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Abstract
Background: The bacterium Actinobacillus pleuropneumoniae is responsible for porcine pleuropneumonia, a widespread, highly
contagious and often fatal respiratory disease of pigs. The general porcine innate immune response after A. pleuropneumoniae
infection is still not clarified. The objective of this study was hence to characterise the transcriptional response, measured by
using cDNA microarrays, in pigs 24 hours after experimental inoculation with A. pleuropneumoniae.

Methods: Microarray analyses were conducted to reveal genes being differentially expressed in inflamed versus non-inflamed
lung tissue sampled from inoculated animals as well as in liver and tracheobronchial lymph node tissue sampled from three
inoculated animals versus two non-inoculated animals. The lung samples were studied using a porcine cDNA microarray with
5375 unique PCR products while liver tissue and tracheobronchial lymph node tissue were hybridised to an expanded version
of the porcine microarray with 26879 unique PCR products.

Results: A total of 357 genes differed significantly in expression between infected and non-infected lung tissue, 713 genes
differed in expression in liver tissue from infected versus non-infected animals and 130 genes differed in expression in
tracheobronchial lymph node tissue from infected versus non-infected animals. Among these genes, several have previously been
described to be part of a general host response to infections encoding immune response related proteins. In inflamed lung tissue,
genes encoding immune activating proteins and other pro-inflammatory mediators of the innate immune response were found
to be up-regulated. Genes encoding different acute phase reactants were found to be differentially expressed in the liver.

Conclusion: The obtained results are largely in accordance with previous studies of the mammalian immune response.
Furthermore, a number of differentially expressed genes have not previously been associated with infection or are presently
unidentified. Determination of their specific roles during infection may lead to a better understanding of innate immunity in pigs.
Although additional work including more animals is clearly needed to elucidate host response to porcine pleuropneumonia, the
results presented in this study demonstrate three subsets of genes consistently expressed at different levels depending upon
infection status.
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Background
Respiratory infectious diseases present a major problem in
modern pig production with severe effects on both animal
welfare and production economy [1]. The Gram negative
bacterium Actinobacillus pleuropneumoniae is an inhabitant
of the upper porcine respiratory tract and is the causative
agent of porcine pleuropneumonia, a frequent respiratory
infection which is highly infectious, often fatal and char-
acterized by necrotizing, hemorrhagic bronchopneumo-
nia and serofibrinous pleuritis [1]. Infection of the
porcine lung with A. pleuropneumoniae has previously
been reported to result in a local production of proinflam-
matory proteins or mRNA encoding the cytokines inter-

leukin (IL) -1α, IL-1β, IL-6 and the chemokine IL-8 [2-5].
Likewise bioactive protein and/or mRNA coding for IL10,
IL12p35, TNF-  and INF  have been shown to be up-

regulated after infection with A. pleuropneumoniae in vivo
or in vitro [2-8]. These studies have focused on a few
selected genes using techniques such as quantitative real-
time reverse transcriptase polymerase chain reactions (RT-
PCR), northern blotting or in-situ hybridisation. The
introduction of techniques for simultaneous measure-
ments of gene expression for thousands of genes in a sin-
gle analysis using microarrays allows a more
comprehensive picture of the host response during infec-
tion with A. pleuropneumoniae. Using cDNA microarrays
Moser and co-workers found 307 anonymous transcripts
in blood leukocytes from pigs to be significantly affected
after experimental infection with A. pleuropneumoniae [9].

Even though A. pleuropneumoniae has been extensively
studied and different aspects of its pathogenesis have been
described [1,2,10,11], the role of the porcine innate
immune response after A. pleuropneumoniae infection
remains poorly understood. Therefore, this response was
studied further here using cDNA microarrays. Pigs were
experimentally inoculated with A. pleuropneumoniae and
microarray analyses were conducted on inflamed versus
non-inflamed lung tissue from inoculated animals and on
liver tissue and tracheobronchial lymph node tissue from
challenged versus non-challenged pigs.

Methods
Animals, bacterial inoculation and samples
Six 10 – 12-week-old castrates of Danish Landrace/York-
shire/Duroc crosses from a high health herd free from A.
pleuropneumoniae were used in the experiment. The Dan-
ish Animal Experiments Inspectorate approved all animal
procedures. Two non-inoculated animals (pigs 1 and 2)
were sacrificed by means of captive bolt pistol followed by
pitching and exsanguination. The animals were necrop-
sied immediately and samples (500 mg) were taken from

liver tissue and tracheobronchial lymph nodes. To inves-
tigate the effect on host responses and on the develop-
ment of pathological signs of different levels of exposure
to A. pleuropneumoniae, pigs were infected with two differ-
ent doses of the same isolate. Two pigs (pigs 4 and 6) were
inoculated in each nostril with 1 mL of a McFarland 0.5
suspension mixed 1:1 with Brain Heart Infusion Broth
(BHI) + 0.5% NAD containing approximately 9.6 × 106

colony forming units (cfu)/mL of A. pleuropneumoniae
serotype 5B, isolate L20 [12] and two (pigs 3 and 5) were
inoculated in each nostril with 1 mL of a McFarland 0.5
suspension mixed 1:1 with BHI + 0.5% NAD containing
approximately 3.8 × 107 cfu/mL of the same A. pleuropneu-
moniae isolate. The inoculated animals were sacrificed 24
hours after inoculation by means of captive bolt pistol fol-
lowed by pitching and exsanguination. The animals were
necropsied immediately and samples (500 mg) were
taken from liver tissue, tracheobronchial lymph nodes
and from both inflamed and non-inflamed lung tissue.
Samples of non-inflamed lung tissue were taken as far as
possible away from inflamed tissue. All samples were
instantly frozen in liquid nitrogen and stored at -80°C
until use. After necropsy, samples from lung, liver, tonsils
and spleen were cultivated on PPLO agar (Difco, Detroit,
MI, USA) to re-isolate the inoculation strain, which was
serotyped using latex agglutination [13].

Microarrays
Two-colour microarray analyses were conducted to iden-
tify genes being significantly differentially expressed in
non-inflamed lung tissue relative to inflamed lung tissue
sampled from the same animal, liver tissue from non-
inoculated animals relative to liver tissue from inoculated
animals and tracheobronchial lymph node tissue from
non-inoculated animals relative to similar lymphoid tis-
sue from inoculated animals. The microarray analyses
were conducted as a common reference design in tissue-
type batches. The samples of lung tissue were studied by
manual hybridisation to the pig array DIAS_PIG_27K2
that contain 5375 PCR products amplified from unique
cDNA clones. Samples of liver and lymph node tissues
were hybridised to the pig array DIAS_PIG_55K2 (26879
PCR products) using a Discovery XT hybridisation station
(Ventana Discovery Systems, Illkirch CEDEX, France). The
cDNA clones used for both microarrays were selected
from the cDNA libraries generated by the Sino-Danish Pig
Genome Sequencing Consortium [14]. Total-RNA was
purified and DNase treated using RNeasy Maxi Kit (Qia-
gen, Ballerup, Denmark) and aminoallyl-cDNA (aa-
cDNA) was synthesized from 10 – 20 μg of total-RNA
using the Superscript Indirect cDNA Labeling System (Inv-
itrogen, Taastrup, Denmark). The obtained aa-cDNA was
labelled using the ARES cDNA labelling kit (Molecular
Probes/Invitrogen, Taastrup, Denmark). The reference
sample was labelled with Alexa 488 and each individual
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sample was labelled with Alexa 594. The labelled refer-
ence samples were mixed and divided into aliquots before
combining with the labelled samples. The slides were
scanned and analyzed using the histogram method with
default settings in a ScanArray Express HT system (version
3.0, Perkin Elmer, Hvidovre, Denmark). Statistical analy-
sis was carried out in the R computing environment (ver-
sion 2.3.0 for Windows) using the package Linear Models
for Microarray Analysis (Limma, version 2.4.11, [15])
which is part of the Bioconductor project [16]. The log2-
transformed ratios of Alexa-594 to Alexa-488 (not back-
ground corrected) were normalized within-slide using
printtip-loess with default parameters. The set of normal-
ized log-ratios were then analyzed in Limma to identify
genes being significantly differentially expressed. The false
discovery rate was controlled using the method of Ben-
jamini and Hochberg [17] as implemented in Limma and
a corrected P-value below 0.05 was considered significant.
Spotfire DecisionSite (ver. 8.1, Spotfire, Somerville, MA,
USA) was used for two-way hierarchical cluster analyses of
the significantly differentially expressed genes represented
by the mean log-ratios of the replicated spots (clustering
method: complete linkage; similarity measure: Pearson
product momentum correlation; ordering function: aver-
age value). The features of the arrays were mapped to a
LocusLink identifier and an annotation package was built
using the Bioconductor package AnnBuilder (version
1.9.14). A test for significantly (P < 0.05) overrepresenta-
tion of gene ontology (GO) terms among both induced
and repressed genes was conducted using the GOHyperG
function of the Bioconductor package GOstats (ver 1.5.5)
with a threshold of minimum five genes annotated at each
node. More detailed descriptions of the microarray exper-
iments are available at the NCBIs Gene Expression Omni-
bus [18-20] through the GEO series accession number
GSE4577.

Results
Necropsy findings
One pig (no. 6) died within 24 hours and by necropsy the
lungs were severely affected by acute, multifocal, fibrino-
necrotizing and hemorrhagic pneumonia complicated
with acute diffuse fibrinous pleuritis. The tracheobron-
chial lymph nodes appeared enlarged and congested. No
samples were taken from this animal due to autolysis. As
intended, the three remaining inoculated pigs were sacri-
ficed 24 hours after challenge and necropsied immedi-
ately. The three pigs revealed characteristic, localised, lung
and pleural lesions of variable severity consistent with
acute pleuropneumonia (fibrino-necrotizing pneumonia)
whereas the surrounding lung tissue appeared normal.
The corresponding lymph nodes of the affected lungs
were enlarged and congested. The lesions in pig 4 were
multifocal and up to 4 × 5 cm while the lesions in pig 3
were lobar involving most of the right diaphragmatic

lobe. Pig 5 was the less affected animal with only one
small (1 × 1 cm) focus of pleuropneumonia. No associa-
tion was observed between inoculated dose and the sever-
ity of pathological changes and the three inoculated
animals were consequently considered as one group dur-
ing analyses. The inoculation strain, A. pleuropneumoniae
serotype 5B, isolate L20, was re-isolated from lung tissue
of all infected animals.

Microarray profiling
Microarray analyses revealed that the experimental infec-
tion induced significant changes in the expression profiles
measured in the lung, liver and tracheobronchial lymph
node. A total of 357 genes (162 genes repressed and 195
genes induced) were found to be significantly differen-
tially expressed in non-inflamed relative to inflamed lung
tissue of experimentally infected pigs. The largest number
of significantly differentially expressed genes was found in
the liver where 713 genes were affected (382 repressed
and 331 induced). In lymph node tissue, 130 genes were
significantly differentially expressed with 59 genes being
repressed and 71 genes being induced by the infection. It
must be stressed that the lung samples were studied using
a microarray with fewer genes represented compared to
the microarray used for studying the liver and lymph node
tissues. The lists of significantly differentially expressed
genes can be found in additional file 1
"Differentially_expressed_genes". To further elucidate the
effects of infection on the expression profiles in the exam-
ined tissues, two-way hierarchical clustering was applied
to the mean log-ratio of the replicated spots from the sig-
nificantly differentially expressed genes (Figures 1, 2, 3).
As expected, the clustering revealed a clear separation of
the expression profiles of the samples into two groups –
one group containing profiles from inoculated animals/
inflamed tissues and one group containing profiles from
the non-inoculated animals/non-inflamed tissues.
Expression profiles from pig 5 were seen to cluster more
distantly to the profiles from pig 3 and pig 4 in all profile
dendrograms of inflamed tissues/inoculated animals.
Interestingly, pig 5 was the less affected animal among the
inoculated animals. This indicates that the expression pro-
files may be associated with the severity of pathological
changes. The structure of the dendrograms of non-
inflamed and inflamed lung tissues (Figure 1) were found
to be identical as pig 5 cluster more distantly to pig 3 and
pig 4 in both. This indicates that the expression profile of
non-inflamed lung tissue may be affected by the local
inflammation in a distant region of the lung. Lung tissue
sampled from non-inoculated pigs could hence be
included in future experiments serving as an additional
sample of non-inflamed tissue. The expression profiles of
the genes clustered into two major groups of induces and
repressed genes with several distinct sub clusters. The pro-
files of different cDNA fragments representing the same
Page 3 of 11
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gene were generally observed to cluster together. The
affected genes were furthermore tested for significantly
overrepresentation of GO terms among both induced and
repressed genes as presented below (Figures 4 and 5).

Non-inflamed relative to inflamed lung tissue from 
inoculated animals
The results of the test for overrepresentation of specific
GO terms among the 357 affected genes in lung tissue can
be seen in Figure 4. As expected, terms related to the
immune response such as "response to stimulus",
"response to stress", "cell-cell signalling", "regulation of
programmed cell death" and "regulation of apoptosis"
were found to be overrepresented among the induced
genes. Furthermore, a number of terms related to metab-
olism were also found to be affected.

Several of the genes observed to be induced in this study
have previously been described to be induced by infection
including those encoding IL-6 and IL-6 signal transducer
(IL6ST), alveolar macrophage-derived chemotactic factor-
I (AMCF-I) which is the porcine homologue of human IL-
8 [21], IL-8 receptor beta (IL8RB), chemokine-like factor
super family 8 (CKLFSF8), IL-11 receptor alpha (IL11RA),
suppressor of cytokine signalling 3 (SOCS3), cytokine
inducible SH2-containing protein (CISH) transcript vari-
ant 2 and complement component 3 (C3). The expression
of many pro apoptotic as well as anti-apoptotic genes
(encoding BCL2L1, GAS1, P21, BID, TIAL1 and PIAP) was
also found to be induced in the inflamed lung tissue char-
acterised by necrotic areas. The group of repressed genes
was found to comprise those encoding members of the
major histocompatibility complex (HLA-DRA, HLA-
DQA1), numerous ribosomal proteins (L10 (RPL10); L11
(RPL11); L14 (RPL14); L17 (RPL17); L18 (RPL18); L19
(RPL19); L21 (RPL21); L23 (RPL23); L26 (RPL26); L27
(RPL27); L29 (RPL29); L30 (RPL30); L35 (RPL35); L37
(RPL37); S3 (RPS3); S4 X-linked (RPS4X); S7 (RPS7); S11
(RPS11); S12 (RPS12); S16 (RPS16); S19 (RPS19); S24
(RPS24); S26 (RPS26)), complement component 5 (C5),
IL-1 receptor-associated kinase (IRAK1) and surfactant
pulmonary-associated protein C (SFTPC). Cirera and co-
workers have previously found the expression of SFTPC to
be repressed in porcine lungs with necrotic areas [22].

Liver from non-inoculated relative to inoculated animals
The test for overrepresentation of specific GO terms
among the 713 genes affected by infection (Figure 5)
revealed that terms related to the immune response such
as "response to stimulus", "response to stress", "response
to biotic stimulus", "defense response", "immune
response", "response to wounding" and "acute phase
response" were overrepresented among the induced
genes.

As expected due to the presence of bacteria, tissue damage
in the lung and host expression of IL-6, the transcripts of
the following acute phase proteins were found to be accu-
mulated in liver samples from inoculated animals: serum
amyloid A1 (SAA1, transcript variant 1 and 2); serum
amyloid A2 (SAA2) and A3 (SAA3); serum amyloid P
component (APCS); alpha-2-macroglobolin (A2M); C-
reactive protein (CRP); fibrinogen (FGA, FGB, FGG);
phospholipase A2, group IVA (PLA2G4A); alpha-1-anti-
chymotrypsin 2 (SERPINA3-2); haptoglobin (HP) and
ceruloplasmin (CP). Expression of several acute phase
proteins were decreased in liver samples from inoculated
animals relative to non-inoculated animals including
albumin (ALB), transthyretin (prealbumin, TTR), alpha-2-
HS-glycoprotein (AHSG) and apo-lipoproteins (ApoC3,
ApoA1, APOH). A number of these up and down regu-
lated liver genes were validated by quantitative RT-PCR
verifying these changes (data not shown, work in
progress).

Tracheobronchial lymph nodes from non-inoculated 
relative to inoculated animals
Even though 130 genes were found to be significantly dif-
ferentially expressed in lung lymph node tissue from non-
inoculated relative to inoculated animals, very few of
them seem to be involved in immune response. The genes
were analysed for significantly overrepresented GO terms,
but the number of representative genes for each signifi-
cantly overrepresented GO term was below the threshold
for acceptance.

Discussion
Transcriptional profiling using DNA microarray technol-
ogy has been extensively used for studying host response
to pathogenic microorganisms [23,24]. Moser and co-
workers [9] studied the gene expression in porcine periph-
eral blood leukocytes as a response to infection by A. pleu-
ropneumoniae using cDNA microarrays. A total of 18 pigs
were experimentally infected with A. pleuropneumoniae
and based on principal components analyses of seven
mainly phenotypic key performance measurements, two
extreme-performing animals were selected and analyzed
further using cDNA microarrays. Analysis of the gene
expression change from 0 to 24 hours post-challenge
revealed 307 anonymous genes to be significantly
affected. The results presented here are in agreement with
this as numerous genes were found to be significantly dif-
ferentially expressed in liver, lung and tracheobronchial
lymph nodes depending on infection status.

A relative low number of genes were found to be differen-
tially expressed in the tracheobronchial lymph nodes.
This might reflect the complexity of this type of tissue
compared to lung and liver tissues. Expression analysis of
lymph nodes containing a variety of cell populations may
Page 4 of 11
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Two-way hierarchical cluster analyses of the 357 genes affected by infection in lung tissueFigure 1
Two-way hierarchical cluster analyses of the 357 genes affected by infection in lung tissue. Gene expression is 
shown as a matrix with rows representing profiles of genes and columns representing profiles of samples. The gene dendro-
gram is shown to the left of the matrix and the dendrogram of the samples is shown above the matrix. Gene expression is rep-
resented by colour, with blue indicating relative up regulation and yellow indicating relative down regulation. The abbreviated 
gene names for selected genes are indicated to the right of the expression matrix. Numbers above the gene dendrogram rep-
resents cluster count and similarity. Text below the expression matrix represents pig number and class.
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Two-way hierarchical cluster analyses of the 713 genes affected in liver tissue by infectionFigure 2
Two-way hierarchical cluster analyses of the 713 genes affected in liver tissue by infection. Gene expression is 
shown as a matrix with rows representing profiles of genes and columns representing profiles of samples. The gene dendro-
gram is shown to the left of the matrix and the dendrogram of the samples is shown above the matrix. Gene expression is rep-
resented by colour, with blue indicating relative up regulation and yellow indicating relative down regulation. The abbreviated 
gene names for selected genes are indicated to the right of the expression matrix. Numbers above the gene dendrogram rep-
resents cluster count and similarity. Text below the expression matrix represents pig number and class.
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Two-way hierarchical cluster analyses of the 130 genes affected in tracheobronchial lymph node tissueFigure 3
Two-way hierarchical cluster analyses of the 130 genes affected in tracheobronchial lymph node tissue. Gene 
expression is shown as a matrix with rows representing profiles of genes and columns representing profiles of samples. The 
gene dendrogram is shown to the left of the matrix and the dendrogram of the samples is shown above the matrix. Gene 
expression is represented by colour, with blue indicating relative up regulation and yellow indicating relative down regulation. 
Numbers above the gene dendrogram represents cluster count and similarity. Text below the expression matrix represents 
pig number and class.
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Overrepresented GO-terms (Biological process only) among the 357 genes affected by infection in lung tissueFigure 4
Overrepresented GO-terms (Biological process only) among the 357 genes affected by infection in lung tissue. 
The lengths of the bars represent the number of genes in each node. Repressed GO-terms are marked with yellow and 
induced terms by blue. Detailed descriptions of the GO terms can be found at the homepage of the Gene Ontology project 
[36].
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lead to a dilution of the expression profile from the indi-
vidual cell types. Likewise, Wurmbach and co-workers
[25] found that distinguishing regulated genes from back-
ground became increasingly difficult as tissue complexity
increased.

Several innate cytokines were found to be induced in
inflamed areas of lung tissue from challenged animals.
Significant increase of IL8 and IL6 mRNA after infection
with A. pleuropneumoniae has previously been observed in

lung lavage as well as lung tissue by northern blotting and
in situ hybridisation [3,26]. SOCS3 and CISH both found
to be up-regulated in the present study are members of the
suppressor of cytokine signalling (SOCS) family of pro-
teins whose members regulates protein turnover by target-
ing proteins for degradation [27]. The expression of the
members of the SOCS family is induced by cytokines such
as IL-6 and IL-10, both found to be up-regulated in this
study, and function as negative feed back regulators of
cytokine signalling [27,28]. The significantly increase in

Overrepresented GO-terms (Biological process only) among the 713 genes affected in liver tissue by infectionFigure 5
Overrepresented GO-terms (Biological process only) among the 713 genes affected in liver tissue by infection. 
The lengths of the bars represent the number of genes in each node. Repressed GO-terms are marked with yellow and 
induced terms by blue. Detailed descriptions of the GO terms can be found at the homepage of the Gene Ontology project 
[36].
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mRNA coding for the anti-inflammatory cytokine IL-10,
found in inflamed areas of the lung, is probably due to the
function of IL-10 in counteracting the host mediated tis-
sue damage caused by proinflammatory and chemotactic
cytokines [29]. The lower expression of the genes encod-
ing ribosomal proteins could be due to a general down-
regulation of ribosomal biogenesis in the necrotic areas of
the lung. Previously studies have shown that 41 of 54
genes encoding ribosomal proteins were down-regulated
in Pseudomonas aeruginosa after treatment with H2O2
inducing oxidative stress [30]. A future comparison of the
expression profiles in non-inflamed lung tissue sampled
from inoculated animals and lung tissue sampled from
non-inoculated pigs would test this hypothesis of a lower
ribosomal biogenesis in necrotic areas of the lung.

Findings of positive as well as negative regulation of acute
phase proteins after infection with A. pleuropneumoniae
seen in this study have previously been reported [31].
Serum levels of HP, CRP, and SAA increased significantly
in pigs after aerosol inoculation with the same A. pleurop-
neumoniae serotype used in the present study [31].
Increased serum levels of IL-6, HP and SAA were also
proven to be useful inflammatory markers for A. pleurop-
neumoniae infection in pigs [32,33]. Carpintero and co-
workers found a decreased levels of ApoA1 in pig sera after
2–4 days of infection with A. pleuropneumoniae or Strepto-
coccus suis [34]. Other affected genes known to be down-
regulated during inflammation are members of the cyto-
chrome P450 family (CYP2E1; CYP3A29) [35].

Conclusion
The gene expression response was characterised in pigs
challenged with the respiratory tract pathogen A. pleurop-
neumoniae. Although additional work including more ani-
mals is clearly needed to study the host response to this
infection, the obtained results demonstrate three subsets
of genes consistently expressed at different levels depend-
ing upon infection status. Two-way cluster analysis of
these subsets indicated that the expression profiles of the
samples may be associated with the severity of pathologi-
cal changes. In inflamed lung tissue, immune activating
genes and other pro-inflammatory mediators of the
innate immune response were found up-regulated. In the
liver of infected animals, genes that are well known to be
regulated as part of the acute phase response were found
to be differentially expressed. A number of genes identi-
fied in this study to be affected by infection have not pre-
viously been associated with infection or are presently
unidentified. Determination of their specific roles during
infection may lead to a better understanding of innate
immunity in pigs.
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