
Molecular Caches: A caching structure for dynamic creation of
application-specific Heterogeneous cache regions

Keshavan Varadarajan, S.K.Nandy, Vishal Sharda, Amrutur Bharadwaj
Indian Institute of Science Bangalore, India

{keshavan@cadl, nandy@serc, vishal@cadl, amrutur@ece}.iisc.ernet.in

Ravi Iyer, Srihari Makineni, Donald Newell
System Technologies Lab, Intel Corporation, Hilsboro, Oregon
{ravishankar.iyer, srihari.makineni, donald.newell}@intel.com

Abstract

CMPs enable simultaneous execution of multiple ap-
plications on the same platforms that share cache re-
sources. Diversity in the cache access patterns of these si-
multaneously executing applications can potentially trigger
inter-application interference, leading to cache pollution.
Whereas a large cache can ameliorate this problem, the
issues of larger power consumption with increasing cache
size, amplified at sub-100nm technologies, makes this solu-
tion prohibitive.

In this paper, in order to address the issues relat-
ing to power-aware performance of caches, we propose a
caching structure that addresses the following: 1. Defini-
tion of application-specific cache partitions as an aggrega-
tion of caching units (molecules). The parameters of each
molecule namely size, associativity and line size are cho-
sen so that the power consumed by it and access time are
optimal for the given technology. 2. Application-Specific
resizing of cache partitions with variable and adaptive as-
sociativity per cache line, way size and variable line size.
3. A replacement policy that is transparent to the parti-
tion in terms of size, heterogeneity in associativity and line
size. Through simulation studies we establish the superi-
ority of molecular cache (caches built as aggregations of
molecules) that offers a 29% power advantage over that of
an equivalently performing traditional cache.

1. Introduction

Chip Multi-Processors (CMP) have long been consid-
ered as the technology of the future and the recent introduc-
tion of commercial processors such as the Sun’s UltraSparc
T1 and Intel Pentium Duo stand to vindicate this. Applying
Moore’s Law to this phenomenon projects that the number

of cores within a processor is bound to grow to 64 or higher
in near future. This would mean that one processor would,
in future, house as many processing entities as shipped in
one cabinet of a HP Integrity Superdome server!

One of the typical CMP configurations as proposed by
Olukotun et al [7] is that of multiple cores sharing a com-
mon L2 cache. Would such a design be scalable when used
with 64 or more cores?

We conducted an experiment to see if the application
miss rate varies when run concurrently with other applica-
tions. In particular, we considered 4 SPEC benchmarks viz.
art, ammp, parser and mcf. These benchmarks were run
concurrently in pairs and also with all four running con-
currently to study the impact on miss rate for any given
benchmark. The benchmarks were run concurrently on a
CMP simulator [9]. The simulation was done on a 1MB
4 way shared L2 cache. Table 1 lists the miss rate of the
benchmarks when run concurrently with other benchmarks
and when run independently. The variations in the miss
rate of the benchmarks are evident from Table 1. The miss
rate observed by the benchmark (say parser), when run in-
dependently is very different from the miss rate when all
four benchmarks are run concurrently. Also notice that the
miss rate recorded is different for different benchmark pairs.
Even though the reason for such variations may not be di-
rectly deduced, it does point towards the problem of inter-
application interference, which in turn influences the appli-
cation latency and throughput. Such inter-application inter-
ference is projected to be even more pronounced when the
number of applications supported on a CMP platform in-
creases with the increase in the number of processing cores.
Increasing the cache size is potentially one of the ways of
ameliorating this problem, however this comes at the cost
of a higher energy bill. The power consumption needs to be
contained since the energy density per area on multi-core
processors is bound to be high due to enhanced processor

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

Table 1. Miss rate is dependent on the other benchmarks
running concurrently on a CMP with shared cache. The
simulations were performed on a shared 1MB 4way L2
cache.

1st app 2nd concurrently miss rate miss rate
executing app of app1 of app2

art – 0.064 –
mcf – 0.668 –

ammp – 0.008 –
parser – 0.086 –

art mcf 0.069 0.691
art ammp 0.065 0.009
art parser 0.065 0.134
mcf ammp 0.702 0.012
mcf parser 0.684 0.247

ammp parser 0.009 0.091

art all four 0.734 –
mcf all four 0.688 –

ammp all four 0.013 –
parser all four 0.253 –

activity, which could result in heat dissipation problems.
There is thus a need for an energy controlled technique to

solve the problem of inter-application interference through
efficient use of cache while still being able to meet ap-
plication performance requirements (specified as various
QoS metrics). Efficient utilization of the cache can then
be achieved by defining a miss rate goal for each applica-
tion in a way that could capture QoS requirements1. By
defining separate caching regions per application, we avoid
inter-application interference and ensure that the deviation
from the miss rate goal is within tolerable limits. This
technique of defining application-specific cache regions is
called cache partitioning.

It is reported in [6] that small caches (8-32KB) are less
power hungry than larger caches. In large caches the cache
size to power relationship becomes non-linear at sub-100nm
technologies. If such small sized caches could be used as
building blocks then specific access to these will help con-
tain the dynamic power dissipation in the cache. We call
these low power building blocks as molecules. In this paper
we propose Molecular Caches, a new cache architecture,
where the cache is an aggregation of molecules (refer Fig-
ure 1). Molecular caches support selective enablement of
molecules based on the application requesting access in or-
der to reduce the dynamic power dissipation in the cache.
We address issues relating to managing such an aggregation

1In this paper there is an assumption that the miss rate goal has been
provided to us. The derivation of the miss rate goal is outside the scope
of this paper and will not be discussed. Alternatively we use some default
miss rate goals for purposes of experimentation.

datatag

R
ow

 D
ec

od
er

Molecule

datatag

R
ow

 D
ec

od
er

Molecule

Enhanced Cache Line

Replacement Unit

A
dd

re
ss

 I
n

. .
 .

D
at

a
O

ut

Figure 1. Molecular cache is composed of molecules

of molecules that serve as application-specific cache parti-
tions, for which QoS metrics can be defined.

The paper is organized as follows: The related work sec-
tion (refer section 2) delves into different types of cache
QoS solutions proposed in the past and also takes a look
at some of the cache partitioning solutions found in current
literature. The details of the working of molecular caches
such as handling cache lookup, miss handling etc. are dis-
cussed in greater detail in section 3. Section 3 also presents
a partition sizing algorithm for molecular caches. Results of
the various experiments carried out to establish the superi-
ority of molecular caches are discussed in section 4. Section
5 summarizes the contributions and presents directions for
future work.

2. Related Work

This section explains in brief some of the related work
that has been carried out in the context of QoS in caches
and Cache Partitioning.

Iyer [3] in a recent publication presented a framework
for enabling QoS in shared caches. The paper makes a key
observation that the current design of caches is more suited
towards single application memory access and is not well
suited for newer computing paradigms such as CMPs, Si-
multaneous Multi-Threading (SMT) and Specialized Cores.
The paper then proposes a framework for Cache QoS man-
agement that includes three aspects namely Priority Clas-
sification, Priority Assignment and Priority Enforcement.
The Priority Enforcement is of particular interest to us. For
priority enforcement three different schemes are proposed.
These include static and dynamic partitioning of caches, se-
lective cache allocation and heterogeneous cache regions.

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

We only elaborate the technique for heterogeneous cache
regions in this paper. In this technique, caches are com-
posed of multiple caching units with different organiza-
tional structures and policies. The problem is that of assign-
ing the right application to the appropriate cache structure,
keeping in mind the priority of the application and its mem-
ory access pattern. The results from the paper indicates that
heterogeneous cache regions help reduce dedicated cache
size.

Cache Partitioning has been greatly researched, even be-
fore the arrival of CMPs. Of the several flavours of cache
partitioning, multi-application dynamic partitioning tech-
niques are of particular interest to us. Single application
partitioning for low power in the context of direct mapped
caches is reported in [8]. In this section we discuss ex-
amples of both the hardware controlled and the software
controlled variants. Several solutions have been proposed
that address the issue of cache pollution through the use of
NUCA architectures. Techniques such as Victim Replica-
tion [14], NuRAPID [1], CMP-NuRAPID[2] address sev-
eral different aspects of these. However none of these use
application QoS parameters as the guiding principle. They
attempt to reduce the miss rate experienced by a processor.

Suh et al [11] propose the use of two different techniques
for implementing partitioned caches namely Modified LRU
and Column Caching. In Modified LRU scheme, the re-
placement decision depends on the number of cache blocks
already allocated to a particular process. If the process
has not exceeded its predefined space threshold, a global
replacement is performed, else a local replacement is per-
formed. The column caching approach restricts some pro-
cesses to place data in some ’columns’ (i.e. ways) of a
multi-way associative cache. Their results indicate that for
a cache of size 1-2MB the hit rate improves by 40% as com-
pared to standard LRU for a time quantum of 200,000 mem-
ory references and weighting factor of 0.5 (which is used
to give preference to recent measurements as opposed to
older ones). Compared with the standard LRU, relative IPC
improvements of 13.29% for 2 processes on a 2MB cache
and 14.21% for 4 processes on 2 MB cache are recorded.
Kim et al [5] propose a variant of the Modified LRU tech-
nique where fairness is taken as a measure of cache alloca-
tion. As indicated in [5], cache pollution violates operating
system expectation that all scheduled entities get an equal
chance to utilize the processor, hence fairness of allocation
is required. We take this argument forward, since fairness
weighted by application’s priorities is far more important.
Yet another technique that takes fairness into consideration
was proposed by Yeh et al [13]. The approach used in this
technique is very similar to our approach. The authors pro-
pose a phase-based approach for cache partition resizing.

Kim et al [4] proposed a partitioning technique in which
different banks of a multi-banked cache are allocated to

different processes. First a search of the ’home’ bank is
performed, failing which the entire cache is searched in a
set-associative manner. Called Process Ownership-based
Cache Architecture (POCA), this cache contains four com-
ponents viz. Current Set Number, Set Assignment Table,
Data Enable Controller and the Victim Process Table. The
authors [4] used ATUM traces to evaluate the cache. Sim-
ulation performed on cache of size from 8KB-1MB with 4
banks indicate that the hit rate of the cache is higher than
a direct mapped cache of equal size and is either as good
or better than a 4 way associative cache of equal size. The
cache access time of POCA is 10% better than an equivalent
associative cache.

Is there a need for something better than the state of
the art? Suh et al’s [11] proposed cache partitioning so-
lution does not look into the dimension of heterogeneous
cache regions that can potentially improve the efficiency of
the cache usage. A major drawback of their cache architec-
ture is the reliance on multi-way associative caches. Multi-
way associative caches tend to consume a lot of power and
have longer access time. Hence associativity cannot be in-
creased beyond a certain value, since the power consump-
tion increases exponentially with increase in associativity
(refer [6]). Kim et al’s [4] work is a software based resizing
solution and relies on operating system based information
for determining the victim sets. Such a scheme would not
be practically realizable due to the non-standard ways of
obtaining the required information from the large variety of
operating systems available today.

The work on heterogeneous cache regions by Iyer [3]
is based on the use of multiple caches each with differ-
ent cache parameters and the optimal assignment of appli-
cations to appropriate caches with suitable cache parame-
ters. This technique would only enable some applications
to run efficiently. We extend this work by marrying the
ideas of dynamic partitioning and heterogeneous cache re-
gions to create more effective dynamic partitions that are
dynamically customized to the application’s needs. We cre-
ate caching structures that allow application dependent dy-
namic creation and reconfiguration of heterogeneous cache
regions with different associativities and line sizes. The ca-
pacity of these regions too can be modified. The cache re-
gions are created from homogeneous building blocks that
are direct mapped. These cache regions also support non-
uniform line associativity.

3. Molecular Caches

Molecules are small sized (8-32KB) direct mapped
caching units that have 64 byte wide lines. This choice of
size and associativity enables reduction in energy dissipa-
tion as reported by Mamidipaka et al [6]. Larger structures
are created from these building blocks by forming aggre-

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

L1 $

Processor

L1 $

Processor

M M...

M M...

M M...

... ...

Tile

M M...

M M...

M M...

... ...

Tile

L1 $

Processor

M M...

M M...

M M...

... ...

Tile

L1 $

Processor

M M...

M M...

M M...

... ...

Tile

Ulmo
Global Cache Miss Handler, Enhanced Cache Line

Replacement Unit, Cache Coherency Unit.

Tile Tile Tile Tile

Ulmo

Tile Tile Tile Tile

Ulmo

Tile Tile Tile Tile

Ulmo

Tile Tile Tile Tile

Ulmo

Tile interconnection
network

Figure 2. Tiles - A physical organization of molecules.
Here ’M’ is used to indicate a molecule. Tiles with physical
proximity are grouped to form clusters. Each cluster has
one Ulmo. The interconnection network is shown as a cloud
since there is no assumption made on the topology of the
interconnections.

gations. 32-256 molecules are grouped together with one
read/write port and this group is called a tile (Figure 2).
Every processor is statically assigned to a tile and all re-
quests from that processor are forwarded to that tile. The
processor-tile assignment can be made non-static by al-
lowing the processor-tile mapping to be changed during a
context-switch. 4-8 tiles are grouped together into a tile
cluster (Figure 2). Every tile cluster is associated with
one tile controller called Ulmo2. Ulmo handles tile-misses
and the coherence traffic between the tile clusters. The
tile clusters are connected through an interconnection net-
work to enable coherence transactions. A subset of the
molecules of the molecular cache are used to form a cache
region/partition. The cache regions are assigned to applica-
tions for exclusive use.

3.1. Creating Cache Partitions

The cache regions that have been created need to be as-
signed to applications for exclusive use. To tie a region to
a specific application, each molecule of the region is con-
figured with the Application Space Identifier (ASID). The
ASID uniquely identifies a running application. Before any
cache operation is performed on the molecules, an ASID
match is performed to see if the molecule is eligible to per-
form the operation (refer Figure 3). An additional stage is
introduced in the address decoding logic of the molecule
to compare the ASID of the requestor with the configured
ASID of the molecule. Only comparisons resulting in a
TRUE condition allow the molecule to proceed to the subse-
quent stages of data retrieval. The introduction of the ASID
comparison would increase the number of cycles consumed
by an additional cycle.

Addition of molecules to a cache region is done by con-
figuring the ASID of that molecule to match the ASID of

2Unlimited Molecules

the application that wields exclusive control over that cache
region. If the shared bit is set (refer Figure 3) then the
molecule is accessed for all requests on that tile, irrespective
of the ASID of the running application.

3.2. Varying the Line Size

Increasing the line size helps in reducing the cache miss
rate in case of high spatial locality. Let the line size of a
molecule be l. If a line of size 2 ∗ l is desired, the cache
retrieves 2 lines whenever a cache miss occurs. Two lines
are treated as a single unit of replacement. Both the lines are
stored in consecutive lines of the same molecule. All cache
hits still use l as the operating cache line size. Cache misses
trigger retrieval of more than one cache line. A cache region
may support only one line size. The line size of the region
may be modified only at the time of creation.

3.3. Replacement and Lookup

There are three basic ways of performing line replace-
ment namely FIFO, Random and LRU. Among these, LRU
is known to be the best followed by the Random replace-
ment policy. A similar scheme can be used to select a
molecule in which the new line is placed. Implementation
of an approximate LRU scheme would be very expensive as
it needs to keep track of which molecules are in use and their
corresponding order of usage. Instead, we adopt Random
replacement as one of the preferred scheme for replacement
in Molecular Cache. The ability of the random replacement
algorithm to distribute the load equally across all molecules
is highly dependent on the entropy of the random number
generator implemented in hardware.

The primary purpose of associativity in a traditional
cache is to reduce the conflict misses. However the tradi-
tional cache provides a common associativity for all cache
lines. But a common associativity may not be the best suited
for all the applications. The associativity requirements of a
video streaming application performing computations on a
number of macro blocks is very different from the associa-
tivity requirements for a sparse matrix based linear solver.
In traditional caches different associativities cannot be sup-
ported for different lines because of complexities involved
in the output selection logic, during cache access. The use
of identical structures for cache access and cache replace-
ment complicates supporting different associativities along
different lines. In order to be able to support different as-
sociativities, in molecular caches, across different lines the
access view of the cache is separated from the replacement
view of the cache. The access view of the cache is the same
as the physical organization of the cache (refer Figure 4).
The replacement logic views the molecules as a 2-D sparse
matrix (Figure 4). Every row of the matrix must contain

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

Configured
ASID

Configured
ASID

ASID

R
o

w
 D

e
c
o

d
e
r

=

=

.
.
.

.
.
.

.
.
.

data array

R
o

w
 D

e
c
o

d
e
r

=

=

tag array data array

tag array

data out

tag index block

Equality Comparator

0

To Row decoder

address
ASID from

Configured ASID

Shared Bit Multiplexor

1

Figure 3. Figure on the left shows the different steps in cache access in the molecular cache and the figure on the right is the ASID
comparator block diagram.When the shared bit is unset the multiplexor selects the output of the comparator. When the shared bit is
set then the multiplexor always return 1, thus enabling the row decoder to proceed with the lookup operation.

atleast one molecule. The number of molecules per row
need not be uniform. The number of rows and columns
can be varied dynamically. Such a view leads us to a new
molecule selection policy, which we call, Randy replace-
ment algorithm. In the Randy replacement scheme, choos-
ing a molecule for replacement is accomplished by:

1. determining the row to which the replacement is per-
formed using the expression:

row =� address
sizemolecule

�mod rowmax

where address is the physical address, sizemolecule is
the size of each molecule and rowmax is the maximum
number of rows in the replacement view (refer Figure
4). The maximum way size (i.e. rowmax) is found
along the first column.

2. One molecule in the row is chosen at random to per-
form the replacement.

The Randy replacement scheme reduces the reliance on ran-
dom numbers, at the same time provides an opportunity to
the resizing algorithm to add molecules only along those
rows where the miss count3 is higher. The comparison be-
tween the Random and Randy replacement algorithms is
presented in the results section (section 4).

3Explained in greater detail in section 3.4

Cache
Molecule d

Cache
Molecule c

Cache
Molecule b

Cache
Molecule a

Cache
Molecule e

Cache
Molecule f

Cache
Molecule h

Cache
Molecule g

Tile

Cache
Molecule c

Cache
Molecule g

Cache
Molecule d

Cache
Molecule h

Cache
Molecule a

Cache
Molecule b

Associativity
C

on
fi

gu
re

d
W

ay
 S

iz
e

(r
ow

_m
ax

)

Figure 4. The figure on the left shows the Physical orga-
nization of the molecules contained in a cache region. The
molecules a to h are contained in the tile. The figure on the
right shows the replacement view of a cache region. Het-
erogeneity in different regions is achieved through varying
number of molecules and their arrangements. Note that the
physical arrangement of the molecules a to h has no bearing
on the replacement view of the same.

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

The use of adaptive associativity and variable sized parti-
tions complicates the cache lookup operation, since the data
may be found in any molecule belonging to the cache re-
gion owned by the application. This requires that all the
molecules of the region are searched for the data. In or-
der to minimize the energy dissipated on account of an all
molecule lookup, a hierarchical search is performed. The
tile associated with the requesting processor is searched
first. Only those molecules whose ASID matches the re-
questing application’s ASID are accessed. If the data is not
found in the tile then other tiles in the tile-cluster need to be
searched. This task is performed by Ulmo. Ulmo searches
only those tiles whose molecules have contributed to the ap-
plication’s cache region.

3.4. Dynamically Resizing Cache

The primary aim of cache partitioning is to be able to
eliminate the inter-application interference, while still be-
ing able to meet the miss rate goal of the individual parti-
tions. Such a goal based scheme would prevent some ap-
plications from occupying large portions of the cache at the
cost of performance of other applications. The miss rate
goal is defined per application. The miss rate goal can be
different for different applications based on relative priority
of applications. Alternatively, a common miss rate goal can
be defined for all applications.

Ground Zero The choice of size of initial partition can be
either a very small number of molecules (say 2 molecules)
or a large number of molecules (say 32 molecules). User-
driven/Profile-driven directives such as ”small”, ”typical”
and ”large” cache usage patterns can be used to suitably
modify the initial allocation. Periodic resizing is performed
with the objective of meeting the miss rate goals per ap-
plication. The process of resizing can either increase or
decrease the size of the partition. Our experiments indi-
cate that when small initial partition size is used frequent
repartitions are required during the initial phases in order to
reduce the application miss rate. Frequent resizing is not
favored since it would incur the cost of computation of the
new configuration. In the current scheme each partition is
provided with half the number of molecules contained in a
tile in the beginning and then periodically the molecules are
removed or added based on the prevailing miss rate and the
miss rate goal.

When to add? The resizing period is specified in terms
of the number of addresses serviced by the cache. The peri-
odicity of resizing can be either constant or adaptive. In
the constant address scheme, resizing is performed once
the user specified address count is met. In the adaptive
scheme the first resize is performed at the user specified

address count. The next point at which resizing is trig-
gered is determined based on the prevailing miss count and
the miss rate goal. In the case that the miss rate is higher
than expected then the address count for resizing is brought
down to 10% of the original value. If the miss rate is well
within acceptable limits then the resize trigger count is dou-
bled. If the resize trigger count is determined by the over-
all miss rate of the cache then it is called a global adaptive
scheme and if it is triggered by the application miss rate
it is called a per-application adaptive scheme. Our experi-
ments indicate that a constant address count resizing does
not aid in bringing down the miss rate. Adaptive schemes
perform better than constant address schemes. The obser-
vations from actual experiments indicate that global adap-
tive scheme performs well with small-sized tiles and per-
application adaptive scheme works better with larger tile
sizes (>= 2MB). The global adaptive scheme aids better
in maintaining cache miss goals, as opposed to the per-
application adaptive scheme in small caches, since resizing
happens whenever the global miss rate increases.

Where to add? An effective resizing algorithm would

• Remove only those molecules from the cache that
would have least impact on the hit rate of the parti-
tion. In order to implement such a scheme we associate
counters with a molecule or a group of molecules. The
counter records the number of misses that lead to line
replacements in the molecule or group of molecules.
The molecule that has the least count is withdrawn,
since it holds the least number of addresses. Other
effective schemes such as LRU stack, counters with
cold miss compensation etc. can be used. The actual
evaluation of the resize algorithms based on these tech-
niques is outside the scope of this paper. In the context
of this presentation we adopt the following:

– When Random replacement scheme is used per-
molecule counters are employed.

– When Randy replacement scheme is used coun-
ters per row are employed.

• Add molecules in a way such that the miss rate is de-
creased substantially using the least possible number
of molecules. Once again the miss counters indicate
where the highest activity has been seen. The counter
values can be used to increase the associativity for
that group of molecules with the highest recorded miss
counts.

– When Random replacement algorithm is used all
molecules can be visualized as placed one behind
the other (i.e. in a single row). Any new addition
of molecules simply increases the associativity of
the arrangement.

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

– When the Randy replacement algorithm is used
then the molecules are added along the rows with
the highest miss count. The rows that handle a
larger amount of misses need more associativity
in order to prevent conflict misses, thereby effect-
ing variable way sizes within a given region.

The additional molecules required for increasing the size of
the partition can be either obtained from the tile in which the
cache region is being currently hosted or from other tiles in
the tile-cluster.

How much to add? The number of molecules allocated
during resize can be either one molecule or a large chunk
required to meet the miss rate goal. Single molecule incre-
ments are less effective and require frequent resizing to be
performed. Refer Algorithm 1 for details of how the incre-
ments and decrements are computed.

Who does the computation? Instead of employing a sep-
arate hardware for computation required to resize a parti-
tion, the resizing function can be scheduled periodically on
one of the processors through an OS level daemon. The
daemon periodically reads the information related to the
partition and then computes the new configuration of the
partition. The resize() function takes about 1500 cycles
per application. Given a recomputation count of about
25,000 memory references4, the data for processing could
be picked up at the end of 25,000 references and size
changes effected once the computation is complete. The
computation needs to be distributed across several proces-
sors for different tile clusters.

4. Results

We evaluate the performance of molecular caches using
SESC [9], a CMP simulator, to run the various workloads.
The L1-Data misses were recorded and the traces were used
as input to a modified version of Dinero, to simulate the
behavior of molecular caches. The Power results were ob-
tained using CACTI [12].

In order to evaluate the performance the average devia-
tion from the miss rate goal is measured. Our initial work-
load was a SPEC based workload consisting of 4 bench-
marks namely ammp, parser, art and mcf. The choice of
benchmarks was based on experimental data that confirmed
their sensitivity to L2 parameters, viz. cache size and as-
sociativity, for performance. The simulations were per-
formed on a trace containing about 3.9 million references.
The change in average deviation from miss rate goal with a

4This was determined through experimentation as being a large enough
count at which the miss rate remains acceptable.

for every application partition do
compute partition miss rate;
if miss rate > 50% then

if max allocation > last allocation then
max allocation = last allocation;

end
resize (max allocation);

else
if miss rate < miss rate goal then

/* Withdraw molecules more
slowly than you add -
Conservative */

temp = sqrt((current molecules * miss rate)
/ miss rate goal);
withdraw (temp, current partition);

else
if miss rate < last miss rate then

/* Using a Linear
relationship between
Cache Size and Miss
Rate. Simplifies
Computation! */

. temp = (current molecules * miss
rate) / miss rate goal;
/* Do not allocate more

than the maximum
allowed in one chunk */

if temp > max allocation then
temp = max allocation;

end
resize (temp, current partition);

end
end

end
end
if current overall miss rate < miss rate goal then

resize period = 2 * resize period;
else

resize period = 0.1 * resize period;
end

Algorithm 1: The Function used to determine the number
of molecules by which the partition should be expanded or
shrunk

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

8MB4MB2MB1MB

A
ve

ra
ge

 D
ev

ia
tio

n
 (

fr
om

 M
is

s
ra

te
 g

oa
l f

or
 4

 S
P

E
C

 b
en

ch
m

ar
ks

)
 (

ar
t,

am
m

p,
 m

cf
, p

ar
se

r)

Cache Size
 (Graph A)

Direct Mapped
2-way associative
4-way associative
8-way associative

Molecular (Random)
Molecular (Randy)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

8MB4MB2MB1MB

A
ve

ra
ge

 D
ev

ia
tio

n
 (

fr
om

 M
is

s
ra

te
 g

oa
l f

or
 3

 S
P

E
C

 b
en

ch
m

ar
ks

)
 (

ar
t,

am
m

p,
 p

ar
se

r)

Cache Size
 (Graph B)

Direct Mapped
2-way associative
4-way associative
8-way associative

Molecular (Random)
Molecular (Randy)

Figure 5. Graph indicating the average deviation from the miss rate goal for the SPEC workload. In Graph A the miss rate goal
was set to 10% for the four benchmarks. In graph B the miss rate goal was set to 10% for 3 out of the 4 benchmarks.

change in cache size and associativity are captured in Fig-
ure 5. The plots indicate the average deviation from the
miss rate goal for various associativities, for different cache
sizes. The graphs have been plotted for Direct Mapped, 2
Way, 4 Way and 8 Way associative caches of sizes 1MB,
2MB, 4MB and 8MB. The results have also been plotted for
Molecular cache with 4 tiles for the cache sizes 1MB (tile
size 256KB), 2MB (tile size 512KB), 4MB (tile size 1MB)
and 8MB (tile size 2MB). The graph shows the results plot-
ted for both Random and Randy replacement algorithms.
Graph A plots use a miss rate goal of 10% for all the four
benchmarks. Graph B plots use a miss rate goal of 10% for
the ammp, parser and art only.

For traditional caches, the graphs indicate that the aver-
age deviation decreases with the increase in cache size and
associativity. The average deviation of the molecular cache
falls sharply at 4MB in graph A and at 2MB for graph B. For
a specific miss rate goal, molecular caches have a threshold
size at which they are effective. The thresholds for graphs
A and B are 4MB and 2MB respectively. The sudden drop
in deviation, at these thresholds, is because of an increase in
molecule availability at higher cache sizes. Since all the ap-
plications are cache intensive there are phases during which
no free molecules are available and no resizing takes place.

In another experiment we used a mix of 12 benchmarks
from SPEC, Netbench and Media bench. The benchmarks
include crafty, gcc, gzip, parser, twolf, CRC, DRR, NAT,
CJPEG, decode and epic. The molecular cache simulation
was done using 3 tile clusters, each with 4 tiles. Each tile
cluster was 2MB in size (i.e. tile size of 512KB). The miss
rate goal was set at 25%. For the molecular cache simula-

Table 2. Table of Average Deviation from the Miss Rate
Goal

Cache Type Average Deviation
4MB 4way 0.313261
4MB 8way 0.309515
8MB 4way 0.246843
8MB 8way 0.243161

6MB Molecular 0.222075
Randy

6MB Molecular 0.356923
Random

tion, the applications were divided into three groups, with-
out giving consideration to the nature of the mix (since real
world applications could have any combination of applica-
tions running simultaneously). Each group was assigned a
tile cluster. The performance of the 6MB molecular cache
(2MB per cluster) was compared with the performance of
4MB 4 way, 4MB 8way, 8MB 4way and 8MB 8way caches.
Table 2 indicates the average deviation from the miss rate
goal for all the caches. The results indicate that the 6MB
molecular cache performs even better than the 8MB 8way
cache. The reason for this better performance is the two
level isolation of the applications. One, each partition iso-
lates the address space of various applications. Two, the
separation into different tile clusters reduces the contention
for molecules among the different applications (since all
molecules in a tile cluster can be used by all application

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

Table 3. The cache configurations for which power con-
sumption was evaluated.

Parameter Molecular
Cache

Traditional
Cache

Total Cache Size 8MB 8MB
Molecule Size 8KB –

Tile Size 512KB –
No. of tile-clusters 4 –

No. of tiles per cluster 4 –
No. of Read-Write ports 1 per tile clus-

ter
4

Associativity adaptive DM, 2, 4, 8

Table 4. Results of CACTI simulations. Cacti executions
were performed for 0.07µ technology.

Cache
type

Freq
(MHz)

Power
(W)

Size of
mol.
cache

mol.
power
worst
case

mol.
power
(av-
erage
mixed
work-
load)

8MB
DM

199 4.93 8MB 5.29 4.85

8MB
2way

205 5.95 8MB 5.45 4.99

8MB
4way

206 7.66 8MB 5.46 5.0

8MB
8way

96 3.58 8MB 2.55 2.34

running on that cluster).
CACTI [12] was used for power simulations, since we

are only interested in the dynamic power consumption. The
leakage power consumption remains unaffected in molec-
ular cache. The power results reported for the molec-
ular cache is the worst case power consumption. The
worst case/highest power consumption happens when all
the molecules of a tile are enabled (based on the ASID
match). An application normally uses a subset of the
molecules of the tile, hence would consume lower power in
practice. The power computation for the molecular cache is
approximated as the power consumed by all the molecules
of a tile.

The configurations of the molecular and traditional
caches for which power evaluations were performed are
listed in Table 3. Table 4 compares the power consumed
by the traditional cache and the molecular cache at the fre-

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

twolfparserNATCJPEGgzipgccgapdecodeepicDRRCRCcrafty

H
it

P
er

 M
ol

ec
ul

e

Benchmarks

Randy
Random

Figure 6. A graph comparing the hit rate contributions
per molecule for Random and Randy replacement algo-
rithms.

quency of operation of the traditional cache. The power
and the frequency values are derived from the energy and
cycle time reported by CACTI. The power consumed by
a molecular cache is computed using the energy reported
for a molecular cache at the frequency of the traditional
cache to which the molecular cache is being compared. The
power consumed by the 8MB molecular cache is slightly
higher than the power consumed by an 8MB traditional di-
rect mapped cache with four ports. The selective access and
hierarchical search space of the molecular cache enables re-
duction in the dynamic power consumption in the cache.

The replacement algorithms namely Random and Randy
were compared. The most obvious criterion for evaluat-
ing the replacement algorithm is the miss rate. The other
criterion that needs to be used is the number of molecules
employed to achieve the given hit rate. The replacement
scheme that achieves a lower miss rate with a lesser number
of molecules is more effective than a scheme that uses more
molecules to achieve the same miss rate. To evaluate the
effectiveness of each of the Random and Randy schemes,
we compute the hit rate per molecule (HPM). The graph in
Figure 6 compares the HPM for the replacement algorithms.

The graph is a plot of HPM recorded for different appli-
cations of the mixed workload. Note that the Y-axis is on
a logarithmic scale. Barring four applications, namely gcc,
gzip, NAT, and twolf, the HPM of Randy replacement al-
gorithm is higher than the HPM for Random replacement
algorithm. This anomaly needs to be interpreted in light of
the overall miss rate and overall molecule usage. The over-
all miss rate of Randy replacement algorithm is 9% lower
than the miss rate of Random replacement algorithm, while
the Randy replacement algorithm uses 5% more molecules
when compared with Random replacement algorithm. This
5% increase in molecular assignment is due to an attempt

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

Table 5. The power-deviation product for each of the
caches for which performance results were reported in Ta-
ble 2. The power for the 6MB molecular cache is computed
for the same frequencies as listed in Table 4. The power-
deviation table for molecular caches is only reported for the
Randy replacement algorithm.

Cache Type Power-Deviation Power-Deviation
Product Product of

Mol. cache
8MB 4way 1.890 0.909
8MB 8way 0.870 0.425

to further bring down the miss rate. The increase in alloca-
tion does not lead to a commensurate drop in miss rate (as
is characteristic of the cache miss rate behavior in convex
regions [10]). This increase in the number of molecules for
a small gain in hit rate causes the anomaly observed in the
graphs.

We have defined a new metric to measure the QoS in
conjunction with the traditional parameters. We use the
power-deviation product to measure the effectiveness of
the cache in meeting the QoS while still being able to keep
the cache power consumption in check. Table 5 presents
the power-deviation product for the mixed workload. The
table indicates that the Molecular Cache using Randy re-
placement algorithm performs consistently better than the
traditional cache.

5. Future Work and Conclusion

In this paper we presented a new cache architecture
called Molecular Cache. Molecular Caches solves the prob-
lem of Cache pollution in a power efficient manner through
the use of Application-specific regions with adaptive asso-
ciativity, variable line size and adaptive partition sizes. Se-
lective cache access and hierarchical lookup enable reduc-
tion in dynamic power dissipation.

The work presented in this paper needs to address the
following issues related to its practical realization: The re-
sizing algorithm needs to be further refined through better
techniques for identifying locations for addition and with-
drawal of molecules. A different scheme for replacements
such as an LRU-Direct scheme needs to be evaluated. The
metric for QoS based cache evaluation - power-deviation
product - needs to be further refined.

Acknowledgments The authors would like to express
their gratitude to Prof. V.Rajaraman of Supercomputer Edu-
cation and Research Centre, IISc for all his valuable inputs.

The authors also thank Ranjani Narayan for her useful sug-
gestions.

References

[1] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Dis-
tance associativity for high-performance energy-efficient
non-uniform cache architectures. In MICRO 36: Proceed-
ings of the 36th annual IEEE/ACM International Sympo-
sium on Microarchitecture, page 55, Washington, DC, USA,
2003. IEEE Computer Society.

[2] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Optimiz-
ing replication, communication, and capacity allocation in
cmps. In ISCA ’05: Proceedings of the 32nd Annual Inter-
national Symposium on Computer Architecture, pages 357–
368, Washington, DC, USA, 2005. IEEE Computer Society.

[3] R. Iyer. CQoS: a framework for enabling QoS in shared
caches of CMP platforms. In ICS ’04: Proceedings of the
18th annual international conference on Supercomputing,
pages 257–266, New York, NY, USA, 2004. ACM Press.

[4] D. Kim, J. Lee, and S. K. Park. A partitioned on-chip virtual
cache for fast processors. J. Syst. Archit., 43(8):519–531,
1997.

[5] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and
partitioning in a chip multiprocessor architecture. In PACT
’04: Proceedings of the 13th International Conference on
Parallel Architectures and Compilation Techniques, pages
111–122, Washington, DC, USA, 2004. IEEE Computer So-
ciety.

[6] M. Mamidipaka and N. Dutt. ecacti: An enhanced power
estimation model for on-chip caches. Technical Report TR-
04-28, Center for Embedded Computer Systems, University
of California, Irvine, September 2004.

[7] K. Olukotun and L. Hammond. The future of microproces-
sors. Queue, 3(7):26–29, 2005.

[8] P. Petrov and A. Orailoglu. Towards effective embedded
processors in codesigns: customizable partitioned caches.
In CODES, pages 79–84, 2001.

[9] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic,
L. Ceze, S. Sarangi, P. Sack, K. Strauss, and P. Montesinos.
SESC simulator, January 2005. http://sesc.sourceforge.net.

[10] A. J. Smith. Cache memories. In ACM Computing Surveys,
vol. 14, no. 3, pages 473–530, 1982.

[11] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partition-
ing of shared cache memory. J. Supercomput., 28(1):7–26,
2004.

[12] S. Wilton and N. Jouppi. Cacti: An enhanced cache access
and cycle time model, 1996.

[13] T. Y. Yeh and G. Reinman. Fast and fair: data-stream quality
of service. In CASES ’05: Proceedings of the 2005 interna-
tional conference on Compilers, architectures and synthe-
sis for embedded systems, pages 237–248, New York, NY,
USA, 2005. ACM Press.

[14] M. Zhang and K. Asanovic. Victim replication: Maximizing
capacity while hiding wire delay in tiled chip multiproces-
sors. In ISCA ’05: Proceedings of the 32nd Annual Inter-
national Symposium on Computer Architecture, pages 336–
345, Washington, DC, USA, 2005. IEEE Computer Society.

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

