise in men after the age of 60. Elevations are also noted in women

after the menopause.

reviews (261, 345, 346). In general, serum levels of osteocalcin
are elevated in patients with diseases characterized by high
bone turnover rate and reflect the expected changes in bone
formation after surgical or therapeutic intervention. An ex-
ception is found in Paget’'s disease in which serum ALP
(either total or bone specific) is a better predictor of severity
of disease than osteocalcin (347). This discrepancy may re-
flect the greater abundance of osteocalcin in woven bone
compared with lamellar bone (265). Osteocalcin levels are not
affected by illnesses that do not involve bone (348). In certain
circumstances, however, other determinants can influence
circulating osteocalcin concentrations. Drug-induced alter-
ations in normal hydroxyapatite-protein interactions may
affect the apparent circulating concentrations of osteocalcin.
Coumarin anticoagulants, which interfere with normal vi-
tamin K-dependent carboxylation, will reduce binding of
osteocalcin to bone hydroxyapatite, resulting in a greater
proportion of newly synthesized, but undercarboxylated,
osteocalcin in the circulation (349, 350).

In postmenopausal osteoporotic women, serum levels of
osteocalcin have been reported to be normal, low, or high (51,
278, 279, 351-356). This varied response has been attributed
to the variability in bone formation rate observed in this
condition. The usefulness of serum osteocalcin as an indi-
cator of bone turnover rate in women with osteoporosis has
been validated by a significant correlation between serum
levels and histomorphometric indices of bone formation. The
increased fracture risk after menopause is reflected by the
coincident rise in mean serum osteocalcin in normal women,
which is itself inversely correlated with changes in bone
mineral density at the lumbar spine, midradius, and distal
radius (352, 355, 356). In a study of 110 normal postmeno-
pausal women Yasumura et al. found that total body calcium
and phosphorous, determined by total body neutron acti-

vation, was lower in those women with elevated osteocalcin
levels than in those with normal levels, indicating the rela-
tively reduced bone mineral content of a high turnover state
(357). In groups of subjects, serial measurement of osteocal-
cin has proven useful in monitoring the response to treat-
ment of osteoporosis (70, 358-360). Estrogen therapy de-
creases serum osteocalcin levels (361), and stimulation of
bone formation with slow-release sodium fluoride is accom-
panied by an increase in serum osteocalcin (362).

It has been assumed that vitamin K deficiency is rare
because of both the widespread distribution of phylloqui-
none (vitamin K,) in green vegetables and also the bacterial
synthesis of menaquinone (vitamin K;). However, vitamin K
sufficiency has traditionally been assessed only by functional
one-stage prothrombin times, which do not consider non-
liver vitamin K requirements. Studies indicate that bone,
however, is more susceptible to vitamin K deficiency than is
liver (363). Assessment of undercarboxylated osteocalcin is
potentially useful for determining subtle changes in vitamin
K status. This measurement has been developed with the
recognition that affinity of osteocalcin for hydroxyapatite
depends on the number of Gla residues in the protein (277).
In a recent paper, Sokoll et al. (350) showed that a low dose
of warfarin resulted in a 2.7-fold increase in undercarboxy-
lated osteocalcin with no effect on prothrombin times. Os-
teocalcin was normally carboxylated within 2 days of vita-
min K treatment. Total osteocalcin (carboxylated plus
undercarboxylated) was unaffected by either treatment, in-
dicating that synthesis of the protein did not change.

Interestingly, in one study undercarboxylated osteocalcin
was higher in postmenopausal women than in premeno-
pausal women. When vitamin K supplements were given to
the postmenopausal women, normal carboxylation levels
were restored (364). This finding has raised the possibility

220z 1snBny |z uo 1senb Aq G6G8FSZ/EEE/ /L L/9IOIME/AIPS/WOD"dNO"olWSpED.//:SRY WO} PEPEOjUMOQ



352 CALVO, EYRE, AND GUNDBERG

that vitamin K deficiency, induced by either low dietary
intake or by coumarin anticoagulants, may have an adverse
effect on bone. In subsequent studies, plasma vitamin K
levels in elderly osteoporotic patients with fractures of the
femoral neck were reduced compared with aged matched
controls (365). Furthermore, in elderly institutionalized
women, increased undercarboxylated osteocalcin was pre-
dictive of subsequent hip fracture (366). Certainly, a variety
of nutritional factors, including vitamin K, may contribute to
poor skeletal health. Whether poor vitamin K status in these
subjects merely reflects general poor nutrition is unknown.
However, when a subclinical vitamin K deficiency was in-
duced by a vitamin K-deficient diet in normal adults,
younger subjects were more susceptible to an acute defi-
ciency than were elderly individuals (367), and plasma phyl-
loquinone levels were lowest in women in their twenties
(368). If, in fact, vitamin K deficiency occurs in the elderly,
then depletion of body stores requires a much longer period
of deprivation than in the younger population.

Several authors have suggested that vitamin K deficiency
or coumadin therapy reduces the content of osteocalcin in
bone and that this has an adverse effect on bone. However,
there is no consistent effect of long-term coumadin on bone
density (369-371). The fact that the osteocalcin “knock-out”
mice do not have either reduced bone density or increased
fracture rates obviates a direct role for osteocalcin in any
potential negative effects of vitamin K deficiency on bone.
However, other vitamin K-dependent proteins in bone and
other tissues involved in calcium homeostasis may be in-
volved in the observed bone pathology (249). Nevertheless,
the estimation of the degree of osteocalcin carboxylation may
prove to be a useful measure of vitamin K status.

C. Serum type I procollagen peptide

For many years, there has been an interest in developing
reliable markers for bone collagen synthesis. The procollagen
extension peptides, which guide assembly of the triple helix,
are cleaved from the newly formed molecule in a stoichio-
metric relationship with collagen biosynthesis. This should
reflect bone formation in a manner analogous to the assess-
ment of C peptide for endogenous insulin production.

1. Biochemistry. As outlined above, during collagen synthesis,
intramolecular disulfide bonds form between the three car-
boxyl propeptides and guide helical formation. Specific en-
dopeptidases cleave the procollagen molecule at precise sites
in each chain, first at the amino terminus and then at the
carboxyl terminus. Type I collagen propeptides are produced
not only by bone but by other tissues that synthesize type I
collagen: skin, gingiva, heart valve, dentin, cornea, fibrocar-
tilage, and tendon.

Procollagen type I carboxy-terminal propeptide (PICP),
with a molecular mass of 117 kDa, is a trimeric globular
glycoprotein with asparagine-linked carbohydrate units
(372). PICP, stabilized by disulfide bonds, circulates as a
single molecule. It has a serum half-life of 6-8 min, being
cleared in the liver endothelial cells by the mannose receptor
(373).

The procollagen type I amino-terminal propeptide (PINP),
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a 70-kDa globular protein, contains an internal region of 17
contiguous GLY-X-Y triplets containing proline and hy-
droxyproline in the same proportion as the collagen molecule
(374). PINP can be cleared from the circulation by the scav-
enger receptor of liver endothelial cells. Some of the large
nondialyzable hydroxyproline peptides found in urine are
derived from cleaved free PINP (375, 376). In addition, PINP
can be deposited directly into bone similar to the deposition
of amino-terminal peptide of collagen type III in the skin
matrix. Fisher et al. (377) have isolated a 24-kDa phospho-
protein from bone that was shown to have the identical
amino acid sequence as the amino terminus of the «1(I) chain
of type I procollagen. This material constitutes 5% of the
noncollagenous protein in bone. The compact helical nature
of the phosphorylated peptide allows it to interact with ma-
ture collagen fibrils and be sequestered into bone. Some PINP
may be deposited directly into bone after extracellular cleav-
age from the triple-helical collagen molecule or it may enter
the circulation and later become entrapped in the matrix.

2. Methods. Four assays have been described for measure- -
ment of PICP (378-381). Three are based on polyclonal an-

tiserum made against purified collagen isolated from human
skin or lung fibroblast cultures. The collagen is treated with
bacterial collagenase to liberate the propeptide from the ma-
ture molecule. Immunogen, standards, and tracer were all
derived from the same material. Most of the available clinical
data have been obtained with one of these assays used by the
developers (378) and by others using commercial forms of
the assay (PICP, Orion Diagnostics/US-INCstar, Stillwater,
MN; and Metra BioSystems, Mountain View, CA). All data
demonstrate that PICP is stable during storage at —20 C for
several months and after repeated freezing and thawing (378,
381).

The use of bacterial collagenase to cleave the propeptide
from collagen results in an amino terminus that differs from
that produced in vivo by specific human endopeptidases. A
fourth assay uses purified free procollagen peptide from hu-
man fetal fibroblasts as standards and tracer (381). Anti-
serum was made against partially purified PICP from human
amniotic fluid. The correlation (r) between these two ap-
proaches was 0.98, but the normal values differed by 25%.
This may be due to immunological variability or differences
in calibration.

Assays have also been developed to measure PINP in
blood. Ebeling et al. (382) used a synthetic amino-terminal
sequence spanning residues 7-24 of the «1- chain of PINP to
immunize rabbits and for standards and tracer. Competitive
binding curves for purified PINP and human serum samples
indicated immunological identity between samples and stan-
dard. However, when PINP and PICP concentrations were
determined in the same set of patient samples, there was no
correlation between the two, and PINP concentrations were
100 times higher than those of PICP.

A second assay for PINP used the 23-34 sequence for assay
development and reagents (383). In contrast to the above,
PICP and PINP levels in adults were of the same order of
magnitude but did not correlate. Conversely, in children
PINP concentrations were 2-3 times greater than PICP, but
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the two correlated well, suggesting differences in metabolic
clearance of the two peptides in adults and children.

Recently, an immunoassay for the intact, trimeric form of
circulating PINP has been described (384). Studies with this
assay may clarify some of the discrepancies observed with
the peptide-based assays.

3. Clinical correlates. There is considerable sequence and struc-
tural homology between PICP and PIIICP, the latter being
derived from type Iil collagen in soft tissues. Simon et al. (379)
found evidence of as much as 20% cross-reactivity between
PICP and PIIICP using one of the earliest PICP RIAs. How-
ever, because the serum concentration of PIIICP is 1 order of
magnitude lower than that of PICP, the effects on measured
PICP concentration should be small.

None of the assays eliminate the potential contribution to

circulating PICP from soft tissue synthesis of type I collagen.
The rate of turnover of collagen in bone is faster than in other
‘tissues, and, therefore, changes in PICP are assumed to re-
flect changes primarily in bone collagen synthesis. Studies in
pigs have shown that the contribution to the serum pool of
PICP by lymph draining skin and other tissues is smalil (385).
However, a histomorphometric study by Parfitt et al. (386)
suggested that some of the PICP in blood must be derived
from biosynthesis in soft tissues. Furthermore, Christiansen
and co-workers (387-389) found both PICP and PIIICP to be
increased in patients given nandrolone decanoate, but no
changes in histomorphometric measurements of bone for-
mation, in osteocalcin, or ALP were observed. Therefore, the
degree of specificity of PICP for bone formation is yet to be
resolved.

PICP follows a circadian rhythm similar to the other bone
markers, with peak values occurring in the early morning
hours (~0300 h) and nadirs in the afternoon (122, 390). In one
study in which blood was collected every 15 min for 4, 6, or
8 h, there were marked pulsatile fluctuations in PICP that
varied up to 4-fold, suggesting a larger intraindividual vari-
ation than is usually observed for formative markers (391).

Serum concentrations of PICP are elevated in disorders
characterized by high bone turnover such as hyperparathy-
roidism, hyperthyroidism, osteomalacia, Paget’s disease,
and cancer patients with osteoblastic metastases (123, 285,
392-395). PICP levels related to histomorphometric and cal-
cium kinetic measures of bone formation in patients with
both high and low turnover bone disease (123, 396). In
Paget’s disease, values decline after treatment with calcitonin
or bisphosphonates (380). In osteogenesis imperfecta type A,
a disease characterized by defective collagen synthesis, se-
rum PICP concentrations were reduced and were positively
correlated with bone mineral density (397).

As with the other bone markers, PICP concentrations are
generally related to linear growth in children (390, 398, 399).
PICP values decline with age in men but increase in women
(378, 382). Two studies found a slight but insignificant in-
crease in PICP after the menopause (391, 400), but another
study found no change (381). In patients with osteoporosis
there was a modest correlation (r = 0.4) with histomorpho-
metric indices of bone formation, but it did not correlate with
spinal bone mineral density as do other measures of bone
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turnover (401). It could, however, predict differences in lum-
bar spine density in dizygotic twins (402).

The degradation of PICP is primarily via hepatic pathways
and, as a consequence, PICP levels are elevated in patients
with liver disease (373, 386, 403). On the other hand, because
of its large molecular weight, PICP is not filtered by the
kidneys, and serum levels of PICP are not dependent upon
renal function. As a consequence, PICP could be a useful
index of bone turnover in renal disease. Several studies have
shown that serum PICP levels are significantly correlated
with histomorphometric indices of bone formation in pa-
tients with chronic renal failure (404 —406). This distinguishes
it from osteocalcin, which is cleared by the kidney and whose
concentration in renal disease is dependent both on renal
clearance and bone turnover. Furthermore, one study found
that PICP levels were not different in renal patients with and
without liver disease (404), making its measurement supe-
rior, in this instance, to ALP as well. However, PICP con-
centrations are inappropriately elevated in patients on he-
modialysis with significant aluminum overload (407). The
potential use of this assay will depend on developing a
method of correcting for differences in metabolic clearance
by the liver and on ascertaining the contribution from tissue
sources other than bone.

IV. Comparative Studies

From the above review of serum and urine indices of bone
turnover, it is clear that most studies have focused on indi-
vidual markers in normal and diseased states, and several
reviews have discussed the clinical relevance of the bone
markers (408-416). A few studies have used several markers
to verify changes in bone turnover in clinical studies. With
the advent of several new markers in the past 5 years, the
persistent question has been: which marker gives the most
reliable information in the evaluation of metabolic bone dis-
ease? A few studies have addressed this question by com-
paring several different biochemical markers in particular
disease states with direct measures of bone status or activity
such as calcium kinetics, histomorphometry, or bone density.
Here we will review these various studies.

A. Resorptive OR formative studies

1. Resorptive. The resorptive markers hydroxyproline, GHYL,
Pyr, and Dpy (all measured by HPLC) have been compared.
The results showed that all had comparable discriminating
power for patients with high bone resorption (Paget’s disease
and hyperparathyroidism) but only GHYL and the pyridino-
line cross-links performed well for postmenopausal women
with mildly elevated bone resorption (86). Fledelius et al.
(417) found free Pyr by ELISA to be less sensitive than Dpy
or total pyridinolines by HPLC in a study of postmenopausal
women on hormone replacement therapy.

Blumsohn et al. (145) compared a full range of resorption
markers in 14 patients with Paget's disease being treated
with etidronate. In urine, the assays were total and free
pyridinolines measured by HPLC and ELISA, and NTx and
CTx measured by ELISA and hydroxyproline. In serum,
TRAP and ICTP were measured; however, the TRAP assay
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employed was not for the bone-specific isoenzyme. The
greatest suppression from baseline urine levels on therapy
was seen with the telopeptide assays, NTx and CTx (75%
suppression at 6 months). Next were total pyridinolines by
HPLC (45-60% decrease), hydroxyproline (40%), and then
free pyridinolines by ELISA (10-40%). ICTP and TRAP
showed minimal response (145).

2. Formative. In studies in which only the formative markers
were compared, PICP was generally inferior to osteocalcin
and bone-specific ALP. Ebeling et al. (382) measured PICP by
a commercial kit and osteocalcin and ALP with “in-house”
assays in 169 normal subjects and 197 patients with various
metabolic bone diseases. In the patient samples, differences
from normal were less pronounced for PICP than with either
osteocalcin or bone-specific ALP. The same observation was
made by Minisola et al. (392) in patients with primary hy-
perparathyroidism, before and after surgery. Likewise, when
compared with calcium kinetic data, osteocalcin was found
to be a reliable marker of mineralization rate in all diseases
studied, whereas total ALP and PICP showed disease-spe-
cific discrepancies (396).

B. Simultaneous resorptive and formative studies

Multiple markers of both formation and resorption have
been used both to validate the markers and to understand
changes in bone physiology that occur during growth, lac-
tation, and menopause as well as in disease. The main in-
terest, however, is in the ability of bone markers to predict
bone loss in osteoporosis and to monitor response to ther-
apies.

1. Normal growth and development. Blumsohn et al. (83) mea-
sured total and bone-specific ALP by wheat germ lectin
precipitation; osteocalcin by a homologous RIA; PICP, ICTP,
immunoreactive total pyridinolines, Dpy, and GHYL by
HPLC; and TRAP by (non-bone-specific) kinetic assay in 91
healthy girls during puberty. All markers increased maxi-
mally during midpuberty (Tanner stages II and III) and de-
creased toward adult levels in late puberty. The parallel
increase in both formative and resorptive markers no doubt
reflects growth, modeling, and remodeling of bone tissue
that accompanies skeletal growth. Relatively greater in-
creases, however, were found for bone-specific ALP, osteo-
calcin, and urinary Dpy than for all other markers, suggest-
ing greater sensitivity of these markers to changes in bone
turnover during pubertal growth.

Likewise, Sowers et al. (154) assessed bone loss and re-
covery in 115 lactating and nonlactating postpartum women.
Osteocalcin (by heterologous RIA), bone-specific ALP (by
chemical inhibition), and N-telopeptide (by ELISA) were all
significantly increased in lactating women compared with
nonlactating women (no other markers were measured). All
three markers increased during breast feeding and declined
when lactation stopped and were equally correlated with
changes in bone mineral density at the lumbar spine and
femoral neck (r = —0.49 to —0.53). The return to menses and
ovarian stimulation, however, resulted in a more rapid de-
cline in the N-telopeptide than either of the two formation
markers. This could explain the recovery of bone mass after
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lactation ceases. This study clearly illustrates the potential of
bone markers to reveal mechanisms of bone loss and gain in
different physiological states.

2. Metabolic bone disease. In hyperthyroidism, “total” osteo-
calcin (by an IRMA specific for both intact and large N-
terminal fragments) and urinary free Pyr by ELISA were
significantly elevated in most patients, correlated with T,
and decreased after therapy. Bone-specific ALP (by IRMA)
was elevated in only 11 of 27 patients, did not correlate with
T3, and increased transiently after therapy (147). Treatment
of hyperthyroidism often results in transient increases in
liver function tests, and the increase in bone-specific ALP in
this study may result from the cross-reactivity with the liver
isoenzyme observed with this particular assay.

Similarly, when exogenous GH was given as a stimulation
test to 15 subjects with postmenopausal osteoporosis and 15
aged-matched controls, markers of bone resorption (ICTP

and hydroxyproline) and formation (osteocalcin and PICP) |

increased, but bone-specific ALP (wheat germ lectin) de-
creased. The same pattern was found in both subjects and
controls (418). A transient decrease in total ALP was also
observed when GH was given to normal male volunteers
aged 21-31 (419). In contrast, when the hormone was given
to GH-deficient children and adults, all bone markers, in-
cluding bone-specific ALP, increased (420, 421). These find-
ings might be explained if GH stimulates ALP activity in
osteoblasts but suppresses activity in primary hepatocytes.

3. Osteoporosis. It is generally accepted that the accelerated
rate of bone loss that occurs after the menopause is due to
increased turnover. Studies using bone-specific markers,
however, have suggested that increased bone turnover is also
responsible for the slow phase of bone loss in elderly women
(60). In a recent study of 653 elderly women, Garnero et al.
(422) measured intact osteocalcin, bone-specific ALP by
IRMA, PICP by RIA, and NTxand CTx by ELISA. They found
that menopause induced a 37-52% and 79-97% increase in
bone formation and resorption marker levels, respectively
(except for PICP which did not change). Furthermore, the
markers remained elevated in those women with the lowest
bone density up to 40 yr after the menopause.

In a clinical study designed to compare biochemical mark-
ers in late postmenopausal osteopenic women and their re-
sponse to therapy, Garnero et al. (141) measured osteocalcin
(IRMA specific for both intact and N-terminal), bone-specific
ALP (IRMA), PICP, total Pyr and Dpy (HPLC), N-telopeptide
(ELISA), free Pyr (ELISA), and serum ICTP (RIA) (141). All
markers except PICP and ICTP were significantly increased
above the premenopausal mean in these subjects; N-telopep-
tide was the most elevated (171% increase). In women treated
with alendronate, all resorptive markers declined but only
N-telopeptide and Dpy by HPLC were reduced to the pre-
menopausal values. Formation markers fell to normal or
subnormal (PICP) premenopausal values several months af-
ter the fall in the resorptive markers. The percent decrease at
3 months correlated highly with the percent increase in spi-
nal bone mineral density at 24 months for all three formation
markers but only for total Dpy by HPLC and N-telopeptide
by ELISA of the resorptive markers.
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Prestwood et al. (146) measured osteocalcin (RIA), bone-
specific ALP (IRMA), PICP, hydroxyproline (colorimetric),
total pyridinolines (HPLC), total Dpy (HPLC), NTx (ELISA),
free Pyr (ELISA), and serum ICTP (RIA), in a study of the
effect of conjugated estrogen in 15 women over 70 yr of age
without history of fracture. All resorption markers fell dur-
ing hormone replacement therapy with the greatest change
in the NTx and total Dpy (40%). All resorption markers rose
back to baseline levels after therapy ceased with the excep-
tion of ICTP which fell 20% during therapy and remained
there post therapy. All formation markers decreased during
estrogen replacement therapy (osteocalcin, 32%; bone-spe-
cific ALP, 17%; and PICP, 8%). Osteocalcin returned to base-
line levels 6 weeks post therapy while the other two markers
remained below baseline.

In a subsequent study, Raisz et al. (423) examined the
effects of adding a small dose of oral androgen for 9 weeks
to older postmenopausal women on estrogen replacement
therapy. Patients treated with estrogen alone showed a de-

‘crease in osteocalcin (homologous RIA), bone-specific ALP
(IRMA), PICP, and Dpy, Pyr, and hydroxyproline (all by
HPLC). Dpy exhibited the greatest decline of the resorption
markers, while bone-specific ALP fell by 26%, OC by 40%,
and PICP by 15%. When methyltestosterone was added, the
inhibitory effects of estrogen on the resorption markers was
not altered, but there was a reversal of the inhibitory effect
on the formation markers. These studies suggest that a com-
bination of estrogen and androgen may result in greater
benefit to bone than when estrogen is used alone and un-
derscore the value of using both resorption and formation
markers.

Finally, in an evaluation of cyclical PTH and calcitonin
therapy for osteoporosis, Hodsman et al. (70) measured os-
teocalcin (heterologous RIA), total ALP, PICP, hydroxypro-
line (colorimetric), and total Dpy (HPLC). A continuous 24-h
infusion of PTH(1-34) caused osteocalcin, ALP, and PICP to
fall by 39%, 49%, and 9%, respectively, while hydroxyproline
and Dpy increased by 48% and 5%, respectively. With daily
injection of PTH(1-34), however, all formative markers and
hydroxyproline increased (from 100% to 240%) but Dpy did
not change. In those subjects also receiving calcitonin, os-
teocalcin and hydroxyproline fell but there was no effect on
the other markers. In general, of the three formation markers,
osteocalcin gave the largest response to PTH and correlated
best with histological indices of bone formation. There were
few correlations for PICP and none for ALP. Urinary hy-
droxyproline, but not Dpy, correlated with surface osteoclast
counts. The poor performance of Dpy in this study is sur-
prising and it would be of interest to determine whether
other methods for measuring collagen cross-links (as well as
fractionating ALP) would have provided the same results.
Nevertheless, this study confirms in humans what has pre-
viously been observed in animals (424-426), that the actions
of PTH are anabolic when given by intermittent injection but
inhibit formation if given by continuous infusion (427).

All of these studies illustrate the potential usefulness of the
bone markers in clinical studies. They can provide insight
into physiological processes and correlative information on
new therapies for the treatment of osteoporosis. If the effects
on bone markers prove to be predictive of changes in bone
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density or fracture incidence, then their measurement may
prove to be extremely useful in clinical trials of new thera-
peutic agents. Nevertheless, in evaluating any study an im-
portant caveat emerges. The conclusions are highly depen-
dent not only on the marker chosen but also on the method
used for its measurement. Collagen catabolism may best be
assessed by excretion of collagen cross-links, but which
method and analyte provides the most specific measurement
of bone resorption is yet to be resolved. Use of the NTx, CTx,
ICTP or the various free pyridinolines by HPLC or ELISA
may give varying degrees of precision and sensitivity. These
various assays may correlate with each other to greater or
lesser extent depending on the disease state, subject group,
and laboratory carrying out the study. As more independent,
direct comparisons are performed, the biological significance
and relative specificity of these various analytes and assays
to bone metabolism should become clearer.

Some of the studies summarized above reflect these dif-
ficulties. For example, HPLC requires careful standardiza-
tion and quality control, which may vary from laboratory to
laboratory. For osteocalcin, kit comparisons have been con-
ducted only with the intent of determining differences or
similarities between kits and not to define which method is
more accurate in a specific clinical situation. This is further
complicated by the fact that some kits measure only intact
osteocalcin while others measure a variety of fragments
which, in most cases, are undefined (428). Which form of
osteocalcin is the most physiologically relevant is not estab-
lished. It appears that methods to measure PICP and PINP
are evolving, and future assays may resolve some of the
discrepancies that have been observed with these assays.
Precise understanding of the various forms of ALP in normal
and disease states will allow for refinement of antibodies for
bone-specific ALP and will hopefully eliminate the cross-
reactivity with the liver isoform that currently exists. Finally,
there is little information of the metabolic clearances of any
of these analytes, and whether disease states or therapeutic
agents will alter their clearance is largely unknown.

V. Practical Applications for Bone Markers
A. Research

Although we have not specifically reviewed the literature
on bone markers in basic rather than clinical research, data
from animal models and in vitro studies are available. For
example, the identification of isolated cells as osteoblasts
requires that the cells respond to PTH and that they produce
osteocalcin. Furthermore, knowledge of the differentiation of
osteoblasts has been aided by studying osteocalcin, collagen,
and ALP production. In animals, bone markers are used to
demonstrate the effect of a variety of factors that control
bone, including weightlessness, immobilization, ovariec-
tomy, and the actions of cytokines, hormones, and drugs.
Such studies have been limited somewhat by the lack of
species-specific reagents for some of the markers (e.g. PICP,
ICTP, NTx, CTx). These assays are based on specific anti-
bodies to the human peptides which may not always cross-
react with the animal forms. However, many assays are
species independent (e.g. bone-specific ALP determined by
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F1G. 9. Schematic representation of synthesis and catabolism of the various bone markers. Resorptive markers: When osteoclasts resorb bone,
they secrete collagenase, which releases fragments of the collagen fibrils into the circulation. Some of these fragments may contain hy-
droxyproline (Hyp), galactosyl hydroxylysine (GHYL), and glucosyl galactosyl hydroxylysine (Gle.GHYL), or the hydroxypyridinium cross-links
Pyr or Dpy. 1) Much of the hydroxyproline released is in the form of free hydroxyproline, much of which is reabsorbed by the renal tubules and
subsequently oxidized in the liver. Hydroxyproline-containing peptides are cleared by the kidneys and constitute the remainder of the collagen
breakdown products. Originally from collagen breakdown, these small peptides are dialyzable (D) in urine. 2) In normal urine, the hydroxylysine
glycosides constitute approximately 80% of the total hydroxylysine content, 10% is free, and the remainder is peptide-bound. 3) Circulating
products containing the cross-links may range in size from a few amino acids to large N-telopeptide and C-telopeptide regions. Fragments of
sufficiently small molecular weight are cleared by the kidneys and detected in the urine. To what degree the liver and kidney are involved in
the degradation process is unclear.

Formative markers: 1) Some circulating peptides of type I collagen of bone are specific to osteoblastic activity (PICP and PINP). Once secreted,
the N- and C-terminal extension peptides are cleaved by specific peptidases and these extension peptides can enter the circulation. A small
amount of the N-terminal peptides, however, may bind to bone matrix. Some of the nondialyzable (ND) fraction of hydroxyproline peptides found
in urine can be derived from PINP resorbed from bone matrix or cleaved from the native collagen. Both PICP and PINP are cleared by the liver.
2) The majority of osteocalcin is deposited into bone matrix while a small mount spills over into the circulation. The protein is cleared by renal
catabolism, liberating free Gla and Gla-peptides into the urine. Circulating fragments of osteocalcin can be detected in blood, the origin of which
is not clearly defined. 3) Serum ALP activity reflects translation of mRNA but it is not known whether changes in phospholipase activity or
the physical state of the phospholipid bilayer influence levels of alkaline phosphatase activity in particular disease states.
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wheat germ lectin, heat, or chemical inactivation; Dpy by
HPLC or ELISA; hydroxyproline) and a variety of species-
specific antibodies to osteocalcin have been developed (dog,
mouse, rat) and are commercially available (Bio Medical
Technologies, Stoughton, MA).

Most investigations have focused on bone markers in hu-
man disease and have compared subject groups to seek as-
sociations between a particular marker and a physiological
state, disease, response to therapy, dynamic or static histo-
logical parameters, or bone density. Such studies help to
validate markers. Table 5 provides a summary of expected
changes in the levels of bone markers in various disease
states. More recent studies have focused on markers as tools
for understanding bone physiology during intervention with
known therapeutic strategies or to determine the efficacy of
a particular drug in clinical trials. It is clear that simultaneous
measurements of different markers, both formative and re-
sorptive, have the potential to provide more information
than would be gained from the use of only one marker.
Resorptive markers may give specific information regarding
the therapeutic success of antiresorptive drugs, but simul-
taneous measurement of formation markers will establish
that the osteoblast is still active. Although all widely avail-
able markers of bone resorption measure collagen break-
down, the measurement of TRAP can also provide indirect
estimation of osteoclastic activity. On the other hand, each
formation marker evaluates a different osteoblastic function.
With increased understanding of the metabolic fate of PICP
and the precise functions of ALP and osteocalcin as well as
the factors that govern their biosynthesis and metabolic
clearances, abnormalities in specific osteoblast activities may
be discerned and drug design can be targeted to specific
functions.

B. Patient evaluation

Interest has focused on using biochemical bone markers in
evaluating acute changes in bone metabolism during overt
disease, during intervention with therapeutic agents, and
during normal aging in individual patients. Figure 9 illus-
trates the complexity of all metabolic factors that contribute
to the measurement of the resorptive and formative bone
markers in serum and urine. Laboratory tests that have tra-
ditionally been used for the diagnosis and treatment of met-
abolic bone disease were largely restricted to endocrine stud-
ies of bone mineral homeostasis, particularly those related to

TABLE 5. Observed changes in bone markers in disease states
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the calciotropic hormones—vitamin D and its metabolites,
PTH and calcitonin. In disorders that do not perturb hor-
monal status, the ability to monitor disease or judge the
response to therapy has been extremely limited. Although no
bone marker has been shown to be useful for diagnosis of any
particular metabolic bone disease, bone markers have po-
tential use for screening bone turnover in women at the
menopause, for selection of appropriate therapy in cases of
proven bone loss, and for monitoring the response to ther-

apy.

1. Prediction of bone loss. The development of osteoporosis
depends both on peak bone mass and on the rate of bone loss
after the menopause, and serial measurements of bone min-
eral density have been used to predict future fractures. How-
ever, the interval between measurements must be of suffi-
cient length to ensure precision. Baseline bone mineral
content in combination with biochemical markers of bone
turnover can be a useful predictor of future bone loss (429).
Several studies cited here have correlated individual bone
markers with histomorphometric or calcium kinetic mea-
sures of bone formation and/or resorption. These studies
generally show a good correlation (P < 0.05) between these
dynamic parameters and the bone marker tested in the study
population, but the 95% confidence intervals are wide, lim-
iting the ability to correctly classify patients into subgroups
and to define turnover rate. Aside from the technical error
attributable to a specific assay, intraindividual biological
variations for the bone markers vary from 10-60% (Table 6).
Several investigators have devised mathematical models em-
ploying combinations of markers for assessing bone turnover
and predicting bone loss (429, 430). An algorithm based on
serum total ALP, osteocalcin, urinary hydroxyproline, and
calcium/creatinine excretion increased the correlation be-
tween estimated and measured rate of bone loss, but in
general the rate of bone loss was underestimated and in some
individuals this difference was great (431). Future studies
using the newer markers of bone formation and resorption
may improve the reliability of these models.

2. Therapeutic design and follow-up. Many different factors
contribute to the acceleration in bone loss. It is likely that
optimal treatment will be dependent on accurate assessment
of risk factors, early diagnosis of bone loss, and an individ-
ualized therapeutic strategy. It is in this context that the bone
markers are of substantial benefit. If drugs that suppress or

Hyp GHYL Cross-links® TRAP B-ALP Osteocalcin PICP
Osteoporosis® I I I I I I N
Osteomalacia I nk I nk I N I
Primary HPT I I I I I I I
Hypoparathyroidism N nk D nk N D N
Paget’s disease I I I I I I I
Hyperthyroidism /N I I I I I N
Renal osteodystrophy 1 I I 1 1 I I
Bone metastases I 1 I 1 I I N
Glucocorticoid excess /N nk I nk I D D

I, Increased; D, decreased; N, no change; not known.
¢ High turnover states.
® Includes Dpy, NTx, and CTx.
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TaBLE 6. Within subject reproducibility of bone markers

Marker % CV
NTX 20.2
Dpy (HPLC) 62.9
Hyp 53.0
Osteocalcin 27.3
ALP 10.3

[Reproduced with permission from B. J. Gertz et al.: J Bone Miner
Res 9:135-142, (150)].

stimulate formation are indicated for a particular patient,
the response to therapy may be individually monitored
with such measurements. A patient with a low bone mass
and a high rate of turnover will have rapid bone loss but
should respond to antiresorptive agents such as estrogen/
progestin, bisphosphonates, or calcitonin. On the other
hand, patients with low bone turnover will have slow loss
of bone and can be anticipated to have limited response to
these agents. The biochemical markers of bone have
proved to be very sensitive measures of acute changes in
bone metabolism. Changes in the bone markers can occur
within days to weeks of initiation of therapy, much sooner
than can be determined from bone density measurements
(usually on the order of 6 months to 1 yr). Dosage adjust-
ments can be made rapidly based upon an individual’s
biochemical response.

VI. Summary and Conclusions

An ideal battery of tests would include indices of bone
resorption and formation. They should be unique to bone,
reflect total skeletal activity, and should correlate with tra-
ditional measures of bone remodeling activity, such as radio-
calcium kinetics, histomorphometry, or changes in bone
mass. Factors that confound their measurement, such as cir-
cadian rhythms, diet, age, sex, bone mass, liver function, and
kidney clearance rates, should be clearly defined (Fig. 9). To
date, no bone marker has been established to meet all these
criteria, and each marker may have its own specific advan-
tages and limitations. There are still questions that must be
answered before there can be complete confidence in the
information gained from measurement of any of the bone
markers. Furthermore, it should be emphasized that none of
the markers are diagnostic for any particular bone disease
and cannot be used for this purpose in individual patients.
Nevertheless, recent advances in research and development
have provided assays with increased specificity, sensitivity,
and availability. Because of this, bone markers can be used
for a variety of important purposes: as tools for basic bone
biology research, for defining general physiological phenom-
enon in clinical studies or drug trials, and for following
individual patients.
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13th International Symposium of The Journal of Steroid Biochemistry
& Molecular Biology

RECENT ADVANCES IN STEROID BIOCHEMISTRY & MOLECULAR BIOLOGY
May 25-28, 1997—MONACO

The 13th International Symposium of the Journal of Steroid Biochemistry & Molecular Biology—*Recent
Advances in Steroid Biochemistry & Molecular Biology” will be held in Monaco, on May 25-28, 1997. The

following topics will be considered:

1. Receptors, Structure and Gene Regulation

2. Steroids and Cancer (Including Anti-Steroids, Growth Factors, Oncogenes, and Apoptosis)

3. Steroids in the Central and Peripheral Nervous Systems

4. Enzymatic Systems and their Expression in Steroid Metabolism
5. Recent Developments of Progestins and Anti-Progestins (Including Clinical Applications)

Lectures (approximately 25-30) will be by invitation of the Scientific Organizing Committee and, in addition,
there will be a poster section. All poster presentations will be subject to selection by the Scientific Organizing
Committee and abstracts (maximum 200 words) must be sent to Dr ].R. Pasqualini by Monday, January 6,
1997 (postmark) at the latest (Original + 12 copies). Theramex Laboratories will award a prize of 25.000
French Francs (approx. 5,000 US$) to the best poster presentation. The total number of participants will be
limited to 200. For further details, please contact:

General Scientific Secretariat: Dr J. R. Pasqualini, Steroid Hormone Research Unit, 26 Boulevard Brune,
75014 Paris, France. Tel.: (33) (1) 45 39 91 09; Fax: (33) (1) 45 42 61 21.

Local Organizing Committee: Drs J. Paris, J. P. Dubois, and R. Sitruk-Ware, THERAMEX, 6 Ave du Prince
Héréditaire Albert, Boite Postale 59, MC 98007 Monaco Cédex. Tel.: (377) 92 05 08 61; Fax: (377) 92 05 70 00.
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