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Abstract
Kabuki syndrome is a well-recognized syndrome characterized by facial dysmorphism and developmental delay/intellectual 
disability and in the majority of patients a germline variant in KMT2D is found. As somatic KMT2D variants can be found 
in 5–10% of tumors a tumor predisposition in Kabuki syndrome is discussed. So far less than 20 patients with Kabuki syn-
drome and a concomitant malignancy have been published. Here we report on a female patient with Kabuki syndrome and 
a c.2558_2559delCT germline variant in KMT2D who developed an embryonal rhabdomyosarcoma (ERMS) at 10 years. 
On tumor tissue we performed DNA-methylation profiling and exome sequencing (ES). Copy number analyses revealed 
aneuploidies typical for ERMS including (partial) gains of chromosomes 2, 3, 7, 8, 12, 15, and 20 and 3 focal deletions of 
chromosome 11p. DNA methylation profiling mapped the case to ERMS by a DNA methylation-based sarcoma classifier. 
Sequencing suggested gain of the wild-type KMT2D allele in the trisomy 12. Including our patient literature review identi-
fied 18 patients with Kabuki syndrome and a malignancy. Overall, the landscape of malignancies in patients with Kabuki 
syndrome was reminiscent of that of the pediatric population in general. Histopathological and molecular data were only 
infrequently reported and no report included next generation sequencing and/or DNA-methylation profiling. Although we 
found no strong arguments pointing towards KS as a tumor predisposition syndrome, based on the small numbers any rela-
tion cannot be fully excluded. Further planned studies including profiling of additional tumors and long term follow-up of 
KS-patients into adulthood could provide further insights.
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Introduction

Kabuki syndrome (KS), also known as Niikawa-Kuroki syn-
drome or Kabuki-make-up syndrome, is a syndrome where 
affected persons present with a characteristic face, including 
arched eyebrows with a sparse lateral one-third and long 
palpebral fissures with eversion of the lower eyelids. Other 
features are hypotonia and developmental delay/intellectual 
disability [1]. In the majority of the patients a variant in 
KMT2D (KS1, OMIM #147920) or KDM6A (KS2, OMIM 
#300867, X-linked) can be identified [2–4]. In case of some 
rare syndromes, for patients, their parents and professionals 
involved, a key question is whether besides the syndromic 
features also a tumor predisposition exists [5]. This may 
guide tumor surveillance strategies including follow-up of 
the primary tumor and early detection of secondary malig-
nancies [6]. A tumor predisposition has been established in 
a number of rare syndromes including Noonan syndrome 
type 1 (juvenile myelomonocytic leukemia), Gorlin syn-
drome (basal cell carcinoma, medulloblastoma) and PTEN 
Hamartoma Tumor (Cowden) Syndrome (predominantly 
breast- and thyroid carcinoma) [5, 7]. Such a predisposi-
tion is less clear for KS. Along the same lines, patients with 
Li-Fraumeni syndrome, Neurofibromatosis type 1, DICER1 
syndrome, Costello syndrome, Noonan(-like) syndrome 
and Beckwith-Wiedemann syndrome are known to have an 
increased risk of developing rhabdomyosarcoma [8, 9]. For 
KS the question of a potential tumor predisposition is of 
special interest as somatic KMT2D variants are observed 
in approximately 5–10% of all cancers [10–13]. This fre-
quency is even higher, up to 90%, in adult follicular lym-
phoma [14–18] and mutations in KMT2D are supposed to be 
driver events in various tumor types [19]. To date few (case) 
reports of malignancies occurring in patients with KS have 
been published [4, 20–35]. KMT2D fulfills as a histone 3 
lysine 4 (H3K4) methyltransferase important roles in many 
aspects of normal development [36] and is in KS associated 
with a distinct DNA methylation signature [37, 38]. Also 
in cancer the role of KMT2D mediated DNA methylation 
has received increased attention [39]. Nevertheless, detailed 
molecular data of (epi-)genomic alterations occurring in 
tumors from patients with KS is lacking or sparse. Here we 
report on a 10-year female patient with KS who developed 
an embryonal rhabdomyosarcoma. On tumor material, we 
performed extensive molecular analyses including exome 
sequencing and DNA-methylation profiling. In addition we 
performed a review of literature focusing on the clinical-, 
pathological as well as molecular features of malignancies 
occurring in patients with KS.

Methods

Patient

The clinical history of the patient is described in the results 
section. The parents of the patient provided written informed 
consent for the use of archival tissue for further analyses and 
consent for publication.

Histopathology and immunohistochemistry

Histopathological, immunohistochemical and FISH analyses 
with FOXO1 and EWSR1 break-apart probes were conducted 
as part of routine clinical diagnostics and the former re-eval-
uated by two bone- and soft-tissue pathologists (M.v.d.H 
and Ra.S.).

Molecular and bio‑informatic analyses

For the present study, after consent from the parents of the 
patient, additional molecular analyses were performed on 
fresh-frozen tumor material from the primary biopsy. For 
this DNA was extracted from fresh-frozen tumor tissue with 
a Promega Maxwell RSC DNA FFPE kit (Promega, Madi-
son, WI, USA) according to manufacturer’s instructions.

DNA-methylation profiling: For DNA methylation analy-
sis of the tumor DNA the Illumina Infinium® array technol-
ogy (Illumina Inc., San Diego, CA, USA) using the Infinium 
Methylation EPIC BeadChip (850K array) was used follow-
ing the manufacturer’s instructions. Raw methylation data 
was processed as analogous to Wagener et al. and further 
described in the Supporting methods [40, 41]. For meth-
ylation-based sarcoma classification, the DNA methylation 
profile of the current case was analysed using the DKFZ-sar-
coma classifier (v12.2) available at https:// www. molec ularn 
europ athol ogy. org/ msp/ [42]. DNA methylation changes at 
the imprinted region of the Beckwith-Wiedemann-Syndrome 
locus at 11p15.5 in the ERMS was compared to five con-
trols which were processed analogous to Bens et al. [43]. 
For copy number variant (CNV) analysis raw methylation 
data was normalized using the R-package minfi [44]. Subse-
quently, CNV data were extracted from the methylation data 
using the R-package conumee [45].

Exome sequencing was performed as described in the 
Supporting methods. In brief, tumor-only exome sequenc-
ing was performed on a NextSeq (Illumina, San Diego, Ca., 
USA) with Illumina Nextera™ Exome Kit. For data-analysis 
evaluation was restricted to a virtual gene panel of 95 cancer 
predisposition related genes (according to the TruSightCan-
cer-Panel, Illumina) with addition of KMT2D and KDM6A, 
as well as 10 genes recurrently mutated in embryonal and/or 
fusion negative rhabdomyosarcoma (Supporting Table S1) 

https://www.molecularneuropathology.org/msp/
https://www.molecularneuropathology.org/msp/
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[46–48]. The primers used for Sanger-sequencing of the 
germline variant in tumor material are listed in Supporting 
Table S2.

Literature review

The English literature published till September 1st 2021 was 
searched for publications with patients with a diagnosis of 
KS and a concomitant malignancy. The search strategy is 
outlined in detail in the Supporting Methods.

Results

Clinical history of the patient

A 10-year old girl had a clinical and molecular diagno-
sis of KS with a c.2558_2559delCT pathogenic vari-
ant in KMT2D (g.49444907_49444908) predicted to 
result in a p.(Pro853Argfs*3) change at the protein level 
(NM_003482.3, NP_003473.3). She had the classical facial 
features of the syndrome as assessed by an expert dysmor-
phologist (C.T.R.M.S.). Her height growth followed -2 SD 
and she had a nasal speech. She was included in a clinical 
trial investigating the metabolic effect of growth hormone 
in children with KS [49]. However, within the first weeks of 
inclusion she was diagnosed with a retroperitoneal rhabdo-
myosarcoma and was treated with chemotherapy followed 
by surgical removal of the tumor. For this reason she was, 
according to the study protocol, excluded from the study. No 
causal association between the development of the rhabdo-
myosarcoma and initiation of growth hormone therapy was 
assumed.

Histopathological and fluorescence in situ 
hybridization (FISH) analysis

The pre-treatment core needle biopsy and post-chemother-
apy excisional specimen were histopathologically analysed 
(Fig. 1a–d) and neither of the specimens showed an alveolar 
growth pattern and/or anaplastic features. With FISH analy-
sis the tumor was FOXO1 and EWSR1 break negative.

Molecular analysis

DNA-methylation analyses: the methylation profile obtained 
with genome-wide epigenomic profiling of the current case 
was analysed using the “DKFZ-sarcoma classifier” and 
showed a methylation class of (embryonal)rhabdomyosar-
coma (calibration score 0.99) confirming the histopatho-
logical diagnosis. DNA-methylation based CNV-analysis 
showed amongst others, (partial) gains of chromosomes 2, 
3, 7, 8, 12, 15, and 20 and 3 focal losses in chromosome 

11p (Fig. 1e). The latter deletions at cytogenetic bands 
11p15.1-p13, 11p12 and 11p11.2-q12.1 are located more 
centromeric than the Beckwith-Wiedemann Syndrome 
(BWS) locus at 11p15.5-p15.4. As patients with BWS have 
an increased risk of developing rhabdomyosarcomas [50] 
and 11p15 (epi)genetic effects are recurrent in rhabdomyo-
sarcoma [47, 51–53], we analyzed the DNA methylation at 
the BWS locus in detail using the EPIC array data. Here a 
hypermethylation of H19 / imprinting center 1 (IC1)/differ-
entially methylated region 1 (DMR1) and a hypomethylation 
of KCNQ1/KCNQ1OT1 imprinting center 2 (IC2)/differen-
tially methylated region 2 (DMR2) was seen (Supporting 
Fig. S1).

Exome sequencing revealed, amongst others, sequence 
variants in ERCC5 and TP53. In KDM6A one synonymous 
and in KMT2D one synonymous and one intronic variant 
were observed (Supporting Table S3). The germline variant 
in KMT2D was not identified in the tumor-DNA as a result 
of low-coverage at this position (exon 10, overall cover-
age KMT2D 95%) but confirmed with Sanger sequencing 
(Supporting Fig. S2). The Sanger sequence, moreover, sug-
gests a gain of the wild-type and not the mutated allele in 
the trisomy 12 (Supporting Fig. S2, Fig. 1e). For the vari-
ants on chromosome 11 there was—in contrast to the other 
chromosomes—a strong bias towards variants present in a 
homozygous state pointing to an uniparental disomy (UPD). 
In contrast, the diagnostic SNP-array (trio analysis of the 
proband and parents) was normal (arr snp (1–22,X) × 2).

Literature review

With literature review we identified, including the patient 
from the present study, 18 patients with a clinical and/
or molecular diagnosis of KS who developed a malig-
nancy (Table 1). In 10/11 patients from which DNA was 
subjected for mutational analysis a KMT2D (n = 9) or 
KDM6A (n = 1) variant was identified. One patient, patient 
no.8, had a clinical diagnosis of KS but was negative for 
KMT2D and KDM6A variants by exome sequencing and 
array-CGH [27]. In other reports the mutational status was 
not reported or were published before the identification of 
MLL2 (KMT2D) and KDM6A as cause of KS in 2010 and 
2012/2013 [54–56]. In eight patients without mutational 
status or variant (patients 2,3,7,8,10,12,13 and 14) the pro-
vided clinical features and/or photographs were compat-
ible with a clinical diagnosis of KS. In one other patient no 
clinical information was provided except mentioning of the 
diagnosis of KS: this patient (S1) is included in Support-
ing Table S4. Two other patients with KS (clinical diag-
nosis [57] and not specified [58]) and neuroblastoma and 
non-Hodgkin lymphoma respectively were excluded from 
the literature review and discussion due to complete lack of 
(clinical) data of the patient, e.g. sex and age not reported. 
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For completeness, these patients (S2 and S3) are included 
in Supporting Table S4.

The reported malignancies in patients with a clinical 
and/or molecular diagnosis of KS are bone- and soft-tissue 
tumors (n = 5), hematologic malignancies (n = 5), embryonal 
tumors (n = 4) and tumors not belonging to any of the afore-
mentioned malignancy groups (n = 4). Among the bone- and 
soft-tissue tumors, 3 of the 5 cases were reported as sar-
coma (embryonal rhabdomyosarcoma, synovial sarcoma, 
low-grade fibromyxoid sarcoma). The most frequent hema-
tologic malignancy was Burkitt lymphoma which was seen 
in 3 patients. Precursor B-cell acute lymphoblastic leukemia 
(pre-B-ALL) and Hodgkin’s lymphoma were seen in one 
patient each. Two patients presented with a neuroblastoma, 
and Wilms tumor, fetal-type hepatoblastoma, ependymoma, 
hepatocellular carcinoma, carcinoma of unknown primary 
origin and endometrial cancer were seen in one patient each.

In addition, the reports were screened for potential tumor 
predisposing and/or contributing factors other than KS. In 
case 10 [29], with pre-B-ALL, there was a positive family 
history with an uncle with leukemia at the age of 3½ years 
which could point to a familial predisposition for leukemia. 
Patient 16 [34], hepatocellular carcinoma (HCC), had a his-
tory of hepatic adenomatosis and use of (high-dose) oral 
contraceptives which could have lead or contributed to the 
development of HCC. Three malignancies were Epstein-
Barr virus positive (EBV +): patient 7 [26] had a EBV + Bur-
kitt lymphoma, patient 9 [28] developed an EBV + Hodgkin 
lymphoma under immune suppression and in patient 17 [35] 
an EBV-associated carcinoma of unknown primary (CUP) 
was diagnosed.

Although histopathological features were reported in 10 
of the 16 patients (not including patient 18 with a known 
KDM6A variant) most reports lacked a detailed description. 
(Molecular)cytogenetic data were provided only in three 
published cases. For patient 6 [24], Burkitt lymphoma, it 
was shown that the KMT2D variant was present in both 

germ-line and tumor DNA in a heterozygous state. Apart 
from the case included in the present study, in none of the 
cases next-generation sequencing and/or methylation pro-
filing on the tumor were performed. Although most of the 
tumors do not meet (current) World Health Organization 
(WHO) Classification of Tumours diagnostic criteria for the 
reported tumor entities and therefore caution has to be made 
with drawing conclusions based on (some of the) provided 
diagnoses, it appears that overall the clinical presentation of 
the tumors in the patients does not seem to be very unusual 
with regard to age and sex distribution, site of presentation 
and histopathological characteristics (for references, see 
Supporting Methods). Although patient 18 (KDM6A vari-
ant) developed endometrial cancer (subtype not provided) 
at a young age (≤ 31 years), approximately ≤5% of endome-
trial cancers are reported to occur in women younger than 
40 years [59]. Patient 2 (synovial sarcoma) experienced a 
local relapse at 4 months and for patient 4 (giant cell fibro-
blastoma), as commonly observed for this entity [60, 61], 
local recurrence was reported. Further no second malignant 
neoplasms, bilateral-, multifocal- or meta-synchronous can-
cers were reported (Supporting Table S5).

Discussion

In our study we present the history of a patient with Kabuki 
syndrome (KS) with a germline KMT2D variant who devel-
oped an embryonal rhabdomyosarcoma. On tumor-DNA 
we performed exome sequencing and DNA-methylation 
profiling and conducted a literature review focusing on the 
clinical-, pathological- and molecular characteristics of 
other malignancies occurring in patients with KS. Although 
patient number 18 carried a KDM6A variant and we cannot 
exclude the presence of KDM6A variants in the patients from 
the literature review in which no mutational analysis was 
performed or no variant was identified, a detailed discussion 
about the role of KDM6A in malignancies goes beyond the 
scope of the present study. For a detailed discussion about 
the (in vitro) oncogenic potential of KMT2D and its role 
in cancer we refer to recent articles [62–68] and reviews 
[10, 36, 39, 69, 70]. Also of interest in the light of tumor 
predisposition is the functional link between KS and RASo-
pathies [71], a disease family with known germline predis-
position to a variety of hematologic and solid cancers [72, 
73]. Although based on our present analyses and literature 
review no definitive conclusion regarding tumor predisposi-
tion in KS can be drawn, we would like to point out several 
observations.

Fig. 1  Histopathological- and molecular characterization of the 
tumor. a HE-section (X200) of the diagnostic pre-treatment core-
needle biopsy showing hypercellular and less cellular areas of a 
small blue round cell tumor with a myxoid stromal component in 
the latter. b the excision specimen 3 months later after neoadjuvant 
chemotherapy was partly necrotic. Vital areas were less cellular than 
the primary biopsy and characterized by a more abundant myxoid 
matrix with tumor cells showing prominent rhabdoid differentiation 
as is commonly observed in embryonal rhabdomyosarcoma (ERMS) 
after chemotherapy [145]. In neither of the specimens an alveolar 
growth pattern and/or anaplastic features were seen. c partially posi-
tive nuclear staining for MYF4/Myogenin (d) and focal expression of 
Desmin. e Methylation-array based CNV profile. Gains are depicted 
in green, losses in red. Blue lines represent flattened profiles. Focal 
copy number (CN) aberrations may not be visible in the figure and 
genomically distinct CN aberrations laying in close proximity may 
not be visible as separate but instead of single genomic events. (Color 
figure online)

◂
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The landscape of malignancies in patients 
with Kabuki syndrome

First, from a pediatric-oncology perspective it seems that 
the landscape of reported malignancies occurring in patients 
with KS broadly resembles that of the pediatric population 
in general. In the literature review we identified 18 patients 
with KS presenting with in total 19 malignancies. This 
included solid tumors in 13 patients (bone- and soft-tissue 
tumors, n = 5; embryonal tumors, n = 4; “other” tumors, 
n = 4) and hematologic malignancies (n = 5). The one addi-
tional patient with KS but without accompanying clinical 
information had a diagnosis of Burkitt lymphoma [25] (Sup-
porting Table S4). Although having to take publication bias 
and the small number of cases into account this seems at 
least broadly in line with the different groups of malignan-
cies occurring in the pediatric age groups in general [74]. 
Along the same lines, KMT2D would, if being a genuine 
tumor predisposition gene (TPG), predispose to a rather 
wide range of malignancies including bone- and soft-tissue 
tumors, hematological malignancies, embryonal tumors and 
carcinoma’s. Although many TPGs predispose to a single or 
limited types of tumors (e.g., ATM, 11p15/CDKN1C, CDH1, 
PAX5, PTPN11, SMARCB1), based on the observed tumor 
spectrum, KMT2D would belong to a group of TPGs predis-
posing to a broader spectrum of tumours like seen for TP53, 
PTEN, STK11 and DICER1.

Of interest, although hematologic malignancies are com-
mon in both patients with KS and the general pediatric popu-
lation the distribution of reported malignancies is different: 
for KS (including patient S1 from Table S4) 4 patients with 
Burkitt lymphoma [24–27] and 1 patient with B-ALL [29] 
have been published. In contrast, the incidence of B-ALL 
in the pediatric population (far) outnumbers that of Burkitt 
lymphoma [75, 76]. Publication bias could play a role in 
this, however, than one would expect this to be also the case 
for B-ALL and malignancies in general and not specifically 
for Burkitt lymphoma alone. Of interest, somatic KMT2D 
variants are recurrent but not highly frequent in Burkitt lym-
phoma occurring in ≤ 15% patients [77–81]. Intriguing in the 
light of the postulated cell-of-origin in Burkitt lymphoma—a 
germinal center B-cell poised to express IgA [79, 82]—and 
it’s pathogenesis are the reduced serum IgA levels in patients 
with KS and mouse models [83–85] and the smaller and 
reduced number of Peyer’s patches reported in one study 
[83]. In line with the findings of two Kmt2d-loss mouse 
models which showed (after immunization) an enhanced 
germinal-center response with an increase in the number of 
germinal-center B-cells with increased proliferation [86, 87] 
it might be speculated that in KS germline KMT2D variants 
may not have a direct classic tumor predisposition effect 
but may instead increase the chance of developing Burkitt 

lymphoma by an increased germinal-center response and 
proliferation.

As three EBV + malignancies (Hodgkin lymphoma, 
Burkitt lymphoma and a carcinoma of unknown primary) 
were reported it might be speculated that the combination 
of immune deficiency in patients with KS and EBV infection 
could—in analogy to other inborn errors errors of immu-
nity—contribute to an increased susceptibility to develop 
EBV + lymphoproliferations and tumors [88, 89]. However, 
it has to be acknowledged that the number of EBV + malig-
nancies in patients with KS is small and EBV-status has not 
been routinely reported.

Somatic KMT2D variants in malignancies 
in patients with Kabuki syndrome 
and cancer in the general population

Second, (also) for other malignancies reported in patients 
with KS, besides Burkitt lymphoma, somatic KMT2D 
variants are mostly only infrequently reported. In con-
trast, malignancies in which somatic KMT2D variants 
are highly recurrent typically do not or only infrequently 
occur in patients with KS. E.g., somatic variants involving 
KMT2D are only infrequently reported in (embryonal) rhab-
domyosarcoma [46–48, 90], in less than 10% of Hodgkin 
lymphoma [91–95] and on average in ≤ 15% of (pediatric) 
Burkitt lymphomas [77–81]. Hepatocellular carcinoma is 
a molecularly and clinically highly heterogeneous disease 
were KMT2D variants can be identified in approximately 
5% [96–99]. In pre-B-ALL the frequency of KMT2D vari-
ants varies strongly between individual genetic subgroups 
and is high(er) in e.g. the ERG/DUX4 and ZNF384 [100, 
101] rearranged subgroups but is overall, not taken these 
subgroups into account, low [18, 100–103]. Moreover, 
in the typical pediatric cancers including Wilms tumor 
[104–106], neuroblastoma [104, 107, 108] and pediatric 
hepatoblastoma [104, 109–111] somatic KMT2D variants 
only (very) infrequently occur. In contrast, in other cancers 
including, amongst others, pediatric- and adult diffuse large 
B-cell lymphoma (DLBCL) (20–35%) [11, 15, 112, 113], 
adult follicular lymphoma (70–90%) [14, 15], nodal mar-
ginal zone lymphoma (≈20–30%) [114–116], (non)small 
cell lung cancer/lung squamous cell carcinoma (≈20–30%) 
[11, 65, 117], upper tract urothelial carcinoma/bladder can-
cer (≈25–45%) [11, 118–120], esophageal (squamous cell) 
carcinoma (≈10–25%) [11, 121, 122] and pediatric- and 
adult medulloblastoma (overall ≈5–30%, large differences 
between individual molecular subgroups) [123–125] somatic 
KMT2D variants are (highly) recurrent but these cancers 
have not been reported in patients with KS (yet). However, 
with a lack of longitudinal studies it remains unclear whether 
KS patients reach the ages at which many of these tumor 
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types are most prevalent. In cancer truncating KMT2D 
variants have been reported with varying frequencies [39, 
70, 126]. A recent in-depth study analyzing germline and 
somatic KMT2D variants found 80% of the germline vari-
ants causing KS to be protein truncating. On the other hand, 
somatic KMT2D variants in cancer where predominantly 
missense with only 35% were predicted to be protein trun-
cating [126]. Missense variants in patients with KS and 
somatic variants in cancer showed an overlapping but also 
different distribution across KMT2D protein domains [126]. 
Whereas in patients with KS many missense variants have a 
loss-of-function (LoF) effect (by impaired methyltransferase 
activity and/or loss of protein–protein interactions) [127] it 
can not be excluded that some missense variants in cancer 
may have a gain-of-function [126] or, in analogy to selected 
germline KMT2D missense variants [128] a dominant-neg-
ative effect [126]. Finally, it should be noted that the across 
different cancer types the percentages of missense variants 
varies widely [39]. Moreover, for many of the reported (pre-
sumed) somatic KMT2D variants no variant classification is 
provided [129] and depending on the cancer type may act 
either as (early) driver or may arise only later in the process 
of malignant transformation [19, 39, 130–134]. Finally, not 
in all studies the “true” somatic origin of the KMT2D vari-
ants has been reported which might be relevant considering 
the (relatively) frequent germline origin of KMT2D missense 
variants initially detected with sequencing of tumor mate-
rial [108, 135]. Regarding germline and somatic KMT2D 
variants non-mutually exclusive parallels can be drawn 
with the situation for ARID1A/B- and SMARCB1. E.g. for 
ARID1A/B truncating germline variants cause Coffin-Siris-
Syndrome but may not predispose to cancer although trun-
cating somatic variants are frequently present in cancer [136, 
137]. In case of SMARCB1 both the type (truncating versus 
non-truncating missense) and location in the gene determine 
the phenotype (low-grade malignancies, malignant rhabdoid 
tumors, Coffin-Siris syndrome) [137]. 

(Epi)genetic analysis of the embryonal 
rhabdomyosarcoma

Third, when interpreting the molecular data it should be 
taken into account that, in contrast to some other tumor 
predisposition genes, a functional read-out like bi-allelic 
involvement (e.g. Lynch syndrome) is not useful for KMT2D 
as overall in cancer bi-allelic variants are rare and most 
variants are present in heterozygous state [70]. In addition, 
although we did not identify a second (likely)pathogenic 
variant in KMT2D we cannot exclude such variant because 
of incomplete coverage (95%) of the gene. The genome 
wide epigenetic profiling (methylation profile, methylation 
changes at 11p15.5) and CNV-analysis (gains of chromo-
somes 2,7,8 and 12) revealed a for ERMS typical aberrations 

and profile [42, 47, 138]. Unfortunately, in the light of the 
observed trisomy 12 (Fig. 1e), we were not able to analyse 
the percentage of mutant versus wild-type reads at the posi-
tion of the germline KMT2D variant due to insufficient 
coverage at this position and in this region. However, we 
confirmed the variant with Sanger sequencing. Although 
taking the intrinsic limitations of quantification and Sanger 
sequencing into account the pattern of the peak-heights of 
the wild-type and mutated-sequence is suggestive for a gain 
of the wild-type and not the mutated allele.

Conclusions

In conclusion we present the first exome wide genomic 
and genome wide epigenomic analyses of a malignancy 
occurring in a patient with KS. Our molecular findings 
and observations from the literature neither prove nor rule 
out a potential tumor predisposition for KS. Regarding the 
tumor spectrum and age of onset of the tumor in patients 
with Kabuki syndrome it was observed that this broadly 
resembled that of the pediatric population in general. How-
ever, even an in vitro or in vivo oncogenic effect of KMT2D 
perturbation might not directly translate to a clinical rel-
evant tumor predisposition. Regarding the latter, one should 
consider that if in KS the cancer-frequency would exceed a 
reasonable threshold for tumor surveillance (e.g. ≥ 1 ~ 5% 
for other pediatric cancer predisposition syndromes [139]) 
and if the (dis)advantages of imaging modalities like whole-
body MRI (e.g. false-positive findings, required general 
anesthesia) outweigh the benefits [140, 141] for pediatric 
patients especially when they suffer from developmental 
delay. Moreover, considering that Burkitt lymphoma appears 
rather frequent in patients with KS and has a doubling time 
of approximately 24 h only long-term interval surveillance 
would not be effective. Alternatively, liquid-biopsy-based 
surveillance strategies might overcome some of these hur-
dles in paediatric patients with a cancer predisposition syn-
drome [142]. The (epi-)genetic analysis revealed a typical 
ERMS methylation- and copy number profile. Although we 
found no strong arguments pointing towards KS as a tumor 
predisposition syndrome, based on the small numbers any 
relation cannot be fully excluded. Further planned studies 
including exome- and genome-wide (epi)genetic profiling of 
additional tumors in patients with KS and long term follow-
up of patients with KS into adulthood could provide further 
insights into the pathogenesis of these rare but challenging 
tumors.
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