
 Open access  Posted Content  DOI:10.1101/2020.09.10.291757

Molecular basis for SARS-CoV-2 spike affinity for human ACE2 receptor
— Source link 

Julián M. Delgado, Nalvi Duro, David M. Rogers, Alexandre Tkatchenko ...+2 more authors

Institutions: University of South Florida, Oak Ridge National Laboratory, University of Luxembourg

Published on: 10 Sep 2020 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Allosteric regulation

Related papers:

 Computational study of the strong binding mechanism of SARS-CoV-2 spike and ACE2

 Interaction of human ACE2 to membrane-bound SARS-CoV-1 and SARS-CoV-2 S glycoproteins

 Dynamics of the ACE2 - SARS-CoV/SARS-CoV-2 spike protein interface reveal unique mechanisms

 Trimeric SARS-CoV-2 Spike interacts with dimeric ACE2 with limited intra-Spike avidity

 Comparing the binding interactions in the receptor binding domains of SARS-CoV-2 and SARS-CoV

Share this paper:    

View more about this paper here: https://typeset.io/papers/molecular-basis-for-sars-cov-2-spike-affinity-for-human-ace2-
ub8k5j5nwd

https://typeset.io/
https://www.doi.org/10.1101/2020.09.10.291757
https://typeset.io/papers/molecular-basis-for-sars-cov-2-spike-affinity-for-human-ace2-ub8k5j5nwd
https://typeset.io/authors/julian-m-delgado-3stfobectv
https://typeset.io/authors/nalvi-duro-wcvmji7l6t
https://typeset.io/authors/david-m-rogers-4da5qi2n3g
https://typeset.io/authors/alexandre-tkatchenko-hjdcck4v47
https://typeset.io/institutions/university-of-south-florida-2caup2dy
https://typeset.io/institutions/oak-ridge-national-laboratory-1b4xuq7y
https://typeset.io/institutions/university-of-luxembourg-1pj10nma
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/allosteric-regulation-1br15ko7
https://typeset.io/papers/computational-study-of-the-strong-binding-mechanism-of-sars-17x2moycfz
https://typeset.io/papers/interaction-of-human-ace2-to-membrane-bound-sars-cov-1-and-2i9yjqwskz
https://typeset.io/papers/dynamics-of-the-ace2-sars-cov-sars-cov-2-spike-protein-p7odp3wfl2
https://typeset.io/papers/trimeric-sars-cov-2-spike-interacts-with-dimeric-ace2-with-2cqmbl4enk
https://typeset.io/papers/comparing-the-binding-interactions-in-the-receptor-binding-pdsdbutvuy
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/molecular-basis-for-sars-cov-2-spike-affinity-for-human-ace2-ub8k5j5nwd
https://twitter.com/intent/tweet?text=Molecular%20basis%20for%20SARS-CoV-2%20spike%20affinity%20for%20human%20ACE2%20receptor&url=https://typeset.io/papers/molecular-basis-for-sars-cov-2-spike-affinity-for-human-ace2-ub8k5j5nwd
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/molecular-basis-for-sars-cov-2-spike-affinity-for-human-ace2-ub8k5j5nwd
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/molecular-basis-for-sars-cov-2-spike-affinity-for-human-ace2-ub8k5j5nwd
https://typeset.io/papers/molecular-basis-for-sars-cov-2-spike-affinity-for-human-ace2-ub8k5j5nwd


1

Molecular basis for SARS-CoV-2 spike affinity for human ACE2

receptor

Julián M. Delgado1, Nalvi Duro1, David M. Rogers2, Alexandre Tkatchenko3, Sagar A. Pandit4 &

Sameer Varma 1,4,∗

1Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E.

Fowler Ave., Tampa, FL-33620, USA

2Scientific Computing Group, Oak Ridge National Laboratories, Oak Ridge, TN-37831, USA

3Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg

4Department of Physics, University of South Florida, 4202 E. Fowler Ave., Tampa, FL-33620, USA

∗ E-mail: svarma@usf.edu

Keywords: protein-protein interactions, CoViD19, molecular dynamics, viral entry, SARS-CoV,

SARS-CoV-2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.10.291757doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.10.291757
http://creativecommons.org/licenses/by/4.0/


2

Abstract

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused substantially more infections,

deaths, and economic disruptions than the 2002-2003 SARS-CoV. The key to understanding SARS-CoV-2’s

higher infectivity may lie in its host receptor recognition mechanism. This is because experiments show that

the human ACE2 protein, which serves as the primary receptor for both CoVs, binds to CoV-2’s spike protein

5-20 fold stronger than SARS-CoV’s spike protein. The molecular basis for this difference in binding affinity,

however, remains unexplained and, in fact, a comparison of X-ray structures leads to an opposite proposition.

To gain insight, we use all-atom molecular dynamics simulations. Free energy calculations indicate that CoV-

2’s higher affinity is due primarily to differences in specific spike residues that are local to the spike-ACE2

interface, although there are allosteric effects in binding. Comparative analysis of equilibrium simulations

reveals that while both CoV and CoV-2 spike-ACE2 complexes have similar interfacial topologies, CoV-2’s

spike protein engages in greater numbers, combinatorics and probabilities of hydrogen bonds and salt bridges

with ACE2. We attribute CoV-2’s higher affinity to these differences in polar contacts, and these findings also

highlight the importance of thermal structural fluctuations in spike-ACE2 complexation. We anticipate that

these findings will also inform the design of spike-ACE2 peptide blockers that, like in the cases of HIV and

Influenza, can serve as antivirals.
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Introduction

Within ten months of its emergence, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has

caused more than 23 million confirmed infections and over 800,000 deaths globally, and these infections continue

to grow rapidly [1]. In contrast, its genetic variant, SARS-CoV, which caused the 2002-2003 outbreak, led to

far fewer infections and it was relatively easier to contain, although it presumably had a much higher fatality

rate [2]. The underlying reason for CoV-2’s relatively higher infectivity, however, remains unknown [2].

The key to understanding CoV-2’s higher infectivity in humans may lie in its host receptor recognition

mechanism. This is because of the following. Both CoV and CoV-2 use the angiotensin converting enzyme

2 (ACE2) as their primary modes of attachment and entry into human cells [3]. They bind to human ACE2

receptors using their respective transmembrane spike proteins. However, surface plasmon resonance and bilayer

interferometry experiments show that ACE2 binds to CoV-2’s spike protein 5-20 fold stronger than CoV’s spike

protein (Table S1 of supporting information) [4–7], which may, at least partly, explain its higher infectivity.

The molecular basis underlying the different binding affinities of CoV and CoV-2 spike proteins to ACE2,

however, remains unknown. In fact, comparison of high-resolution X-ray structures of their spike-ACE2 com-

plexes [4, 6, 8] leads to a different proposition. The receptor binding domains (RBDs) of the spike proteins of

CoV and CoV-2 have almost similar structures, and they interact with almost identical regions of the prote-

olytic domain (PD) of ACE2. Out of the forty three amino acid that are different in the spike RBDs of CoV

and CoV-2 strains used for structure determination, ten are at the ACE2 binding region [4]. These ten amino

acid differences do not alter the numbers of hydrogen bonds and salt bridges at the spike-ACE2 interface [4].

They only make CoV’s spike protein to have a more extensive hydrophobic contact with ACE2, which should

have, in principle, made CoV’s spike protein bind more strongly than CoV-2’s spike protein, rather than the

opposite [9].

Recent studies show that thermal fluctuations in structure can affect virus-host interactions and viral

entry [10], and perhaps they may also explain why ACE2 binds more tightly to CoV-2’s spike protein. To

examine this and go beyond insights obtained from X-ray structures, here we carry out a comparative analysis

of spike-ACE2 complexes using all-atom molecular dynamics (MD) simulations at physiological temperature

and in explicit solvent. Additionally, we carry out free energy calculations to examine the effect of mutating

selected spike residues on spike-ACE2 binding affinity. Results from these studies provide an atomically-detailed

basis for why ACE2 binds to CoV-2 spike more strongly compared to CoV spike. This structural and energetic
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data will be useful to groups designing small molecules, polymers, and antibodies targeting the spike-ACE2

interaction.

Results and Discussion

From 3 µs long MD trajectories of ACE2 PD complexed with spike RBDs of CoV and CoV-2, we first examine

differences in binding modes, polar contacts, hydrophobic contacts and interfacial waters. Next, using confor-

mations selected from MD simulations, we examine the effect of mutating selected CoV spike RBD residues on

spike-ACE2 binding free energy.

Comparison of MD ensembles

Binding modes

To characterize spike-ACE2 binding modes, we extract from each simulation spike-ACE2 conformations at

one nanosecond intervals. This yields 3001 conformations for each complex. We calculate root mean square

deviations (RMSDs) between each of the (3001 × 3000)/2 conformation pairs. For calculating RMSDs, we

consider the backbone atoms of only those amino acids in ACE2 and spike that are part of the spike-ACE2

interface. The interface is defined geometrically, and an amino acid is considered to part of the interface if any

of its heavy atoms is within 5 Å from the complementary protein in any of the 3001 conformations. These

pairwise RMSDs are shown in Figure 1. These RMSDs are then taken as a measure of similarity in the affinity

propagation algorithm [11, 12], which clusters these conformations into 5 and 6 groups, respectively, in the

CoV and CoV-2 spike-ACE2 systems. The advantage of the affinity propagation algorithm over traditional

clustering approaches is that it does not assume a priori the number of clusters or a cutoff value for delineat-

ing clusters. We adopted this unsupervised machine learning algorithm previously to cluster correlations in

structural fluctuations [13].

The lowest energy conformation of each of the 5 and 6 clusters of CoV and CoV-2 spike-ACE2 complexes

are shown in Figure 1. We note that the overall topologies of these cluster representatives, or binding modes,

closely resemble their respective X-ray structures. The main variation in the binding modes is in the structures

of the spike RBD loops at the binding interface.
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Figure 1. Binding modes of spike-ACE2 complexes in MD simulations. (a) and (b) show,
respectively, the distinct binding mode conformations of the complexes containing spike proteins of CoV and
CoV-2. These conformations are superimposed over the X-ray structures of spike-ACE2 complexes (grey).
They are the lowest energy conformations of the five and six binding modes identified, respectively, for the
complexes involving CoV and CoV-2 spike proteins. Binding modes are identified by clustering conformations
extracted every nanosecond from MD. Conformational clustering is performed using affinity
propagation [11,13] in which we take RMSD as an index of similarity between conformations. (c) and (d)
show these pairwise RMSDs.

Local spike-ACE2 contacts

To examine differences in local interactions, we first determine hydrogen bonds and salt bridges between spike

RBD and ACE2 PD. Hydrogen bonds are computed using the geometric definition proposed by Luzar and

Chandler [14]. Salt bridges are defined using a 4 Å cutoff between carboxyl carbon and amine/guanidine

nitrogen. The choice of this cutoff distance is discussed in Figure S1 of the supporting information. Figure 2a

compares time evolutions of inter-protein hydrogen bonds and salt bridges. The key observation we make

is that, on average, ACE2 engages in discernibly greater numbers of hydrogen bonds and salt bridges with

CoV-2’s spike RBD compared to CoV’s spike RBD. This difference was not apparent from comparison of X-ray

structures, where both complexes were reported to have equal numbers of salt bridges and hydrogen bonds [4].

To gain further insight, Figure 2b compares the structural maps of the spike-ACE2 hydrogen bonds and
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Figure 2. Polar contacts of ACE2 with spike proteins of CoV and CoV-2.
(a) Time evolution of hydrogen bonds and salt bridges between ACE2 and spike proteins. Dashed lines
indicate time-averages. (b) Structural map of hydrogen bonds and salt bridges between ACE2 and spike.
ACE2 associates with spike at four regions that are non-contiguous in its primary sequence. These four
interfacial regions are shown separately. The colors of the lines connecting the residues in the central panel
indicate their occurrence probabilities. Note that for the sake of clarity, only those hydrogen bonds and salt
bridges are shown that are observed for at least 15% of the total simulated time. The amino acid of spike
labeled in red are the ones that are conserved in the two spike RBDs. (c) Numbers of unique hydrogen bonds
as functions of their occurrence probabilities. The inset zooms in on the 15-100% probability region. (d)
Time evolution of waters that bridge interactions between ACE2 and spike by hydrogen bonding
simultaneously with both proteins. The image below show the time evolution plot shows the bridging waters
in the 3 µs snapshots of the MD trajectories.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.10.291757doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.10.291757
http://creativecommons.org/licenses/by/4.0/


7

salt bridges. Several of the polar contacts observed in MD are also noted in X-ray structures [4, 6, 8], and,

in fact, we note that MD simply yields a higher combinatorics of contacts than those discerned from X-ray

structures (Fig. S2 of supporting information). We attribute this difference between MD and X-ray structures

to structural thermal fluctuations present in MD. This difference may also be attributed to the dynamics of

interfacial water molecules [15], which is present in MD, but absent in X-ray structures.

From Figure 2b, we also note that the higher numbers of polar interactions in CoV-2’s spike-ACE2 interface

do not emanate from one specific region of the interface. In fact, almost all residues of CoV-2 spike, including

those that are conserved in CoV spike, have a higher probability of forming hydrogen bonds (or salt bridges)

with ACE2. The probabilities here refer to the fractions of frames in which amino acids are found to be

hydrogen bonded (or salt-bridged). To examine these hydrogen bond probabilities collectively, we plot in

Figure 2c the numbers of unique hydrogen bonds as functions of their occurrence probabilities. We note that

CoV-2’s spike-ACE2 interface has not only more possible combinations of hydrogen bonds compared to CoV-

2’s spike-ACE2 interface, but the net probability of formation of hydrogen bonds is also higher in the CoV-2

spike-ACE2 interface.

Polar interactions between spike and ACE2 can also be bridged by interstitial water molecules, that is,

water molecules can hydrogen bond simultaneously with both proteins. These bridging waters are considered

to stabilize protein-protein interactions [16]. We note from Figure 2d that the spike-ACE2 interfaces of CoV

and CoV-2 have similar numbers of bridging waters, which supports the possibility that bridging waters have

comparable effects on the stabilities of both spike-ACE2 complexes.

Finally, consistent with X-ray structures of the spike-ACE2 complexes, we note that ACE2 makes a more

extensive hydrophobic contact with the spike RBD of CoV (Fig. S3 of Supporting Information). A higher

hydrophobic contact typically implies a higher binding affinity [9]. Therefore, this interaction should drive

binding of ACE2 in favor of CoV, and not CoV-2.

Effect of spike mutations on binding free energy

The spike RBDs of CoV and CoV-2 strains that were used for structure determination contain forty three

amino acid differences. Ten of these amino acid differences are at the ACE2 binding region [4]. This raises the

question of the extent to which the differences noted above in local interactions result from differences in local

chemistries at spike-ACE2 interfaces. This is important to know because changes in amino acids distant from

the interface can affect protein-protein binding substantially, and even in the absence of discernible structural
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change [17]. To address this, we substitute simultaneously eight of these amino acids in CoV spike RBD to their

corresponding types in the CoV-2 spike RBD (Figure S4 of supporting information), and determine the effect

of this mutation on spike-ACE2 binding free energy. We do not engineer the mutation L443→F456 because

neither L443 in CoV nor its corresponding residue F456 in CoV-2 is found to make hydrophobic contact with

ACE2 (Figure S3 of Supporting Information). The mutation P462→A475 is also not engineered due to the

current unavailability of established transition pathways [18].

The eight mutations that we engineer in CoV spike RBD are V404K, R426N, T433G, Y442L, L472F,

N479Q, T484Q and T487N. Note that these mutations leave the net charge, and also the ratio of hydrophobic

and polar side chains at the interface unaltered. The expectation is that if these local chemical differences

indeed explain CoV-2’s higher binding affinity for ACE2, then these mutations should increase the binding free

energy of CoV spike to ACE2. Free energy calculations show that these mutations do increase the binding

affinity of CoV spike RBD by 5.4± 0.4 kcal/mol (Figure S4 of supporting information).

Note, however, that this estimate is larger than the experimental range of 1-2 kcal/mol determined for the

binding free energy difference between CoV and CoV-2 spike-ACE2 complexes [4–7]. This could be due to two

reasons. Firstly, this may partly result from inaccuracy in the employed force field, although, based on recent

studies [18], the extent of this error is expected to be around 1-2 kcal/mol. Secondly, this deviation may partly

be due to correlated and allosteric effects that originate from the 30+ amino acids in CoV spike RBD that

differ from CoV-2 spike RBD, and are not mutated in CoV spike RBD. This possibility is supported by the

data in Figure 2b, where we note differences even in the ACE2 interactions of amino acids that are conserved

in CoV and CoV-2 spike RBDs. For example, the hydrogen bond probability of Y83 in ACE2 with N473 in

CoV spike is distinctly smaller compared to its hydrogen bonding probability with N487 in CoV-2 spike.

Conclusions

Analysis of MD trajectories yields three main differences between the spike-ACE2 complexes of CoV and CoV-

2. Firstly, consistent with observations from X-ray structures, ACE2 makes a more extensive hydrophobic

contact with CoV’s spike. This should, in principle, drive binding of ACE2 in favor of CoV’s spike rather

than CoV-2’s spike. Secondly, there are distinctly greater numbers of hydrogen bonds and salt bridges in

CoV-2’s spike-ACE2 complex. Finally, the combinatorics as well as the individual and net probabilities of

these polar contacts are higher in CoV-2’s spike-ACE2 complex. The latter two differences will drive ACE2
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binding in favor of CoV-2, and also implicate thermal fluctuations in structure to be important to selective

spike-ACE2 complexation. These observations lead to the conclusion that the higher affinity of CoV-2’s spike

to ACE2 is due to higher numbers and probabilities of polar contacts, which also compensate for the more

extensive hydrophobic contacts in CoV’s spike-ACE2 interface. The caveat here is that local interactions are

key to driving specificity. In fact, free energy calculations directly support this caveat, where substitutions of

eight interfacial amino acids in CoV spike to corresponding ones present in CoV-2’s spike increase its binding

affinity to ACE2. Additionally, since these eight amino acids collectively have the same charge and similar

hydrophobic/polar chemistry ratios, we also conclude that the specific structural locations of these amino acids

matter. As such, results from both free energy calculations and equilibrium MD simulations do suggest the

role of allosteric and correlated effects in spike-ACE2 complexation.

Given existing evidence on the general reliability of employed MD methods [13, 18–20], and our recent

work [21] that yielded validated predictions on virus-host protein-protein interactions [22], we consider our

qualitative conclusions to be robust. Nevertheless, from the perspective of intermolecular interaction theory,

the underlying potential energy functions that we employ do rely on describing interactions using point charges,

no polarization, and only pairwise vdW interactions. These approximations should be properly scrutinized

in future studies of complex protein-protein interactions. Higher-level electronic structure calculations are

in progress to assess the role of multipole electrostatics, induced polarization, and many-body dispersion

interactions on spike-ACE2 binding.

Overall, the molecular understanding that this work provides on the relative binding affinities of CoV and

CoV-2 spike to ACE2 is important for understanding their different infectivity rates. Additionally, it is also

expected to lend direct insight into designing spike-ACE2 blockers that, like in the cases of HIV and Influenza,

can serve as antivirals [23].

Methods

Molecular dynamics

All MD simulations are performed using Gromacs 2020 [24]. Protein and water bonds are restrained [25, 26],

and consequently an integration time step of 2 fs is employed. Simulations are conducted under isobaric-

isothermal boundary conditions. Pressure is regulated at 1 bar using a coupling constant of 1 ps and a

compressibility of 4.5 × 10−5 bar−1. Temperature is maintained at 310 K. Extended ensemble approaches
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are used for maintaining both temperature and pressure [27–29]. Electrostatic interactions beyond 10 Å are

computed using the particle mesh Ewald scheme [30] with a Fourier grid spacing of 1.5 Å, a fourth-order

interpolation. van der Waals interactions are computed explicitly for interatomic distances smaller than 10

Å. We use Amber99sb-ILDN parameters to describe protein and ions [19], and SPC/E parameters to describe

water molecules [31]. This force field has been demonstrated to perform well in reproducing structural data

from X-ray diffraction and NMR spectroscopy [19, 20], and also dynamics data from NMR spectroscopy [13].

The ACE2 protein contains a Zn2+ ion in its catalytic core, which is about 20 Å away from the spike-ACE2

interface. In line with earlier work on modeling Zn2+ ions in proteins [32], the coordination of the Zn2+ ion in

ACE2 is maintained through application of distance restraints. Specifically, flat-bottomed quadratic potentials

are assigned to distances between the ion and three atoms of ACE2, H374/NE2, H378/NE2 and E402/OE1,

that are observed to coordinate it in X-ray structures. In MD simulations, the average restraining energies

for the CoV and the CoV-2 complexes are found to be small, that is, 0.14 ± 0.08 and 0.11 ± 0.06 kcal/mol,

respectively.

Starting coordinates of CoV’s spike-ACE2 complex are taken from its X-ray structure (PDB ID: 2AJF) [8],

and those of CoV-2’s spike-ACE2 complex are taken from its cryo-EM structure (PDB ID: 6M17) [33]. Note

that a higher resolution X-ray structure of CoV-2’s spike-ACE2 complex is now also available [4], and is used in

our analysis, but was unavailable at the start of this project. Nevertheless, there is only little difference between

the X-ray and cryo-EM structures – the RMSD between all heavy atoms is < 1 Å, which is less than the RMSDs

between the different interfacial binding modes observed in MD simulations. The carbohydrate groups in spike

are removed, as they have been shown to have no effect on CoV’s spike binding to ACE2 [34]. The missing

loops in the ACE2 protein in 2AJF are built using MODELLER [35]. To make ACE2 PD sequences identical in

CoV and CoV-2 constructs, the N-terminal residues 19 and 20 in ACE2 of 6M17 are built, and the C-terminal

of ACE2 in 6M17 is truncated at the last C-terminal residue resolved in 2AJF. The N- and C-termini of both

spike RBD and ACE2 PD are capped with ACE and NME, respectively. Hydrogen atom positions and histidine

types are determined using the PDB2PQR algorithm [36]. Each of the two complexes is initially placed in a

cubic unit cell of length 160 Å, and then energy minimized using the steepest descent algorithm implemented

in Gromacs. The vacant space in the box is then filled with water, and the system is again subjected to energy

minimization. The unit cells containing CoV and CoV-2 spike-ACE2 complexes contain, respectively, 131,995

and 131,897 waters. Note that the crystallographically resolved waters are retained. Na+ and Cl− ions are

added by randomly substituting non-crystallographic waters. NaCl concentration is set at 50 mM with extra
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Na+ ions to compensate for the charge of the complex. Specifically, the CoV spike-ACE2 unit cell contains

144 Na+ and 120 Cl− ions, the CoV-2 spike-ACE2 unit cell contains 143 Na+ and 120 Cl− ions. After adding

salt, the system is energy minimized a final time. Each of these two complexes is then subjected to 3 µs long

MD simulations.

In addition to carrying out MD simulations of spike-ACE2 complexes, we also carry out 0.5 µs long MD

simulations of isolated spike RBDs of CoV and CoV-2 in solution. These simulations are used for getting

starting conformations for free energy calculations. For these simulations, the starting coordinates of spike

RBDs are taken from final snapshots of the MD simulations of the spike-ACE2 complexes. Each of the two

spike RBDs is initially placed in a cubic unit cell of length 90 Å, and the protocol described above is followed

for adding waters and salt. The unit cell containing CoV’s spike RBD contains 23247 waters, 21 Na+ and 22

Cl− ions, and the unit cell containing CoV-2’s spike RBD contains 23240 waters, 21 Na+ and 23 Cl− ions.

Free energy calculations

The effect of mutating spike residues on its binding free energy with ACE2 is determined as

∆G = ∆Gspike−ACE2 −∆Gspike. (1)

Here, ∆Gspike−ace2 is the effect of mutations on the free energy of the spike-ACE2 complex in solution, and

∆Gspike is the effect of mutations on the free energy of isolated spike in solution. ∆Gspike and ∆Gspike−ace2

are computed using thermodynamic integration, and using the 5-point Gauss-Quadrature rule, that is,

∫ 1

0

〈∂H/∂λ〉λ dλ = 1/2
5∑
i

wi 〈∂H/∂λ〉λi
, (2)

where the weights wi = {0.237, 0.479, 0.559, 0.479, 0.237} and λi = {0.047, 0.231, 0.5, 0.769, 0.953}.

The starting conformations for engineering mutations are taken from MD simulations. Hybrid topology

files, which contain coordinates and force field parameters for both states of the amino acids (natural and

mutated) are constructed using the PMX module [18]. To avoid singularities and numerical instabilities that

may arise due to particle appearance and annihilation, we use a modified form of the “soft core” potentials

suggested by Beutler et al. [37] implemented in Gromacs. In these soft core potentials, the distances between

particles ‘i’ and ‘j’ in state A (λ = 0) are modified as rA = (ασ6
Aλ

p + r6ij)
1/6 and those between particles in
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state B (λ = 1) are modified as rB = (ασ6
B(1−λp)+ r6ij)

1/6. In these expressions, σ = (C12/C6)
1/6 is the ratio

of the LJ parameters, and if either C12 or C6 is zero, then we take σ = 3 Å. We set the soft core parameters

to be α = 1 and p = 1. Sampling is conducted using stochastic dynamics and under NVT conditions. For each

λi, ∂H/∂λ is averaged for 250 ns (Figure S4 of Supporting Information), and standard errors are determined

from the final 50 ns using block averaging.
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27. Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Molecular physics

52, 255–268 (1984).

28. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Physical review A 31, 1695

(1985).

29. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. The Journal of

chemical physics 126, 014101(1)–014101(8) (2007).

30. Darden, T., York, D. & Pedersen, L. Particle mesh ewald: An n log (n) method for ewald sums in large

systems. The Journal of chemical physics 98, 10089–10092 (1993).

31. Berendsen, H., Grigera, J. & Straatsma, T. The missing term in effective pair potentials. J. Phys. Chem.

91, 6269–6271 (1987).

32. Peters, M. B. et al. Structural survey of zinc-containing proteins and development of the zinc am-

ber force field (zaff). Journal of Chemical Theory and Computation 6, 2935–2947 (2010). URL

https://doi.org/10.1021/ct1002626. PMID: 20856692, https://doi.org/10.1021/ct1002626.

33. Yan, R. et al. Structural basis for the recognition of sars-cov-2 by full-length human ace2. Sci-

ence 367, 1444–1448 (2020). URL https://science.sciencemag.org/content/367/6485/1444.

https://science.sciencemag.org/content/367/6485/1444.full.pdf.

34. Chakraborti, S., Prabakaran, P., Xiao, X. & Dimitrov, D. S. The sars coronavirus s glycoprotein receptor

binding domain: Fine mapping and functional characterization. Virology Journal 2, 73 (2005). URL

https://doi.org/10.1186/1743-422X-2-73.

35. Webb, B. & Sali, A. Comparative protein structure modeling using mod-

eller. Current Protocols in Bioinformatics 54, 5.6.1–5.6.37 (2016). URL

https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/cpbi.3.

https://currentprotocols.onlinelibrary.wiley.com/doi/pdf/10.1002/cpbi.3.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.10.291757doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.10.291757
http://creativecommons.org/licenses/by/4.0/


16

36. Dolinsky, T. J., Nielsen, J. E., McCammon, J. A. & Baker, N. A. Pdb2pqr: an automated pipeline

for the setup of poisson–boltzmann electrostatics calculations. Nucleic acids research 32, W665–W667

(2004).

37. Beutler, T. C., Mark, A. E., van Schaik, R. C., Gerber, P. R. & van Gunsteren,

W. F. Avoiding singularities and numerical instabilities in free energy calculations based

on molecular simulations. Chemical Physics Letters 222, 529 – 539 (1994). URL

http://www.sciencedirect.com/science/article/pii/0009261494003971.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.10.291757doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.10.291757
http://creativecommons.org/licenses/by/4.0/



