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In human beings, two forms of GnRH, termed GnRH-I and
GnRH-II, encoded by separate genes have been identified.
Although these hormones share comparable cDNA and
genomic structures, their tissue distribution and regulation
of gene expression are significantly dissimilar. The actions of
GnRH are mediated by the GnRH receptor, which belongs to
a member of the rhodopsin-like G protein-coupled receptor
superfamily. However, to date, only one conventional GnRH
receptor subtype (type I GnRH receptor) uniquely lacking a
carboxyl-terminal tail has been found in the human body.
Studies on the transcriptional regulation of the human GnRH
receptor gene have indicated that tissue-specific gene expres-

sion is mediated by differential promoter usage in various cell
types. Functionally, there is growing evidence showing that
both GnRH-I and GnRH-II are potentially important auto-
crine and/or paracrine regulators in some extrapituitary com-
partments. Recent cloning of a second GnRH receptor subtype
(type II GnRH receptor) in nonhuman primates revealed that
it is structurally and functionally distinct from the mamma-
lian type I receptor. However, the human type II receptor gene
homolog carries a frameshift and a premature stop codon,
suggesting that a full-length type II receptor does not exist in
humans. (Endocrine Reviews 26: 283–306, 2005)
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I. Introduction

MAMMALIAN GnRH (termed GnRH-I) is a decapep-
tide (pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-

NH2) that plays a key role in the process of reproduction. It
is produced by hypothalamic neurosecretory cells and re-
leased in a pulsatile manner into the hypothalamo-hypo-
physeal portal circulation, through which the hormone is
transported to the anterior pituitary gland. After binding to
its cognate receptor (type I GnRH receptor) on pituitary
gonadotropes, the hormone stimulates the biosynthesis and
secretion of LH and FSH, which in turn regulate gonadal
steroidogenesis and gametogenesis in both sexes (1). In ad-
dition to this well-known endocrine function, it has become
evident that GnRH-I is a potentially important autocrine
and/or paracrine regulator in some extrapituitary compart-
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ments such as the ovary, placenta, uterus, and immune sys-
tem (2–10). Since its discovery some 30 yr ago, many GnRH-I
analogs with enhanced biological potency have been devel-
oped and studied extensively (11). Clinically, some of these
synthetic analogs have been used as an effective treatment
for a variety of reproductive endocrinopathies, whereas oth-
ers have been widely adopted in controlled ovarian hyper-
stimulation regimens for assisted reproductive techniques
(12, 13).

Until now, more than a dozen isoforms of GnRH sharing
10–50% amino acid identity have been found in vertebrates
(14). It is generally thought that most vertebrate species pos-
sess at least two, and usually three, forms of GnRH, which
differ in their amino acid sequences, localizations, and em-
bryonic origins. In addition to GnRH-I, a second GnRH sub-
type (termed GnRH-II) that was originally identified from
chicken hypothalamus has been found in humans (15, 16).
This second GnRH form differs from GnRH-I by three amino
acid residues at positions 5, 7, and 8 (His5Trp7Tyr8GnRH-I)
and is conserved from primitive fish to humans (16, 17). One
of the established biological functions specific to GnRH-II is
to serve as a potent inhibitor of K� channels in the amphibian
sympathetic ganglion (17). Inhibition of these ion channels
facilitates rapid excitatory transmission by conventional neu-
rotransmitters and may provide a general neuromodulatory
mechanism for GnRH-II in the nervous system. Recently,
Temple et al. (18) have shown that GnRH-II, but not GnRH-I,
activates mating in energetically challenged musk shrews,
suggesting a role of the evolutionarily conserved GnRH form
in coordinating energy and reproductive behavior. In hu-
mans, a growing number of extrapituitary GnRH-II actions,
such as suppressing tumor proliferation (3, 7, 8, 19–23), have
been demonstrated although a full-length type II GnRH re-
ceptor transcript has not yet been identified in any of the
human tissues or cell types.

II. GnRH Isoforms in Humans: GnRH-I and GnRH-II

A. cDNA and genomic structures

Cloning of the GnRH-I cDNA from human hypothalamus
and placenta revealed that they possess identical coding and
3�-untranslated regions (3�-UTRs) (24, 25). However, the pla-
cental cDNA has a much longer 5�-UTR because of the in-
clusion of the first intron in the transcript (24, 26). The coding
region of the GnRH-I cDNA contains an open reading frame
of 276 bp encoding a precursor protein of 92 amino acids. The
reading frame is followed by a 160-bp 3�-UTR, which con-
tains an AATAAA sequence for polyadenylation shortly up-
stream of a polyadenylated tail. The first 23 amino acids of
the precursor form the signal sequence and are separated by
the GnRH decapeptide by two serine residues. The decapep-
tide, in turn, is followed by a GKR sequence as well as a
56-amino acid peptide termed GnRH-associated peptide
(GAP). The GKR sequence serves to signal amidation of the
carboxyl terminus and enzymatic cleavage of the decapep-
tide from the precursor.

The human GnRH-I gene is composed of four exons sep-
arated by three introns and is present as a single gene copy
on chromosome 8p11.2-p21 (Fig. 1) (26, 27). The first exon of
the gene is untranslated and consists of 61 bp in mRNA
expressed in the hypothalamus. The second exon encodes the
signal sequence, the GnRH decapeptide, the GKR processing
signal, and the first 11 GAP residues. The third exon codes
for the next 32 GAP residues. The fourth exon encodes the
remaining GAP residues and contains the translation termi-
nation codon as well as the entire 3�-UTR (24, 26).

The human GnRH-II gene has been cloned and mapped to
chromosome 20p13 by fluorescence in situ hybridization (16).
It also comprises four exons interrupted by three introns, and
the predicted GnRH-II preprohormone is organized identi-
cally to the GnRH-I precursor (Fig. 1). However, the human
GnRH-II gene (2.1 kb) is shorter than the GnRH-I gene (5 kb)

FIG. 1. cDNA and genomic structures of human GnRH and GnRH receptor genes. In humans, two forms of GnRH, termed GnRH-I and GnRH-II,
encoded by separate genes on chromosome 8p11.2-p21 and 20p13 are identified. Both genes are composed of four exons (boxes) interrupted by
three introns (thin lines), and their encoded preprohormones are organized identically such that they all have a signal sequence, followed by
a GnRH decapeptide, a conserved GKR cleavage site, and a GAP. In contrast, only one conventional GnRH receptor subtype (termed type I GnRH
receptor) is found in the human body. The gene coding for the type I GnRH receptor lies on chromosome 4q21.2 and consists of three exons
separated by two introns. Exon 1 contains the 5�-UTR and encodes the first three TM domains and a portion of the fourth TM domain. Exon
2 is 220 bp in length and encodes the remainder of the fourth TM domain, the fifth TM domain, and part of the third intracellular loop. Exon
3 encodes the rest of the open reading frame and contains the 3�-UTR.
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because introns 2 and 3 of the latter are much larger (16).
Moreover, although their corresponding precursor proteins
are quite similar in length, the GAP is 50% longer in the
GnRH-II precursor (84 vs. 56 amino acids). In fact, a similar
disparity in GAP has also been reported in the placental
mammal, tree shrew (76 vs. 56 amino acids) (28), suggesting
that a relatively larger GAP may be a common characteristic
among mammalian GnRH-II precursors.

B. Tissue distribution in humans

1. Brain. The most prominent difference in the tissue distri-
bution of GnRH-I and GnRH-II in humans is that the latter
isoform is expressed at the highest level outside the brain
(16). The levels of GnRH-II mRNA in the kidney are approx-
imately 30-fold higher than in any brain region, whereas the
expression in the bone marrow and prostate is about 4-fold
greater than in the brain (16). Conversely, GnRH-I expression
was not observed at a high level outside the brain (16). In
humans, cell bodies of GnRH-I neurons are concentrated in
the preoptic area and basal hypothalamus. However, they
can also be found in the septal region and anterior olfactory
area, as well as the cortical and medial amygdaloid nuclei
(29). On the other hand, immunoreactive GnRH-I fibers are
localized predominantly in the median eminence and infun-
dibular stalk although substantial projections to the neuro-
hypophysis can be detected (30, 31). Using in situ RT-PCR,
expression of GnRH-I mRNA has been demonstrated in nor-
mal human pituitary and various types of pituitary adeno-
mas (32, 33).

In human brain, immunopositive GnRH-II signals localize
mainly in the periaqueductal region of the midbrain (34).
However, expression of GnRH-II mRNA in the human brain
was found to be most abundant in the caudate nucleus and,
to a lesser extent, in the hippocampus and amygdala (16).
Using RT-PCR and Southern blot analysis, two GnRH-II
mRNA variants were identified in human fetal brain and
adult thalamus but not in adult kidney. These transcripts
differ in the size of their GAPs, which are predicted to contain
77 and 84 amino acid residues (16).

Coexpression of GnRH-I and GnRH-II has been demon-
strated at both the mRNA and protein levels in certain hu-
man neuronal cell lines in which where the concentration of
GnRH-I is 10- to 40-fold higher than that of GnRH-II (35).

2. Placenta. It has long been shown that human placenta in
vitro synthesizes and secretes GnRH-I that is immunologi-
cally indistinguishable from its hypothalamic counterpart
(36, 37). Likewise, Siler-Khodr and Grayson (38) have shown
that GnRH-II is released from human placenta in vitro in a
pulsatile fashion and that this second GnRH form is more
resistant than GnRH-I to degradation by placental enzymes.
Examination of the spatiotemporal distribution of these hor-
mones revealed that both GnRH-I and GnRH-II mRNAs are
expressed in human first-trimester placenta (39). However,
only GnRH-I is also expressed in tissues obtained at term
(39). Using immunohistochemistry, both hormones were
found to localize in the mononucleate villus and in distinct
subpopulations of the extravillous cytotrophoblast. How-
ever, GnRH-I is also present in the outer multinucleated

syncytiotrophoblast layer and in cultures of cytotrophoblasts
allowed to undergo differentiation and fusion in vitro (39).

3. Uterus. Expression of GnRH-I mRNA has been demon-
strated in virtually all human uterine compartments (40–45).
Interestingly, a dynamic expression pattern is observed in
the endometrium as well as in isolated endometrial cells such
that a significant increase in transcript levels is detected in the
secretory phase of the menstrual cycle (44, 45). In support of
these observations, GnRH-I immunoreactivity has been
found in all endometrial cell types, with the most intense
staining being observed in the luteal phase (45).

The spatiotemporal expression of GnRH-II has also been
investigated in human endometrium. Throughout the entire
reproductive cycle, two splice variants of GnRH-II mRNA
are expressed, with the shorter transcript carrying a 21-bp
deletion, which reduces the length of GAP from 77 to 70
amino acids (46). Like GnRH-I, GnRH-II immunoreactivity is
dynamically expressed in stromal and epithelial cells such
that stronger signals are detected in the early and midsecre-
tory phases than in the proliferative and late-secretory
phases (46).

4. Ovary. Expression of GnRH-I and GnRH-II mRNAs iden-
tical to their brain counterparts has been demonstrated in
various human ovarian tissues including granulosa-luteal
(GL) cells, ovarian surface epithelial (OSE) cells, and ovarian
carcinoma (19, 20, 47, 48). In addition, expression of GnRH-I
mRNA and protein has been found in the tubal epithelium
of the fallopian tube during the luteal phase of the repro-
ductive cycle (49).

5. Other tissues. Both forms of GnRH are expressed in normal
human breast tissue and are overexpressed in breast cancer
(50, 51). Moreover, certain immune cell lineages such as T
lymphocytes and peripheral blood mononuclear cells have
been found to produce GnRH-I or both GnRH-I and GnRH-II
(7, 52, 53). In Jurkat leukemic T cells, the concentration of
GnRH-I is higher than that of GnRH-II, as determined by
RIAs (7). Expression of GnRH-I protein has also been dem-
onstrated in human seminiferous tubular cells (54) and pre-
implantation embryos, in which immunoreactive signals are
localized in all the blastomeres as well as the trophectoderm
and inner cell mass of the blastocyst (55).

C. Regulation of gene expression in humans

1. GnRH-I and GnRH-II. In human OSE, GL, and OVCAR-3
ovarian cancer cells, treatment with GnRH-I analogs pro-
duces a biphasic effect on its mRNA levels such that high
concentrations decrease whereas low concentrations in-
crease the expression (20, 47, 48). In contrast, GnRH-I sup-
presses its mRNA levels in peripheral blood mononuclear
cells in a dose-dependent manner (53). Homologous down-
regulation of GnRH-I mRNA levels has also been demon-
strated, in a dose- and time-dependent fashion, in rat hypo-
thalamus in vivo and in GT1–1 cells (56, 57). On the other
hand, heterologous regulation of GnRH-I expression has
been studied only in human GL cells, in which GnRH-II or
its analog causes down-regulation of GnRH-I mRNA levels
at a wide range of concentrations (20).
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2. Gonadal steroid hormones. There are substantial lines of
evidence indicating that the expression of GnRH-I and
GnRH-II is differentially regulated by gonadal steroids. In
human GL, OVCAR-3, and TE-671 neuronal cells, treatment
with 17�-estradiol (E2) down-regulates the steady-state
GnRH-I mRNA levels (58–61). This E2 action is believed to
be mediated via the nuclear estrogen receptor (ER) because
cotreatment with the antiestrogen tamoxifen can abolish the
inhibitory effect. Using the ER-negative Chinese hamster
ovary-K1 cell line as a model, Chen et al. (62) demonstrated
that E2 can repress the human GnRH-I promoter when ER�
is overexpressed. Also, they found that the estrogen response
area lies between 169 and 548 bp 5� of the upstream tran-
scription start site of the GnRH-I gene. Similarly, E2 has been
found to suppress the mRNA expression and promoter ac-
tivity of the GnRH-I gene in mouse GT1–7 neurons, possibly
via an ER�-mediated mechanism (63). On the contrary, our
laboratory has recently shown that E2 increases GnRH-II
mRNA levels in a dose- and time-dependent manner in hu-
man GL cells (61). Likewise, a stimulatory effect of E2 on
GnRH-II expression has been reported in TE-671 cells (60).

The role of progesterone in regulating GnRH-I and
GnRH-II expression has been investigated in human GL cells.
Whereas treatment with the progesterone receptor (PR) an-
tagonist RU486 does not affect GnRH-I mRNA levels, the
levels of GnRH-II transcript are stimulated by the antagonist
in a dose and time-dependent manner (61), suggesting that
the gonadal steroid has an inhibitory role in GnRH-II ex-
pression in the ovary.

Regulation of GnRH-I gene expression by androgen has
been examined in the androgen receptor-expressing
GT1–7 cell line. In these cells, treatment with 5�-dihy-
drotestosterone causes a time-dependent reduction in
GnRH-I mRNA levels, and this repression can be blocked
by the androgen receptor antagonist hydroxyflutamide
(64). However, no significant changes in GnRH-I expres-
sion can be observed when the hypothalamic neurons are
treated with cell-impermeable testosterone-BSA conju-
gates (65), indicating that the androgen action is mediated
via classical nuclear receptor activation.

3. Gonadotropins. Further evidence that the expression of the
two forms of GnRH is differentially modulated comes from
studies on their regulation by gonadotropins, which mediate
their actions by stimulating intracellular cAMP production
and activating the protein kinase A signaling pathway. In
human GL cells, treatment with FSH or human (h) chorionic
gonadotropin (CG) up-regulates the mRNA levels of
GnRH-II but down-regulates those of GnRH-I in a dose-
dependent manner (20). Consistently, an increase in GnRH-II
mRNA and protein levels in response to cAMP has been
observed in TE-671 cells (66). This cAMP-activated GnRH-II
gene expression is thought to occur at the transcriptional
level because mutation of a putative cAMP-responsive ele-
ment (CRE) in the human GnRH-II 5�-flanking region causes
a reduction in both the cAMP-induced and basal promoter
activities (66).

4. Other physiological regulators. It has been shown recently
that IL-1� can up-regulate GnRH-I mRNA levels in human

endometrial stromal cells in vitro in a dose-dependent man-
ner (67). In addition, an increase in human GnRH-I gene
transcription has been observed in NLT neuronal cells fol-
lowing IGF-I treatment (68). This stimulation is likely me-
diated via a consensus activator protein-1 (AP-1) motif in the
proximal promoter region of the gene (68). Moreover, certain
odorants have been found to induce a dramatic increase in
GnRH-I mRNA levels and protein release in human olfactory
cells (69), which share a common origin with GnRH-I neu-
rons during organogenesis (70, 71). Using the immortalized
GT1–7 neurons as a model, Roy et al. (72) and Roy and
Belsham (73) have demonstrated that melatonin significantly
down-regulates GnRH-I mRNA levels in a 24-h cyclical man-
ner and that this regulation may involve the protein kinase
C (PKC) and the ERK1/2 pathways.

5. Basal transcriptional regulation. The molecular mechanism
underlying neuron-specific expression of the human GnRH-I
gene has been explored. By means of deletion analysis, a
region between �992 and �795 of the human GnRH-I 5�-
flanking region was found to be essential and sufficient for
targeting luciferase expression in the hypothalamus and ol-
factory tissue in vivo (74). This region contains two specific
DNA-binding sites for the POU homeodomain transcription
factors Brn-2 and Oct-1. Functional studies revealed that
overexpression of Brn-2, but not Oct-1, can transactivate both
the human and mouse GnRH-I promoters (74). These find-
ings thus indicate a role of Brn-2 or Brn-2-related proteins in
regulating neuron-specific GnRH-I gene transcription.

In addition to the putative CRE described (66), we have
recently uncovered a novel function of the untranslated first
exon of the human GnRH-II gene in mediating full expres-
sion of GnRH-II promoter activity (75). Although this exon
can work as a stand-alone enhancer element, its enhancer
activity is strictly dependent on its position and orientation
relative to the target sequence (75). Two putative E box
binding sites and one Ets-like element are present juxtaposed
to each other within the exon, and site-directed mutagenesis
indicated that these motifs function in a cooperative manner
to stimulate basal GnRH-II gene transcription (75). Detailed
characterization of the E box binding factors revealed that the
basic helix-loop-helix transcription factor AP-4 (76), the ex-
pression of which correlates well with that of GnRH-II, is an
enhancer protein for the human GnRH-II promoter (75).

III. Molecular Characterization of Human Type I
GnRH Receptor Gene

A. cDNA cloning

The GnRH receptor belongs to a member of the rhodopsin-
like G protein-coupled receptor (GPCR) superfamily, which
contains a characteristic seven-transmembrane (TM)-domain
structure (77–79). However, unlike other members of the
GPCR family, the mammalian GnRH receptor lacks the en-
tire carboxyl-terminal tail (77, 78), which is known to par-
ticipate in various aspects of GPCR regulation through in-
teraction with a network of receptor-associated proteins (80,
81). A number of amino acid residues of critical importance
for receptor function have been identified in the human
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GnRH receptor. For instance, Ala (261) in the third intracel-
lular loop is crucial for G protein coupling and receptor
internalization (82), whereas Asp (98), Trp (101), Asn (102),
Lys (121), Asn (212), and Asp (302) are important for ligand
binding (83–87). In addition, the extra species-specific Lys
(191) residue has been shown to be a significant determinant
of the expression and internalization of the human GnRH
receptor (88).

B. Genomic organization and chromosomal localization

In contrast to the genes of many other GPCRs, which are
intronless and believed to have arisen by retroposition (89),
the human GnRH receptor gene is composed of three exons
separated by two introns and spans more than 15 kb along
the chromosome (Fig. 1) (90, 91). Exon 1 contains the 5�-UTR
and the first 522 nucleotides of the open reading frame,
which encode the first three TM domains and a portion of the
fourth TM domain. Exon 2 encodes the next 220 nucleotides
of the reading frame, which encompass the remainder of the
fourth TM domain, the fifth TM domain, as well as part of
the third intracellular loop. Exon 3 contains the rest of the
coding sequence and the 3�-UTR. Although the location of all
the exon-intron boundaries of the human GnRH receptor
gene is perfectly conserved in the rodent and ovine se-
quences, the first intron of the human gene is comparatively
much smaller (92–94). Using genomic Southern blot and
chromosomal in situ hybridization, the human GnRH recep-
tor gene has been identified as a single copy on chromosome
4q21.2 (91, 95).

C. Untranslated and 5�-flanking regions

Five and 18 transcription start sites have been identified
for the GnRH receptor gene in human brain and pituitary,
respectively (90, 91). All these start sites are clustered into
two regions, which are 579–819 and 1348–1751 bp upstream
of the ATG initiation codon. Five typical polyadenylation
signals residing within an 800-bp area in a cluster-like format
are present in the 3�-UTR of the human GnRH receptor gene
(90). Also, the 3�-UTR contains several ATTTA motifs, which
are implicated in mRNA instability and are notably present
in many RNAs that are rapidly degraded (96, 97). The size
of the GnRH receptor mRNA predicted from the length of the
5�- and 3�-UTRs is about 5.5 kb, which is in close agreement
with the reported size of the major transcript (4.7–5 kb)
expressed in human pituitary.

Although the proximal 5�-flanking region of the human
GnRH receptor gene shares a substantial homology with that
of the rodent and ovine sequences (90, 92–94), the human
gene possesses some distinctive features that are not ob-
served in other species. One significant difference between
the human and rodent genes is the location of their tran-
scription start sites. Thus, whereas the start sites for the
rodent genes are within 100 nucleotides from the initiation
codon (92, 94), those for the human gene are no less than 703
bp (90). Another difference is that the human sequence con-
tains multiple canonical TATA and CAAT boxes residing in
close proximity to each other near the transcription start sites
(90, 91). The presence of consensus TATA boxes is unusual

among all the GPCRs sequenced to date, as many of these
genes contain GC-rich promoter regions (98–101).

D. Tissue distribution in humans

1. Pituitary. Northern blot analysis has revealed a predom-
inant GnRH receptor transcript of 4.7–5 kb as well as two
fainter bands of 2.5 and 1.5 kb in human pituitary (91, 102).
All these mRNA species contain the full-length coding se-
quence and are correctly spliced (91). Additionally, two
splice variants of the human GnRH receptor, termed sb2 and
sb3, have been identified in normal pituitary and pituitary
adenoma (103, 104). The shorter transcript sb3 contains a
220-bp deletion in exon 2 such that it codes for a protein of
only 177 amino acids, lacking the last four TM domains, the
second and third extracellular loops, as well as the third
intracellular loop. On the other hand, the sb2 variant carries
a shorter deletion of 128 bp and arises from alternative splic-
ing by accepting a cryptic acceptor site in exon 2. This de-
letion generates a truncated protein in which the glutamine
residue at position 174 is followed by a stretch of 75 new
amino acids (104). Interestingly, when coexpressed with the
full-length receptor cDNA, the sb2 variant exhibits a dom-
inant-negative action on GnRH receptor signaling, poten-
tially by impairing insertion of the wild-type receptor protein
into the plasma membrane. This inhibitory effect is highly
specific for the GnRH receptor as signaling via other GPCRs
is not affected (103).

The distribution of GnRH receptor immunoreactivity in
normal and tumorous human pituitary has also been deter-
mined. In normal adenohypophysis, immunopositive sig-
nals colocalize with �-subunit-, FSH�-, LH�-, TSH �-, and
GH-producing cells (105), suggesting that the receptor is
expressed in gonadotropes, thyrotropes, as well as somato-
tropes. Consistent with the mRNA expression pattern in
tumorous pituitary, immunoreactive GnRH receptor signals
are frequently detected in adenomas derived from gonado-
tropes, somatotropes, and �-subunit/null-cells (33, 105).

2. Placenta. Using in situ hybridization, expression of GnRH
receptor has been demonstrated in the cytotrophoblast and
syncytiotrophoblast cell layers of human placenta (106). The
temporal expression of the placental receptor parallels with
the time course of hCG secretion and peaks at 9 wk (106). The
full-length GnRH receptor cDNA has been cloned from var-
ious human placental cell types, and their nucleotide se-
quences are identical to that of the pituitary receptor (107).
Northern blot hybridization indicated that a 2.5- and 1.2-kb
transcript, but not the major 4.7–5-kb one found in the pi-
tuitary, are expressed in the placental cells (107).

3. Ovary. High-affinity binding sites specific for GnRH-I have
been detected in human corpus luteum, luteinized granulosa
cells, epithelial ovarian carcinoma, and a number of ovarian
cancer cell lines (108–111). Interestingly, an additional type
of GnRH-I binding site, which is of lower affinity but higher
capacity, is found in EFO-21 and EFO-27 ovarian cancer cells
(110). Using RT-PCR and Southern blot analysis, expression
of GnRH receptor mRNA indistinguishable from its pituitary
counterpart has been demonstrated in various ovarian com-
partments (Fig. 2) (19, 48, 112, 113).
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4. Uterus. Similar to EFO-21 and EFO-27 cells, two types of
GnRH-I binding sites exist in HEC-1A and Ishikawa endo-
metrial carcinoma cell lines (114). However, only one class of
high-affinity binding site was found in normal endometrial
tissue, endometrial carcinoma, and certain endometrial can-
cer cells (115, 116). Using immunohistochemistry, membrane
receptors specific for GnRH-I have been found in myometrial
and leiomyomal cells (43). On the other hand, expression of
GnRH receptor mRNA has been demonstrated in both nor-
mal and neoplastic uterine cells including those derived from
stromal and ectopic endometrial tissues (41, 43, 67, 117, 118).
Like the placental and ovarian receptors, sequence analysis
revealed that the entire coding region of the endometrial
GnRH receptor cDNA contains neither mutations nor alter-
native splicing patterns (118).

5. Prostate gland. The presence of specific binding sites for
GnRH-I has been demonstrated in human prostate cancer
and certain prostatic cancer cell lines (119–121). However,
the affinity of these sites is generally lower than that of the
pituitary receptor (120, 121). PCR products of the expected
size for the GnRH receptor cDNA have been obtained from
both normal and neoplastic prostate samples (Fig. 2) (112,
122–125), whereas immunopositive signals have been de-
tected in tumorous prostate tissue as well as intraprostatic
lymphocytes (125). Expression of GnRH receptor in the pros-
tate is further supported by the detection of a 64-kDa band,
which corresponds well to the molecular mass of the pitu-
itary GnRH receptor, in LnCAP and DU 145 cells (123).

6. Breast. The existence of specific GnRH-I binding sites has
been reported in breast carcinoma and MCF-7 mammary
cancer cells (126, 127). Interestingly, the MCF-7 cells express
two distinct types of binding sites, one of high affinity, which
is specific for GnRH-I, and the other, which is only recog-
nizable by GnRH-I antagonists (127). Expression of GnRH
receptor immunoreactivity and mRNA with sequence iden-
tical to the pituitary counterpart has been demonstrated in
both normal and malignant breast tissues (Fig. 2) (112, 128,
129). However, unlike its ligands (51), expression of GnRH
receptor is not up-regulated in breast cancer cells (128).

7. Other extrapituitary tissues. Multiple lines of evidence in-
dicate that the expression of extrapituitary GnRH receptor is
not limited to reproductive tissues. For instance, it has been
demonstrated by RT-PCR and Southern blot hybridization
that the receptor is also expressed in the liver, heart, skeletal

muscle, kidney, and peripheral blood mononuclear cells (53,
130). Moreover, the receptor is expressed in melanoma cells
at both the RNA and protein levels (131).

E. Regulation of gene expression in humans

1. GnRH-I and GnRH-II. It has been well documented that
pituitary GnRH receptor expression is dynamically regu-
lated by GnRH-I such that subnanomolar concentrations up-
regulate whereas high concentrations down-regulate recep-
tor expression (132–135). The extent of this up-regulation,
however, is differentially controlled by varying GnRH-I
pulse frequencies such that maximal stimulation is achieved
at a frequency of every 30 min in cultured rat pituitary cells
(136). Similarly, a biphasic effect of GnRH-I on GnRH re-
ceptor expression has been demonstrated in human GL, OSE,
ovarian cancer, and peripheral blood mononuclear cells (20,
47, 48, 53). Conversely, a significant increase instead of de-
crease in receptor mRNA levels is observed in JEG-3 cho-
riocarcinoma and extravillous trophoblast cells after chronic
GnRH-I stimulation (107). The effect of GnRH-II on GnRH
receptor expression has also been investigated in human GL
cells. In contrast to the biphasic response induced by GnRH-I,
treatment with GnRH-II or its analog significantly inhibits
the mRNA levels of the receptor in the steroidogenic cells
irrespective of the concentration used (20).

2. Gonadal steroid hormones. The role of E2 in regulating GnRH
receptor expression has been extensively studied at the pi-
tuitary level, where the gonadal effect is dynamic and ap-
parently depends on the administration pattern (137–140). In
humans, modulation of GnRH receptor expression by E2 has
been examined in extrapituitary tissues. Using semiquanti-
tative RT-PCR, the steady-state mRNA levels of the receptor
were found to be suppressed by E2 in GL and OVCAR-3 cells
in a dose- and time-dependent manner (58, 59). This inhib-
itory effect can be abolished by cotreatment with tamoxifen,
suggesting the mediation through the classical ER. Accord-
ingly, E2 has been demonstrated to repress the human GnRH
receptor promoter in ovarian cancer cells via an ER�-depen-
dent mechanism (141). In addition to modulating gene tran-
scription, prolonged E2 treatment has been shown to increase
glycosylation of the ovine GnRH receptor to generate a 43-
kDa protein (142, 143). Although the biological significance
of this estrogen-induced hyperglycosylation is unclear, it
appears that this posttranslational modification is not asso-
ciated with pituitary desensitization of LH response to
GnRH-I (143).

Several lines of evidence indicate that progesterone di-
rectly inhibits GnRH receptor expression in the pituitary
(144–147). Intriguingly, our colleagues have revealed that the
gonadal steroid has a dual role in controlling human GnRH
receptor gene transcription such that the hormone sup-
presses the GnRH receptor promoter in gonadotropes but
stimulates it in placental cells (148). The molecular mecha-
nism underlying these opposing effects of progesterone will
be discussed in detail below.

3. Gonadotropins. In human GL cells, treatment with hCG for
24 h induces a dose-dependent inhibition of GnRH receptor
mRNA levels (113). Accordingly, a similar effect has also

FIG. 2. PCR amplification and Southern blot analysis of the type I
GnRH receptor cDNA from various human tissues and tumor cell
lines. N, Normal; T, tumor. MCF-7 and MDA-MB 468 are breast
tumor cell lines, whereas PC-3 and LnCAP are prostate tumor cell
lines. [Reproduced with permission from S. S. Kakar et al.: Mol Cell
Endocrinol 106:145–149, 1994 (112). © 1994 Elsevier.]
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been demonstrated in rat granulosa cells, rat testis, and
GT1–7 neurons (149–151). However, contradictory results
have been obtained from JEG-3 cells, in which the gonado-
tropin stimulates the receptor expression at the transcrip-
tional level (107, 152). Thus, it is conceivable that the effect
of gonadotropins on GnRH receptor gene expression may be
tissue specific.

4. Melatonin. It has become increasingly evident that mela-
tonin can modulate ovarian functions in an autocrine manner
(153–157). In human GL cells, transcripts encoding two mel-
atonin receptor subtypes MT1 and MT2, which are homolo-
gous to their brain counterparts, have been identified (154,
157). Accordingly, treatment of the steroidogenic cells with
melatonin significantly decreases the steady-state mRNA
levels of the GnRH receptor and GnRH-I but increases those
of the LH receptor in a dose-dependent manner (157). Be-
cause GnRH-I has been implicated as a luteolytic factor in the
ovary (5), it is postulated that this melatonin-induced down-
regulation of GnRH receptor expression may interfere with
corpus luteum regression during the mid- and late luteal
phases of the reproductive cycle (157).

5. Activin. It has been demonstrated that activin A can stim-
ulate the synthesis of GnRH receptor in rat pituitary cells
(158). In �T3–1 cells expressing the inhibin �B-subunit, ac-
tivin A increases GnRH receptor mRNA levels and promoter
activity in a dose- and time-dependent manner, and these
effects can be abolished by the activin antagonist follistatin
(159). On the contrary, treatment with follistatin alone de-
creases the basal transcription of the gene, suggesting a po-
tential autocrine and/or paracrine role of endogenous ac-
tivin B in GnRH receptor expression in the gonadotropes
(159). The biological significance of this activin-stimulated
GnRH receptor gene transcription is confirmed by the ob-
servation that activin A pretreatment can enhance the
GnRH-I responsiveness of the human glycoprotein �-sub-
unit promoter (159).

F. Pathophysiology of human GnRH receptor mutations

Idiopathic hypogonadotropic hypogonadism (IHH) is a
clinical disorder characterized by delayed sexual develop-
ment and inappropriately low gonadotropin and sex steroid
levels in the absence of any anatomical or functional abnor-
malities of the hypothalamic-pituitary axis (160). Patients
with IHH exhibit a wide spectrum of phenotypes, ranging
from partial to complete hypogonadism even among affected
kindred. In addition, this disorder is genetically heteroge-
neous and may be sporadic or familial. Mutations of two
distinct genes located at the short arm of the X chromosome,
KAL-1 and DAX-1, are responsible for the X-linked forms of
IHH, which are accompanied by anosmia and adrenal in-
sufficiency, respectively (161–163). In contrast, mutations of
the GnRH receptor gene cause IHH without anosmia or
adrenal failure and are responsible for autosomal inheritance
of the disorder. To date, a total of 15 naturally occurring
mutations have been identified along the entire sequence of
the human GnRH receptor gene. Of these, one is a truncation
mutant, nine are compound heterozygotes (164–172), and
five are compound homozygotes (168, 173, 174). Functional

studies in heterologous cell systems demonstrated that the
naturally occurring GnRH receptor mutants have impaired
cellular expression, ligand binding, and/or signal transduc-
tion such that 10 of them are totally nonfunctional (E90K,
A129D, R139H, S168R, A171T, C200Y, S217R, L266R, C279Y, and
L314X), whereas others retain a modest degree of receptor
function (N10K, T32I, Q106R, R262Q, and Y284C). However,
there are emerging data suggesting that misrouting of these
mutant receptors contributes to the molecular etiology of
normosomic, adrenal-sufficient IHH (175–177).

IV. Transcriptional Regulation of Human Type I
GnRH Receptor Gene

A. Cell-specific promoters

The isolation of the human GnRH receptor 5�-flanking
sequence has led to an intensive research on the transcrip-
tional regulation of the gene (Fig. 3). Using �T3–1 cells as a
model, the proximal 173-bp flanking region was found to be
important for directing GnRH receptor gene expression in
gonadotropes (178). This regulatory region contains two pu-
tative gonadotrope-specific elements (GSEs) with the core
sequence 5�-TGA/TCC-3� at �143/�135 and �13/�5. Such
regulatory elements have been shown to confer cell-specific
expression of the glycoprotein hormone �-subunit (179, 180)
and LH� (181) genes in pituitary gonadotropes. Site-directed
mutagenesis revealed that the upstream GSE (i.e., at �143/
�135) is essential for gonadotrope-specific transcription of
the GnRH receptor gene because mutation of this element
selectively impairs the promoter function in �T3–1 cells
(178). EMSAs indicated that the orphan nuclear receptor
steroidogenic factor-1 (SF-1) binds specifically to the up-
stream GSE, of which the second, fifth, sixth, and the ninth
nucleotides are crucial for the interaction (178). The func-
tional significance of SF-1 in regulating human GnRH re-
ceptor gene transcription in gonadotropes is confirmed by
the findings that overexpression of sense and antisense SF-1
mRNAs can stimulate and repress the native promoter, re-
spectively (178).

Because SF-1 is also expressed in extrapituitary sites, most
prominently in steroidogenic tissues (182, 183), it has been
suggested that GSEs may not be the sole mediator in con-
ferring gonadotrope-specific gene expression. In support of
this view, an earlier study on the transcriptional regulation
of the mouse GnRH receptor gene has revealed the impor-
tance of a tripartite enhancer element in targeting gonado-
trope-specific GnRH receptor expression (184). This en-
hancer consists of a SF-1 binding site, a canonical AP-1 site,
and a novel element termed GRAS. Interestingly, the GRAS
motif can function as a stand-alone enhancer to stimulate a
heterologous promoter selectively in �T3–1 cells (184). De-
spite sharing a high degree of homology with the mouse
sequence, the human gene possesses neither the AP-1 nor the
GRAS site in the corresponding positions along the proximal
promoter region (178). These observations thus indicate that
differential transcriptional apparatus may be involved in
gonadotrope-specific expression of the human and rodent
GnRH receptor genes.

Many studies suggest that tissue-specific gene expression
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can be mediated via differential promoter usage in various
cell types (185–187). Accordingly, Cheng et al. (188) have
identified a novel human GnRH receptor promoter residing
between �1737 and �1346, which is highly active in JEG-3
and extravillous trophoblast cells. The usage of this distal
promoter is supported by the identification of five transcrip-
tion start sites at �1629, �1608, �1416, �1391, and �1379 in
the placental cells. Four putative cis-acting regulatory motifs
termed human (h) hGR-Oct-1 (�1718/�1711), hGR-CRE
(�1650/�1642), hGR-GATA (�1603/�1598), and hGR-
AP-1 (�1519/�1513), which can interact specifically with
transcription factors Oct-1, CRE-binding protein (CREB),
GATA-2, GATA-3, and c-Jun/c-Fos heterodimer, were iden-
tified in the distal promoter (188). Mutational analysis indi-
cated that the hGR-Oct-1 and hGR-AP-1 motifs act in a ubiq-
uitous manner. Conversely, the hGR-CRE and hGR-GATA
motifs appear to play a role in placenta-specific gene tran-
scription because mutations of these elements result in a
selective loss of promoter activity in JEG-3 cells (188).

Using a similar deletion approach, we have identified a
new upstream GnRH receptor promoter that is primarily
used by human GL cells (189). This novel promoter resides
between �1300 and �1018 and contains two putative
CCAAT/enhancer binding protein motifs and one GATA
motif. The usage of this promoter in the GL cells is confirmed
by the detection of a major transcription start site at �769,
which is shortly downstream of a canonical TATA and
CAAT box (189). Site-directed mutagenesis revealed that the
CCAAT/enhancer binding protein and GATA binding sites
work cooperatively to regulate the GnRH receptor promoter
in the GL cells because simultaneous mutations of all these
elements are required to cause a drastic abolishment of pro-
moter function (189). Most importantly, these observations
strengthen the notion that tissue-specific expression of the
human GnRH receptor gene is mediated, at least partly, via
differential promoter usage in various cell types.

B. Transcriptional regulation by GnRH-I

Previous studies on homologous activation of the mouse
GnRH receptor promoter in �T3–1 cells have revealed an
integral role of a consensus AP-1 motif as well as the PKC and
ERK1/2 signaling pathways (190, 191). Interestingly, this
GnRH-I-stimulated effect can be augmented by activin A
pretreatment, which is inhibited by follistatin (192). Deletion
analysis of the mouse GnRH receptor promoter indicated
that the region between �387 and �308, which contains two
overlapping cis-acting regulatory motifs (the GRAS at �329/
�318 and a SMAD-binding element at �331/�324), is re-
sponsible for the augmented response (192, 193). Competi-
tive EMSAs showed that AP-1 and SMAD protein complexes
bind respectively to �327/�322 and �329/�328, and dis-
ruption of either motif can eliminate both the GnRH-I and
activin A responsiveness of the mouse GnRH receptor pro-
moter (193). The functional significance of the SMAD-bind-
ing element is further supported by the observation that
overexpression of SMAD2 and SMAD3 along with SMAD4
can increase the transcription of the GnRH receptor gene
(192).

Transcriptional regulation of the human GnRH receptor
gene by GnRH-I has also been investigated. In �T3–1 cells,
continuous administration of [d-Ala6]-GnRH-I represses the
human GnRH receptor promoter in a dose- and time-depen-
dent manner via a PKC-dependent pathway (194). Subse-
quent experiments indicated that a 248-bp region between
�1018 and �771 is sufficient for mediating the suppression
and that mutation of an AP-1-like motif (�1000/�994) can
abolish the sensitivity of the promoter to both the GnRH-I
analog and phorbol ester (194). EMSAs revealed that the
AP-1-like motif binds c-Jun homodimer under nonstimu-
lated conditions. However, an additional complex that is
recognized by both anti-c-Jun and anti-c-Fos is formed when
nuclear extracts from GnRH-I-stimulated cells are used (194).

FIG. 3. Summary of transcriptional
regulation of the human type I GnRH
receptor gene. A diagrammatic repre-
sentation of the human type I GnRH
receptor 5�-flanking region. The loca-
tion of key regulatory motifs (all loca-
tions are relative to the ATG start
codon, of which the position is assigned
as �1) and their functional significance
are indicated. Transcription factors
that interact specifically with the cor-
responding cis-acting motifs are listed
in square brackets. It is noteworthy that
tissue-specific gene expression of the
GnRH receptor is mediated, at least
partly, by differential usage of various
promoter elements (shown as shaded
boxes) in different cell types.
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Therefore, it is apparent that homologous repression of the
human GnRH receptor promoter may involve induction of
c-Fos DNA binding activity at the AP-1-like site. Signifi-
cantly, this GnRH-I-mediated down-regulation of GnRH re-
ceptor gene transcription may serve as a putative mechanism
for pituitary desensitization to prolonged ligand stimulation.
However, it is important to note that under conditions that
can produce the maximal stimulatory response of the rodent
GnRH receptor promoter (190, 191), a significant inhibition
is observed for the human counterpart (194). These results
thus further highlight the potential existence of species-
specific mechanisms in transcriptional regulation among the
GnRH receptor genes.

C. Transcriptional regulation by the cAMP-dependent
signal transduction pathway

The cAMP signaling pathway is known to enhance the
responsiveness of gonadotropes to GnRH-I by up-regulating
GnRH receptor expression (195–198). Moreover, an increase
in GnRH receptor mRNA levels has been demonstrated in
placental cells after forskolin treatment (107). These stimu-
latory effects are thought to occur at the transcriptional level
because forskolin can activate the human GnRH receptor
promoter in a dose- and time-dependent manner in �T3–1
and JEG-3 cells (152, 199). Similar responses are also ob-
served with other physiological regulators that activate the
cAMP-dependent signaling pathway (152, 199). Using pro-
gressive deletion analysis, the forskolin response area has
been mapped to a region between �577 and �167, within
which two potential AP-1/CREB binding sites termed hGR-
AP/CRE-1 (�569/�562) and hGR-AP/CRE-2 (�341/�334)
partly contributing to the forskolin effect were identified
(152, 199). Although both the hGR-AP/CRE-1 and hGR-AP/
CRE-2 sites interact specifically with CREB in forskolin-stim-
ulated cells, a differential binding of transcription factors to
hGR-AP/CRE-2 was observed such that the motif interacts
primarily with AP-1 when nuclear extracts from nonstimu-
lated �T3–1 cells were used (152, 199).

D. Transcriptional regulation by gonadal steroid hormones

A study from Cheng et al. (148) has shown that proges-
terone can repress the human GnRH receptor promoter in
�T3–1 cells in a dose- and time-dependent fashion. In con-
trast, the steroid exerts a stimulatory effect in JEG-3 cells as
blockade of endogenous progesterone production silences
the GnRH receptor promoter. Deletion and mutational anal-
ysis indicated that an imperfect progesterone-response
element at �536/�522 is responsible for mediating the
responses in both the �T3–1 and JEG-3 cells (148). Using
EMSAs, a specific binding of PRs to the response element has
been demonstrated (148), thus indicating a direct involve-
ment of the nuclear receptors in conferring the transcrip-
tional effects. Overexpression of the two human PR isoforms
(PR-A and PR-B) indicated that PR-B plays a predominant
role in mediating the down-regulatory effect in �T3–1 cells.
On the contrary, a differential action of PR-A and PR-B is
observed in JEG-3 cells such that PR-B stimulates whereas
PR-A suppresses the GnRH receptor promoter (148). In con-

cert with these findings, PR-B has been identified as the major
PR subtype in the placental cells (148), thus supporting a
positive role of progesterone in controlling human GnRH
receptor gene transcription in the placenta.

The mechanism by which estrogen regulates GnRH re-
ceptor gene transcription in ovarian and breast cancer cells
has only been recently elucidated. In these cells, E2 can re-
press the human GnRH receptor promoter via a nonconsen-
sus AP-1 motif and ER�, of which the DNA-binding domain
and the ligand-binding domain are indispensable for the
repression (141). Interestingly, the same cis-acting motif is
also important for both the basal activity as well as phorbol
12-myristate 13-acetate (PMA) responsiveness of the GnRH
receptor promoter. Multiple transcription factors including
c-Jun and c-Fos, but not ER�, bind to the AP-1 site, indicating
that the E2-induced repression occurs independently of di-
rect ER binding to the promoter (141). This observation may
be supported by the fact that no estrogen-response elements
can be identified in GnRH receptor 5�-flanking regions se-
quenced so far (90, 92–94). Intriguingly, the repressive effect
of E2 on the human GnRH receptor promoter can be antag-
onized by cotreatment with PMA, which stimulates c-Jun
phosphorylation at serine 63 (141), a process prerequisite for
recruitment of the transcriptional coactivator CREB-binding
protein (200, 201). Concomitantly, overexpression of the co-
activator can reverse the suppression in a dose-dependent
manner (141), suggesting that E2-bound ER� represses hu-
man GnRH receptor gene transcription via an indirect mech-
anism involving competition for a limiting amount of CREB-
binding protein.

E. Transcriptional repression

Several reports from our laboratory have consistently sug-
gested the presence of a very strong negative regulatory
element (NRE) (�1017/�771) in the human GnRH receptor
5�-flanking region (188, 189, 202). Although this repressive
element can work ubiquitously in a heterologous environ-
ment, its silencing activity is dependent on its orientation
relative to the target promoter sequence (203). Progressive
deletion analysis revealed that most of the NRE silencing
effect resides in an evolutionarily conserved octamer se-
quence (�1017/�1009), which can suppress the native pro-
moter activity by almost 90% in JEG-3 cells (203). Results
from EMSAs and Southwestern blot analysis have convinc-
ingly shown that the ubiquitously expressed POU home-
odomain transcription factor Oct-1 is the repressor protein
binding to the powerful NRE (203).

It is important to point out that the mouse gonadotrope-
derived �T3–1 cell line is employed as the model system, in
most if not all studies, to investigate the transcriptional reg-
ulation of the human GnRH receptor gene in the pituitary
(148, 178, 188, 194, 202, 203). Such cross-species studies may
not be capable of accurately reflecting the mechanisms op-
erating in the human counterpart, and the observable dif-
ferences in transcriptional control between the human and
rodent GnRH receptor genes may be due to the absence of
certain species-specific transcription factor(s) in the mouse
gonadotropes.
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V. Signal Transduction Mechanism of the
Mammalian Type I GnRH Receptor

A. G protein coupling

The nature of G protein-coupled signaling initiated by the
GnRH receptor depends largely on the cellular context. For
instance, it has been demonstrated that the human receptor
couples to G�q/11 in heterologous Chinese hamster ovary-K1
and COS-7 cells (204) but to G�s in the placenta (107). In con-
trast, others have reported that the receptor couples selectively
to G�i in some reproductive tract tumors and their derived cell
lines (2, 118, 123, 205). Interestingly, there is evidence showing
that the rodent GnRH receptor couples to multiple G proteins
in a single cell type (206–208). In GT1–7 neurons, high GnRH-I
analog concentrations induce a ligand-dependent switch of G
protein coupling from G�s to G�i, the activation of which in-
hibits episodic GnRH-I release, possibly via regulation of mem-
brane ion channels (208). Such negative feedback action serves
as an autocrine mechanism for the genesis of pulsatile GnRH-I
secretion that is essential for the maintenance of normal go-
nadotropin release profiles and gonadal functions.

B. MAPKs

The MAPKs play an integral role in GPCR-mediated intra-
cellular signaling (209, 210). In mouse pituitary gonadotropes,
the GnRH receptor activates four MAPK cascades including the
ERK1/2, the c-Jun amino-terminal kinase (JNK), the p38
MAPK, and the big MAPK (BMK1/ERK5) (211–213) to various
extents by a PKC-, Ca2�-, and tyrosine kinase-dependent mech-
anism (214, 215). For ERK1/2, the activation is primarily PKC
dependent and involves two distinct pathways that converge at
Raf-1 (216–218). Also, this process requires Ca2� elevation (216,
219) and sublocalization of the receptor to low-density mem-
brane microdomains (220). On the other hand, activation of JNK
is highly dependent on cytosolic Ca2� and is mediated via a
pathway requiring sequential stimulation of PKC, c-Src,
CDC42/Rac1, and MAPK kinase (MEK)K1 (221, 222). Although
the signaling pathways leading to p38 MAPK and BMK1 ac-
tivation are less clear, it appears that the activation involves a
PKC-dependent cascade (214, 218, 223). Stimulation of MAPK
cascades by the GnRH receptor has also been investigated in
other cell types, in which the intracellular mechanisms mainly
involve transactivation of the epidermal growth factor receptor
(224, 225).

C. Receptor desensitization and internalization

Activation of GPCRs is typically followed by their desensi-
tization and internalization, and these processes involve rapid
agonist-induced receptor phosphorylation by both second mes-
senger-dependent protein kinases and G protein-coupled re-
ceptor kinases (81). Because the serine and threonine residues
that are phosphorylated by G protein-coupled receptor kinases
are often located in the carboxyl-terminal tail (81), which is
uniquely absent in the mammalian GnRH receptor, a number
of studies have revealed that the tailless GnRH receptor neither
undergoes rapid homologous desensitization nor exhibits
agonist-induced receptor phosphorylation (226–230). In addi-
tion, the receptor internalizes slowly via clathrin-coated vesi-

cles, and this process occurs independently of �-arrestin and
dynamin (226, 229–231). The unusual resistance of the mam-
malian GnRH receptor to desensitization may be essential for
mediating its direct antiproliferative effect (will be discussed in
detail below), which requires sustained ligand stimulation and
is shown to be ineffective by receptors having a carboxyl-ter-
minal tail (230, 232).

VI. Biological Actions of GnRH-I and GnRH-II
in Humans

In addition to its pivotal role in stimulating gonadotropin
synthesis and secretion, GnRH-I functions as an autocrine
and/or paracrine factor in a number of extrapituitary com-
partments, where it regulates steroidogenesis, cell prolifer-
ation, apoptosis, and embryo implantation (Table 1). In tu-
mors derived from various reproductive tissues, there is
solid evidence showing that the GnRH receptor couples to a
pertussis toxin-sensitive G� protein (most probably G�i) and
mediates its biological effects via pathways that are distinct
from the classical cascade operated in gonadotropes. Extra-
pituitary actions elicited by GnRH-II have also been dem-
onstrated in certain human peripheral tissues.

A. Gonadotropin subunit gene transcription and secretion

GnRH-I plays a key role in the mammalian reproductive
process by stimulating the synthesis and release of FSH and
LH, which are heterodimeric glycoprotein hormones com-
posed of a common �-subunit noncovalently bound to a
specific �-subunit (FSH� and LH�) (233, 234). Activation of
the human �-subunit gene transcription by GnRH-I is pri-
marily Ca2� dependent. Also, this process can be augmented
by PKC and requires ERK1/2 and c-Src (235, 236). Although
the nonreceptor tyrosine kinase c-Src has been demonstrated
to mediate ERK stimulation by the GnRH receptor (217), the
ERK and c-Src-response areas are located at different regions
on the �-subunit promoter (236), indicating that c-Src con-
tribution is independent of ERK activation.

The role of PKC, Ca2�, and MAPK signaling cascades in
mediating GnRH-I stimulation of LH� gene transcription has
not been clearly addressed. Although it was shown that the
activation is Ca2� dependent (237), others reported that PKC
is mainly responsible for the effect (238, 239). Similarly,
whereas it was found that both PKC and ERK1/2 are re-
quired for the stimulation (240), others demonstrated an
essential role of JNK (216). These discrepancies are likely due
to different experimental paradigms such as the use of dif-
ferent cell models or promoters from different species. Sev-
eral cis-acting regulatory elements such as Sp1, CArG, and
early growth response 1 transcription factor binding sites
have been identified in the rat LH� promoter (241–243). It is
suggested that these motifs may act in concert with different
signal transduction cascades to confer GnRH-I sensitivity to
the LH� promoter (237, 240, 244, 245).

Activation of FSH� gene transcription by GnRH-I requires
the Ca2�, PKC, and MAPK signaling pathways in mouse
L�T2 gonadotropes (246). The GnRH-I responsiveness of the
ovine FSH� promoter involves at least two elements at the
distal region, in association with one or several motifs within
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the proximal promoter sequence (246). Although previous
studies have shown that two downstream AP-1-like ele-
ments are important for mediating the GnRH-I response in
heterologous HeLa cells (247), these motifs are not function-
ally equivalent in the gonadotropes (246). On the other hand,
Pernasetti et al. (248) have shown that GnRH-I stimulation of
�-subunit gene transcription in L�T2 cells is also dependent
on an endogenous activin autocrine loop as follistatin treat-
ment can block the GnRH-I induction.

An essential role of intracellular Ca2� in mediating GnRH-
I-stimulated gonadotropin secretion has been established
(77, 249, 250). In contrast, the initial phase of gonadotropin
release is apparently independent of extracellular Ca2� (249,
251, 252). The role of PKC activation in mediating the GnRH-I
effect is less clear (77, 250). Whereas phorbol ester can stim-
ulate LH secretion, GnRH-I-induced LH release is impaired
but not abolished in PKC-depleted gonadotropes (253, 254).
These observations thus indicate that PKC activation is not
an absolute requirement for exocytosis. It is believed that
PKC participates in the control of gonadotropin secretion
through its actions on cytoskeleton elements, Rab proteins,
and other elements involved in the exocytotic process (255–
257). Although there is no evidence for rapid desensitization
of the mammalian GnRH receptor, sustained ligand expo-
sure causes down-regulation of inositol (1,4,5) triphosphate
receptor in �T3–1 cells (258), leading to a marked reduction
in GnRH-I-stimulated Ca2� mobilization and gonadotropin
secretion (259, 260). This form of desensitization underlies
the basis of hypothalamic-pituitary-gonadal axis suppres-
sion that is exploited in the major clinical applications of
GnRH-I analogs (11).

Recently, GnRH-II has also been shown to be capable of
stimulating LH and FSH release both in vivo (261) and in
cultured pituitary cells (262). This stimulation is mediated
via activation of the type I GnRH receptor because the effects
can be blocked by antide (261, 262).

B. Ovarian steroidogenesis

There is a general consensus that GnRH-I analog treatment
in vivo or in vitro exerts an inhibitory effect on gonadotropin-
regulated steroidogenesis in human GL cells (20, 263–267).
Exposure of the steroidogenic cells to [d-Ala6]-GnRH-I rap-
idly activates ERK1/2 and causes a drastic increase in c-Fos
mRNA levels (4). This GnRH-I-induced ERK activation is
mediated via G�q/11 and requires PKC because the effect can
be mimicked by PMA and abolished by the PKC inhibitor
GF109203X (4). Interestingly, pretreatment of GL cells with
the MEK inhibitor PD98059 completely abrogates the down-
regulatory effect of GnRH-I on steroidogenesis (267), sug-
gesting that a PKC- and ERK-dependent cascade is involved
in mediating the antisteroidogenic response.

Recent findings from our laboratory have revealed that
treatment of human GL cells with GnRH-II or its analog in
vitro can also suppress hCG-stimulated progesterone pro-
duction (20). This inhibition can be blocked by antide, indi-
cating the mediation via the type I receptor (20). Similar to
the effects produced by GnRH-I, GnRH-II does not interfere
with hCG-stimulated cAMP generation. Instead, these hor-
mones down-regulate the steady-state mRNA levels of both

the FSH and LH receptors in the steroidogenic cells (20).
These observations thus support a notion that GnRH-I and
GnRH-II exert their antigonadotropic effects at the receptor
level but not at the cAMP level.

C. Cell proliferation

The role of GnRH-I as a negative autocrine growth factor has
been well reported in cell lines derived from human malignant
tumors including those of the ovary, endometrium, breast,
prostate gland, and melanoma cells (2, 268–271). It is generally
thought that this antiproliferative action is mediated via high-
affinity GnRH-I binding sites, as supported by the notion that
the nucleotide sequence of the GnRH receptor is identical in
tumor and pituitary cells (112, 118, 202). Nonetheless, in some
systems, high doses of GnRH-I analogs (1–10 �m) are some-
times needed to demonstrate a significant but modest growth-
inhibitory response (6, 21, 131, 272, 273). Although the intra-
cellular mechanisms mediating the antiproliferative effect of
GnRH-I analogs are not fully understood, several lines of ev-
idence have suggested a role of the ERK1/2 signaling pathway.
In ovarian carcinoma Caov-3 cells, the GnRH-I analog leupro-
lide induces phosphorylation of son of sevenless and Shc and
causes a sustained stimulation of the MEK-ERK cascade (272).
This process is mediated via a pertussis toxin-sensitive G�
protein and the G�� dimer and occurs independently of PKC
and extracellular Ca2�. Consequently, the prolonged ERK ac-
tivation leads to hypophosphorylation of the retinoblastoma
protein (272), a process known to prevent cell cycle progression
from G1 to S phase. Similar observations have also been re-
ported in other gynecological cancer cell lines, in which GnRH-I
analog treatment in vitro blocks cell cycle transition and de-
creases DNA synthesis (274, 275). These growth-inhibitory ef-
fects of GnRH-I analogs may be mediated via stimulation of the
DNA binding activity of JunD (275), which has been suggested
as a negative regulator of cell proliferation (276).

The involvement of the ERK1/2 cascade in mediating the
antitumor effect of GnRH-I analogs is further supported by the
observation that the analogs can antagonize growth factor-in-
duced mitogenic signaling via coupling to G�i proteins (2, 118,
123, 205). In primary ovarian and endometrial carcinomas as
well as certain cancer cell lines, treatment with GnRH-I analogs
in vitro activates phosphotyrosine phosphatase and causes a
substantial loss of phosphotyrosines from cellular proteins such
as the epidermal growth factor receptor (118, 277–280). These
effects are associated with a significant reduction in growth
factor-induced ERK1/2 activation, c-Fos gene expression, ma-
trix metalloproteinase (MMP) secretion, and cell proliferation
(280–282). In some prostate cancer cells, GnRH-I analog treat-
ment may reduce cellular tyrosine phosphorylation and pro-
liferation index via down-regulation of growth factor receptor
expression (279, 283). Thus, depending on the cell context,
GnRH-I analogs may attenuate the mitogenic action of growth
factors and suppress the ERK cascade to mediate their antitu-
mor effects.

In addition to MAPK regulation, several potential mecha-
nisms have been suggested to account for the growth-inhibitory
effect of GnRH-I analogs in cancer cells. These putative mech-
anisms include inhibition of phosphatidylinositol kinase activ-
ity (284) and stimulation of lysophosphatidic acid hydrolysis
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(285), as well as down-regulation of telomerase reverse tran-
scriptase, acidic ribosomal phosphoprotein, and prostate-
specific antigen expression (51, 286, 287).

There are many reports showing that GnRH-I analogs can
also inhibit cell proliferation in human uterine leiomyoma
and endometriosis. Although GnRH-I-induced leiomyoma
regression appears to occur predominantly through inhibi-
tion of gonadotropins and gonadal steroids (11), the sup-
pression may involve alteration of growth factor (6, 288),
cytokine (289), cell cycle regulator (43), and steroid hormone
receptor (290) expression. Similarly, in endometriotic stromal
cells, GnRH-I analog treatment in vivo reduces tumor necro-
sis factor �-induced nuclear factor-�B (NF-�B) activation and
interleukin-8 expression (10, 291), which has been reported
to promote endometriosis (292, 293).

The role of GnRH-II as an autocrine growth inhibitor has
also been demonstrated. Like GnRH-I, treatment with
GnRH-II in vitro inhibits the proliferation of both nontumori-
genic and tumorigenic ovarian surface epithelial cells in a
dose-dependent manner (19). In accord with the presence of
two types of GnRH binding sites (110, 114), mRNA expres-
sion of a second GnRH receptor subtype (type II GnRH
receptor) has been demonstrated in several endometrial and
ovarian cancer cell lines (21). The proliferation of these cells
can be dose- and time-dependently suppressed by GnRH-II,
the antitumor effect of which is significantly stronger than
that produced by equimolar concentrations of triptorelin
(21). It should be emphasized that in type II GnRH receptor-
positive but type I receptor-negative SK-OV-3 ovarian cancer
cells, treatment with triptorelin has no effect on cell prolif-
eration (282, 294), suggesting that the growth-inhibitory ac-
tion of GnRH-II is mediated via a GnRH-II-specific receptor.

D. Apoptosis

It is well established that GnRH-I analogs promote apoptotic
cell death in ovarian granulosa cells. In rat, treatment with
GnRH-I analogs in vivo or in vitro induces a definitive ladder
pattern of oligonucleosomal length DNA fragments in granu-
losa cells isolated from preovulatory follicles (295, 296). Like-
wise, continuous treatment of corpus luteum with a GnRH-I
analog stimulates apoptosis in vivo. This stimulation is associ-
ated with an up-regulation of Bax gene expression and may
involve the mitochondrial cytochrome c pathway (297). Con-
sistent with the findings in rat, treatment with buserelin in vitro
increases the incidence of apoptosis in human GL cells (5) al-
though the mechanism underlying the proapoptotic effect of
the analog in the human counterpart is not fully known.

The role of GnRH-I in regulating apoptosis, however, re-
mains controversial in cancer cells. In some gynecological can-
cer cell lines and cells isolated from GnRH receptor-bearing
tumors, buserelin treatment in vitro induces a dose-dependent
stimulation of Fas ligand expression (298). Because Fas is fre-
quently expressed in GnRH receptor-positive tumors (299), it is
speculated that GnRH-I may function as an autocrine proapop-
totic factor in Fas-positive tumors and that this proapoptotic
action may account, in part, for its antitumor effect. In stark
contrast, an earlier finding has shown that triptorelin treatment
does not produce any morphological signs of programmed cell
death in EFO-21 and EFO-27 ovarian cancer cells. Rather, the

GnRH-I analog inhibits cytotoxin-induced apoptosis via acti-
vation of the NF-�B signal transduction cascade (300). NF-�B
has been implicated as an antiapoptotic transcription factor by
activating multiple genes, the products of which can block
apoptosis triggered by either death receptors or the mitochon-
drial pathway (301–305). Although activation of NF-�B by trip-
torelin is also mediated by G�i in EFO-21 and EFO-27 cells, the
mechanism leading to NF-�B stimulation is apparently inde-
pendent of interference with growth factor-induced mitogenic
signaling (300). Thus, in some ovarian cancer cells, GnRH-I
analogs may possess two counteracting activities (antiprolif-
erative vs. antiapoptotic) that are mediated by two distinct
signaling cascades but triggered by the same G� protein. The
balance of these two activities may be a critical factor in con-
trolling ovarian tumorigenesis.

Contradictory results also exist regarding the role of
GnRH-I in inducing apoptosis in uterine leiomyoma.
Whereas GnRH-I analogs in vivo or in vitro can inhibit leiomy-
oma cell growth partly by stimulating apoptotic cell death
(306–308), others have reported that the analog can decrease
the expression of certain proapoptotic factors but increase
that of the antiapoptotic Bcl-2 protein in vivo (309, 310). The
latter findings suggest that GnRH-I analog therapy is inef-
fective in promoting apoptosis in uterine leiomyoma. Con-
versely, a series of studies have consistently shown that
GnRH-I analogs can increase apoptotic cell death in endo-
metriotic cells in vitro (291, 311, 312).

E. Embryo implantation

Recently, both forms of GnRH have been demonstrated to
stimulate the mRNA and protein levels of urokinase-type
plasminogen activator in human extravillous cytotropho-
blasts and decidual stromal cells in vitro (8, 22). These find-
ings suggest that the hormones play regulatory roles in
proteolytic degradation of the extracellular matrix of the
endometrial stroma, a process prerequisite for decidualiza-
tion and trophoblast invasion (313, 314). This notion is sup-
ported by the observation that the hormones can also up-
regulate the expression of MMP-2 and MMP-9, which are
two other proteases operating actively at the maternal-fetal
interface during early pregnancy, in trophoblast and stromal
cells (9, 23). Concomitantly, both GnRH-I and GnRH-II have
been found to suppress the trophoblastic expression of plas-
minogen activator inhibitor 1 and tissue inhibitor of metal-
loproteinase-1, the physiological inhibitors of urokinase-type
plasminogen activator and MMPs, respectively, in a dose-
and time-dependent manner (22, 23).

F. Other extrapituitary actions

In normal and cancerous T cells, both GnRH-I and
GnRH-II induce the cell-surface expression of a 67-kDa non-
integrin laminin receptor, leading to stimulation of T cell
adhesion, chemotaxis, and in vivo homing to specific organs
(7). In addition, endogenous or exogenous GnRH-I can in-
crease the proliferative activity of Jurkat cells via a cAMP-
dependent mechanism (52, 315). On the other hand, both
GnRH-I and GnRH-II have been shown to rapidly induce
hCG secretion from human cytotrophoblasts and placental

Cheng and Leung • Human GnRH/GnRH Receptor System Endocrine Reviews, April 2005, 26(2):283–306 295

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/26/2/283/2683896 by guest on 21 August 2022



explants in vitro (3, 38). Moreover, through a direct action on
the locally expressed GnRH receptor, GnRH-I has been
found to increase zona pellucida-sperm binding as well as to
stimulate axon growth, actin cytoskeleton remodeling, and
migration of olfactory neurons (316–318).

VII. Type II GnRH Receptor: Existence in Humans?

A. Nonhuman primate type II GnRH receptors

Molecular cloning of the marmoset, macaque, and green
monkey type II GnRH receptor cDNAs revealed that they code
for a typical seven-TM-domain GPCR (Table 2) (319, 320). Strik-
ingly, the primate type II receptors, like all nonmammalian
GnRH receptors cloned to date (321–326), possess a carboxyl-
terminal tail, which confers the receptors susceptibility to rapid
desensitization and internalization (226, 230, 231, 327–330).
Also, the tail plays a role in agonist binding as well as receptor
expression and regulation (331, 332). Other noteworthy features
of the type II GnRH receptors are the presence of a Asp/Asp
microdomain in the second and seventh TM helices and the
substitution of VPPS for the LSD/EP sequence in the third
extracellular loop (78, 319, 333, 334).

The type II GnRH receptor mRNA is expressed throughout
the marmoset and human brains (319). Pharmacological char-
acterization revealed that the marmoset type II receptor is
highly selective for GnRH-II, and to a less extent, for salmon
GnRH and [d-Arg6]-GnRH-II (319, 320). Although both the
marmoset type II and human type I receptors couple to G�q/11
and activate ERK1/2, they differ in stimulating the p38 MAPK
pathway (319). Furthermore, the marmoset type II receptor can
be activated by the GnRH-I antagonist 135–18, which is a full
antagonist of the human type I receptor (319). This observation
may help explain why certain GnRH-I antagonists exhibit ag-
onistic activities in some gynecological cancer cells expressing
the type II receptor (114, 319, 335, 336).

B. Putative type II GnRH receptor genes in the human
genome

A search of the human genome database has revealed a
putative type II GnRH receptor gene on chromosome 1q12
(329, 337, 338). This gene shares a 40% sequence identity with
the type I receptor and is composed of three exons spanning
approximately 7.5 kb along the chromosome. Intriguingly,
the reading frame of this putative type II receptor gene is
disrupted by a �1 frameshift and contains a cytosine to
thymine substitution that changes the codon for Arg179 in the
marmoset and frog sequences to an in-frame UGA premature
stop codon (338). Disruption or silencing of the type II GnRH
receptor gene has also been noted in the chimp, cow, sheep,
and rat genomes (338–341).

In addition to the putative gene on chromosome 1, a trun-
cated copy of the human gene lacking the first exon and part
of the first intron is present on chromosome 14q22 (329, 338).
This locus contains in the opposite direction an intronless
RBM8A sequence, which is likely a pseudogene and origi-
nated from the chromosome 1 locus by reverse transcription
and insertion into the genome (338, 342, 343).

C. Tissue distribution of human type II GnRH receptor
mRNA

Expression of type II GnRH receptor mRNA has been
demonstrated in human heart, pancreas, skeletal muscle,
mature sperm, and postmeiotic testicular cells (319, 344). In
addition, the mRNA is expressed in certain gynecological
cancer cell lines as well as in pituitary adenoma and neuro-
blastoma cells (21, 338). Although these findings suggest that
the human type II receptor gene is transcriptionally active, all
the mRNAs identified have no alteration of the premature
stop codon, although in some instances, alternative splicing
of part of the exon 1 to circumvent the frameshift to encode
a two-TM-domain protein is observed (338, 344).

TABLE 2. Summary of structural and functional differences of the marmoset type II and mammalian type I GnRH receptor

Type II GnRH Receptor Type I GnRH Receptor Ref.

No. of amino acid 380 328/327 77, 78, 319
Carboxyl-terminal tail Yes No 77, 78, 319
Conserved Asp in the second TM

domain of GPCRs
Yes Replaced with Asn 77, 78, 319

Third extracellular loop VPPS motif LSD/EP motif 77, 78, 319
Ligand selectivity Highly selective for GnRH-II, 50-fold

less selective for GnRH-I
Highly selective for GnRH-I, 10-fold

less selective for GnRH-II
17, 319

Antagonist 135-18 Full agonist Full antagonist 17, 319
Rapid desensitization Yes No 17
Receptor internalization Rapid Slow 17
Activation of intracellular

signaling components
Ca2� Yes Yes 17, 77, 319
PKC Yes Yes 17, 77, 319
ERK1/2 Sustained Transient 17, 214, 319
JNK No Yes 17, 214, 319
P38 MAPK Yes Yes 17, 214, 319
BMK1 Not determined Yes 214
Epidermal growth factor receptor Not determined Yes 224, 225
c-Src Not determined Yes 17, 214
Proline-rich tyrosine kinase 2 Not determined Yes 351
Focal adhesion kinase Not determined Yes 352
Diacylglycerol kinase-� Not determined Yes 353
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Several translation mechanisms have been proposed to ex-
plain how a functional receptor may be produced from the
disrupted human type II receptor gene (338). One possibility is
that translation begins at the second ATG initiation codon (sit-
uated at the end of the second TM domain) to generate a
truncated five-TM-domain receptor missing the first two heli-
ces (338). Indeed, chemokine receptors with only five TM do-
mains have been shown to behave in many aspects indistin-
guishably from the wild-type receptors, suggesting that a
five-TM core structure is sufficient for normal GPCR function-
ing (345). Additionally, a functional receptor may be generated
by lateral interaction or domain swapping of the truncated gene
products with the type I receptor or other GPCRs, as hypoth-
esized for some receptors (346, 347). Although a functional
receptor may also be produced by incorporating a selenocys-
teine at the premature UGA codon (338, 348–350), no seleno-
cysteine incorporation can be observed in cells transfected with
the receptor cDNA (338). Also, insertion of a guanine residue
to correct the frameshift is still required if a full-length receptor
is to be expressed. Taken altogether, these observations thus
rule out the potential existence of a conventional seven-TM-
domain type II GnRH receptor in humans.

VIII. Conclusions

The findings that the tissue distribution patterns of
GnRH-I and GnRH-II are dissimilar and that their expres-
sions are differentially regulated indicate a distinct role of
these decapeptides in our body. Whereas it is becoming
evident that humans do not have a conventional type II
receptor system, specific GnRH-II responses have been ob-
served in certain cell types (21). Thus, one of the major
challenges in the future is whether we can demonstrate func-
tional type II receptor protein expression in cells lacking the
type I receptor. Results from such investigations should fa-
cilitate functional dissection of the two GnRH hormones in
controlling the reproductive and other cellular processes.
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