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Abstract

In the zero-water exchange shrimp culture pond maintained with the application of indigenous bioaugmentor, low 
levels of total ammonia–nitrogen were reported, indicating the relevance of indigenous microbial communities. Sedi-
ments (0–5 cm layer) were sampled from the pond (85th day) and the bacterial and archaeal communities; speci�cally, 
the ammonia oxidizers (ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and anaerobic ammonia-oxidizing 
bacteria) in the sediment metagenome of the pond were analysed using the 16S rRNA and functional genes. Bacterial and 
archaeal 16S rRNA genes showed the relative abundance of Delta-Proteobacteria and Bacteroidetes groups performing 
sulphur respiration and organic matter degradation, archaeal groups of anaerobic sulphur respiring Crenarchaeotae, and 
chemolithoautotrophic ammonia oxidizers belonging to Thaumarchaeota. The presence of these diverse bacterial and 
archaeal communities denotes their signi�cant roles in the cycling the carbon, nitrogen, and sulphur thereby bringing out 
e�cient bioremediation in the bioaugmented zero-water exchange shrimp culture pond. Similarly, the functional gene-
speci�c study showed the predominance of Nitrosomonas sp. (ammonia-oxidizing bacteria), Nitrosopumilus maritimus 
(ammonia-oxidizing archaea), and Candidatus Kuenenia (anaerobic ammonia-oxidizing bacteria) in the system, which 
points to their importance in the removal of accumulated ammonia. Thus, this study paves the way for understanding 
the microbial communities, speci�cally the ammonia oxidizers responsible for maintaining healthy and optimal envi-
ronmental conditions in the bioaugmented zero-water exchange shrimp culture pond.
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1 Introduction

Zero-water exchange (ZWE) shrimp culture ponds are 
environmentally sustainable, bio-secured systems devel-
oped as an alternative to traditional open aquaculture 
production. In open culture systems, water quality is 
maintained through frequent exchange of water [110]. 
Frequent release of water into the nearby aquatic systems 
often causes eutrophication due to excess nutrient con-
tents [93], and the uptake of water for culturing from the 

neighbouring water bodies also leads to horizontal trans-
fer of pathogens causing subsequent disease outbreak 
and mortality of shrimp [24]. ZWE aquaculture ponds have 
been developed to abate the negative impacts of open 
shrimp farming on the environment. The problem faced by 
ZWE ponds is the build-up of high organic matter and toxic 
inorganic nitrogen composed of unutilized feed, fertilizers, 
and metabolic waste [10]. The concentrations of ammo-
nia–nitrogen (ammonia-N) above the recommended safe 
levels [13, 14] induce less oxygen transport and stress in 
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shrimps, which in turn decrease the immunity leading to 
morbidity, mortality, and loss of crop [15]. The bioaug-
mented ZWE shrimp culture ponds with bioaugmentor 
“Detrodigest™” (a preparation containing euryhaline Bacil-

lus cereus MCCB 101, GenBank accession no: EF062509), 
developed, implemented, and validated by the National 
Centre for Aquatic Animal Health (NCAAH), Cochin Uni-
versity of Science and Technology (CUSAT), Cochin, India 
[34], proved to maintain optimal and stable environmen-
tal parameters required for shrimp culturing, notably low 
or negligible concentration of ammonia throughout the 
culture period [34, 44]. Bacillus cereus MCCB 101, the sole 
component of a commercial product Detrodigest™, is an 
indigenous Gram-positive bacterium isolated from shrimp 
pond sediment, with hydrolytic potential, used in aquacul-
ture ponds for detritus degradation.

Bioaugmentation is the process of adding specially 
formulated microorganisms to improve the water quality 
through the degradation of organic matter and altering 
the microbial ecology [68, 87]. Microorganisms, whether 
they occur naturally or added artificially, are of great 
importance and play signi�cant roles in pond ecosystems, 
particularly for its productivity, nutrition of the cultured 
animals, nutrient cycling, disease control, water quality, 
and environmental impact [68]. Knowledge of microbial 
interactions is essential for successful management of the 
aquaculture practices. The application of bioaugmentor 
has shown to enhance mineralization of organic mat-
ter [62], reduction of nitrogen and phosphorus from the 
systems, improving the survival and productivity of the 
cultured animals [117]. The maintenance of optimal and 
stable environmental parameters in this bioaugmented 
pond indicated the presence of active indigenous micro-
bial communities in the sediment [68].

Bacterial and archaeal communities play a vital role 
in oxidative and reductive processes of nitri�cation [36]. 
The major challenge faced by aquaculture ponds is the 
accumulation of toxic ammonia, which at high concentra-
tions can decrease the rate of outward di�usion from the 
animal, and toxicity exceeds tolerable level [91]. But the 
ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing 
bacteria (NOB) of shrimp ponds could oxidize this toxic 
ammonia to nitrite and then to less toxic form nitrate [50]. 
Similarly, chemoautotrophic nitri�er, ammonium-oxidizing 
archaea (AOA) [108], and bacteria performing anaerobic 
ammonia oxidation (anaerobic ammonium-oxidizing 
(anammox)) (single-step conversion of ammonia to nitro-
gen gas) [40, 99] are observed [4, 60, 119] in aquaculture 
ponds. Therefore, identi�cation of bacterial and archaeal 
ammonia oxidizers is an important step in understanding 
the biogeochemical processes.

In general, ninety-nine percent of microbes are uncul-
turable, and especially, the nitrifying bacteria are slow 

growers and are highly sensitive to environmental condi-
tions; so, it is di�cult to isolate them in pure culture [32]. 
Therefore, for a true understanding of these microbial 
communities and nitrifiers in an ecosystem, a culture-
independent metagenomic approach is appropriate [32, 
79]. The availability of molecular tools and gene sequenc-
ing has made it possible to explore the slow-growing or 
uncultivable bacterial and archaeal species in di�erent 
environments [55]. PCR ampli�cation and clone libraries of 
highly conserved regions (bacterial or archaeal 16S rRNA 
genes and functional genes) are widely used to describes 
the microbial community [114] in varied ecosystems such 
as freshwater [107], seawater [94], marine sediments [30], 
farm sediment [63], zero-discharge mariculture, and aqua-
culture systems [50]. For the microbial community 16S 
rRNA gene pro�ling and diversity, a molecular �ngerprint-
ing technique ARDRA (ampli�ed ribosomal DNA restriction 
analysis) was used [64, 78].

The addition of “Detrodigest™” [34, 44, 84] degrades the 
organic matter and stimulates the natural microbial com-
munities, which in turn help to maintain the optimal envi-
ronmental conditions for shrimp growth, and therefore, 
it is important to study the microbial communities and 
ammonia oxidizers in bioaugmented ZWE shrimp pond. 
Thus, the present study highlights 1) the bacterial and 
archaeal 16S rRNA gene-based community structure and 
2) the functional gene-based characterization of ammo-
nia oxidizers like AOB and AOA, and anammox speci�c 
16SrRNA gene based chareacterizaiton of anammox bac-
teria in the ZWE shrimp culture pond from the sediment 
metagenome collected from a bioaugmented ZWE shrimp 
pond in Kodungallur, India (10.254639°N, 76.20991°E) on 
85th day of culturing (25th April 2008), with the consent of 
the farmer. The research was carried out at National Centre 
for Aquatic Animal Health (NCAAH), CUSAT, Cochin, India, 
during March 2008 to February 2011.

2  Materials and methods

2.1  Study site, sample collection, 
and physicochemical characterization

The sediment samples were collected from a bioaug-
mented ZWE shrimp culture pond (10,117   m2) with 
1 m depth located at Kodungallur, India (10.254639°N, 
76.20991°E), on 25th April 2008 on the 85th day of cul-
ture (prior to harvest). The samples were collected on the 
85th days of the culture, the time most intense microbial 
activity, when there were maximum biomass, feed input, 
and faecal matter output, but the ammonia concentra-
tions were negligible. The pond was maintained by the 
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application of indigenous bioaugmentor “Detrodigest™”, 
every 7 days.

The top 0–5 cm layer of sediment was collected from 
�ve di�erent sites of the pond and maintained in refriger-
ated condition. Composite sediment samples were pre-
pared and stored at − 80 °C for DNA extraction.

The analysis of water quality parameters was carried 
out in triplicates. The salinity was measured using refrac-
tometer, pH using digital pH metre (Scienti�c Tech, India), 
alkalinity and hardness by titrimetric method [5]., and 
ammonia–nitrogen (ammonia-N) by phenol hypochlorite 
method [95]. Brie�y, 10 mL of water sample was incubated 
with 0.4 mL phenol (20 g of crystalline phenol dissolved 
in 95% V/V ethyl alcohol), 0.4 ml sodium nitroprusside (1 g 
dissolved in 200 mL distilled water), and 1.0 mL oxidiz-
ing solution (alkaline reagent (100 g sodium citrate and 
5 g sodium hydroxide dissolved in 500 mL distilled water) 
and sodium hypochlorite (4:1)). After 1 h, the absorbance 
was read at 630 nm using UV–Vis spectrophotometer (Shi-
madzu, 1650 PC Japan). The factor value was calculated by 
preparing a series of standards at a concentration of 10 
to 60 μg ammonia-N (a standard solution of 10 μg  mL−1 
ammonia-N was prepared by dissolving 4.714 mg ammo-
nium chloride in 100 mL double-distilled water). Nitrite 
nitrogen (nitrite-N) was analysed by incubating 10 mL 
water sample using 0.2 mL sulphanilamide (5 g dissolved 
in a mixture of 50  mL concentrated hydrochloric acid 
and 450 mL distilled water) and 0.2 mL N-(1-naphthyl)-
ethylene diamine dihydrochloride (NED dihydrochloride) 
(0.5 g dissolved in 500 mL distilled water) [8]. After 8 min, 
the absorbance was read at 543 nm using UV–Vis spec-
trophotometer (Shimadzu, 1650 PC Japan). The factor 
value was calculated by preparing a series of standards 
at a concentration of 10 to 60 μg nitrite-N (a standard 
solution of 10 μg  mL−1 nitrite-N was prepared by dissolv-
ing 4.925 mg sodium nitrite in 100 mL double-distilled 
water). Nitrate nitrogen (nitrate-N) [8] was estimated by 
incubating 10 mL water sample by adding 0.4 ml phe-
nol–sodium hydroxide solution (1:1), and hydrazine sul-
phate–copper sulphate solution (1:1) in dark for 18 to 
24 h. Phenol–sodium hydroxide solution is prepared by 
mixing phenol solution (46 gm dissolved in 1 L distilled 
water) and sodium hydroxide (30 g dissolved in 2 L dis-
tilled water), and hydrazine sulphate–copper sulphate 
solution was prepared by the mixing hydrazine sulphate 
(14.5 g hydrazine sulphate dissolved in 1 L distilled water) 
and copper sulphate (0.1 g copper sulphate dissolved in 
1 L distilled water). After incubation, 0.4 mL acetone, 0.2 
mL sulphanilamide, and 0.2 mL NED dihydrochloride were 
added. Absorbance was measured after 8 min at 543 nm 
using UV–Vis spectrophotometer (Shimadzu, 1650 PC 
Japan). The factor value was calculated by preparing a 
series of standards at concentrations of 10 to 60 μg nitrate 

nitrogen (a standard solution of 10 μg  mL−1 nitrate–N was 
prepared by dissolving 6.0707 mg sodium nitrate in 100 
mL double-distilled water). The e�ciency of the reaction 
was determined to measure the percentage of nitrate con-
verted into nitrite. The inorganic phosphate was measured 
by ascorbic acid method [98] by adding 1.6 mL combined 
reagent (5 mL 5 N sulphuric acid (14 mL concentrated 
sulphuric acid diluted to 100 mL distilled water), 0.5 ml 
potassium antimonyl tartrate (0.686 g dissolved in 250 mL 
distilled water), 1.5 mL ammonium molybdate (4 g dis-
solved in 100 mL distilled water), and 3 mL ascorbic acid 
(1.76  g dissolved in 100  mL distilled water)) to 10 mL 
water sample. Absorbance was measured at 880 nm after 
a 10-min incubation using UV–Vis spectrophotometer (Shi-
madzu, 1650 PC Japan). The factor value was calculated 
by preparing a series of standards at a concentration of 
50 to 600 μg  PO4

3−  mL−1 (54.87 mg anhydrous potassium 
dihydrogen phosphate dissolved in 250 mL double-dis-
tilled water gave 50 μg  PO4

3−  mL−1). All the analyses were 
performed with triplicate samples with distilled water as 
blank, and values were represented as mean value.

3  Metagenomic DNA isolation

The metagenomic DNA was isolated from sediment sam-
ple (250 mg) using Power soil DNA isolation kit following 
manufacturer’s instructions (MoBio Laboratories Inc., USA), 
and the concentration of the DNA was estimated using 
a UV spectrophotometer (Hitachi U-2800, Hitachi Corp, 
Japan) by measuring absorbance at 260 nm.

4  Polymerase chain reaction (PCR) 
ampli�cation and library preparation

PCR ampli�cation was carried out to analyse the bacte-
rial and archaeal 16S rRNA genes, bacterial and archaeal 
ammonia monooxygenase A (amoA) functional genes, 
and 16S rRNA gene-speci�c to anammox bacteria. The 
details of primers and the annealing temperature used in 
this study are speci�ed in Table 1. The PCR reactions were 
processed in a thermal cycler (Eppendorf, Germany). All 
the genes were ampli�ed using Master Taq DNA ampli�-
cation kit (5 PRIME, USA), which included 5X Taq Master 
PCR Enhancer (1X), 10X Master Taq bu�er with  Mg2+ (1X), 
10 mM dNTP (0.2 mM) of forward and reverse primers, Taq 
DNA polymerase (0.04 U), and metagenomic DNA (100 ng). 
Triplicate PCR products were pooled, electrophoresed 
on 1.5% (w/v) agarose gel (Sigma-Aldrich, USA), and 
puri�ed using the GenElute™ Gel Extraction Kit (Sigma-
Aldrich, USA). The puri�ed PCR products were cloned into 
the pGEM-T ®-T Easy Vectors (Promega, USA) for library 
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preparation and transformed, and the screened positive 
clones were selected for plasmid extraction using GenEl-
ute™ Plasmid Miniprep Kit (Sigma-Aldrich, USA).

5  Ampli�ed ribosomal DNA restriction 
analysis (ARDRA)

Using the puri�ed plasmids (1:200 dilutions), the bacterial 
and archaeal 16S rRNA genes were re-ampli�ed with bacte-
rial- and archaeal-speci�c 16S rRNA gene primers as men-
tioned earlier (Table 1), using the same PCR mix and condi-
tions mentioned in the previous section. The re-ampli�ed 
PCR products were subjected to ARDRA using two tetra 
cutter restriction enzymes AluI and HaeIII (New England 
Biolabs, USA). The restriction digestion was carried out 
separately with two units of each restriction enzymes for 
3 h in a twenty micro-litre reaction volume of re-ampli�ed 
PCR product 5 µl, incubation bu�er (New England Biolabs, 
USA) 2 µl, and Milli-Q water 12.8 µl. The PCR products were 
run on 3% agarose (Sigma-Aldrich, USA) gel in 1X TAE bu�er 
for 3 h at 100 V and visualized under UV excitation in a gel 
documentation system (Bio-Rad, USA). Using the Quantity 
One (Bio-Rad, USA) software, the band patterns on the gel 
were scored for the absence (0)/presence (1) of individual 
loci and analysed using the NTSYSpc (version 2.02i, Applied 
Biostatistics Inc., USA). Further, using NT edit programme, 
the data matrix prepared in MS-Excel spreadsheets was con-
verted to a proprietary matrix �le, and the rectangular data 
matrix generated was analysed by NTSYSpc (version 2.02i, 
Applied Biostatistics Inc., USA). Similarities and clustering 
were performed using a simple matching coe�cient SAHN 
(Sequential, Agglomerative, Hierarchical, and Nested) statis-
tical module and UPGMA (unweighted pair group method 
with arithmetic mean) clustering method.

6  Sequence analyses and community 
structure

The representative plasmids selected from each 16S rRNA 
ARDRA analysis cluster were sequenced using Applied 
Biosystems ABI 3730 × 1DNA analyser at SciGenom Labs 
Pvt. Ltd., Kochi, India. The sequences were screened for 
vector sequences using “VecScreen” (www.ncbi.nlm.nih.
gov/VecSc reen) and further edited and assembled using 
Gene Tool Lite1.0 (BioTools Incorporated). The sequence 
similarity search to database DNA sequences was per-
formed in BLAST (www.ncbi.nlm.nih.gov/BLAST ) [2]. The 
gene sequences were aligned using ClustalW, and the evo-
lutionary history was inferred using the Maximum Likeli-
hood method based on the Kimura 2-parameter model. 
The phylogeny was analysed in MEGA 6.06 software [101] 
with 1000 bootstrap. Though the clones were sequenced 
based on ARDRA clusters, the number of operational taxo-
nomic units (OTUs) was assessed based on 97% sequence 
similarity criterion using Mothur v.1.12.3 [90]. The taxo-
nomic composition of ZWE shrimp culture pond was 
visualized using Geneious R8 [47]. The gene sequences 
of bacterial and archaeal 16S rRNA in Geneious R8 were 
analysed using the RDP Classi�er (Ribosomal Database 
Project Database) [111], and Krona visualization tool [73] 
represented a hierarchical graph showing the diversity and 
relative abundance. The taxonomic composition of 16S 
rRNA genes was calculated using VITCOMIC (VIsualization 
tool for Taxonomic COmpositions of MIcrobial Community) 
software [65]. The visualization tool plots a single �gure 
from all sequences indicating the relative evolutionary 
distances. Each phylum name was designated with di�er-
ent font colour, and circles indicated similarity of sequence 
to the sequences in database (80%, 85%, 90%, 95%, and 
100% BLAST similarity) and size of the dots indicated rela-
tive abundance.

For the analyses of ammonia oxidizers (functional genes 
for AOA and AOB and group speci�c 16SrRNA gene for 

Table 1  PCR primers used for 
the ampli�cation of bacterial 
and archaeal 16S rRNA genes 
and functional genes of 
ammonia oxidizers (AOB, AOA, 
and anammox)

Name Primer sequence (5′ to 3′) Annealing (°C) Product 
Size (bp)

Reference

Bacterial 16SrRNA Bac-fD1-GAG TTT GAT CCT GGC TCA 58 1500 [114]

Bac-rP2-ACG GCT ACC TTG TTA CGA CTT 

Archaeal 16SrRNA Arch-21F-TTC CGG TTG ATC CYG CCGGA 55 950 [19]

Arch-958R-YCC GGC GTTGAMTCC AAT T

AOB amoA-1F-GGG GTT TCT ACT GGT GGT 60 491 [86]

amoA-2R-CCC CTC KGSAAA GCC TTC TTC 

AOA Arch-amoAF-STAA TGG TCT GGC TTA GAC G 53 635 [26]

Arch-amoAR-GCG GCC ATC CAT CTG TAT GT

Anammox Amx 368F-TTC GCA ATG CCC GAA AGG 56 478 [3]

Amx 820R-AAA ACC CCT CTA CTT AGT GCCC 

http://www.ncbi.nlm.nih.gov/VecScreen
http://www.ncbi.nlm.nih.gov/VecScreen
http://www.ncbi.nlm.nih.gov/BLAST
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anammox), clones (~ n = 15) were randomly sequenced on 
Applied Biosystems ABI 3730 × 1DNA analyser at SciGenom 
Labs Pvt. Ltd., Kochi, India. The sequences obtained were 
vector screened using “VecScreen” tool (www.ncbi.nlm.nih.
gov/VecSc reen), further edited and assembled using Gene 
Tool Lite1.0 (BioToolsIncorporated). The sequence similar-
ity search to database DNA sequences was performed in 
BLAST server (www.ncbi.nlm.nih.gov/BLAST ) [2]. Phylo-
genetic analysis was carried out using ClustalW multiple 
alignments of gene sequences, and the Maximum Like-
lihood method phylogenetic tree (1000 bootstrap) was 
built in MEGA version 6.06 [99]. The genetic distance was 
calculated using Kimura 2-parameter model.

7  Nucleotide sequence accession numbers

The GenBank accession numbers of genes are 
bacterial 16S rRNA gene (JF428815–JF428837, 
JF428842–JF428862), archaeal 16S rRNA gene (JF428780 
to JF428804), bacterial amoA gene (JF428805–JF428814, 
JX524531, and JX524532), archaeal amoA gene 
(JX524533–JX524543), and anammox bacteria-specific 
16S rRNA gene (KC499605–KC499609, KC499611, and 
JX524516–JX524530).

8  Results and discussion

8.1  Physicochemical properties of the study site

The environmental parameters of the bioaugmented 
ZWE shrimp pond are summarized in Table  2. Among 
the two species of ammonia–nitrogen [85], unionized 
ammonia  (NH3-N) is more toxic. The recommended safe 
and tolerable ammonia-N levels for post-larvae, nauplius, 
and adolescents of shrimps are 1.15 mg  L−1 (0.10 mg  L−1 
 NH3-N), 0.13 mg  L−1 (0.01 mg  L−1  NH3-N), and 4.26 mg  L−1 
ammonia-N (0.08 mg  L−1  NH3-N), respectively [13, 14]. If 
the ammonia conversion to nitrate is prevented, signi�cant 

concentrations of nitrite are accumulated in the environ-
ment, and it may cause a decrease in the immunity, and 
increased susceptibility to infection [105]. A suggested 
safe level of N-NO2 is 0.09 mg  L−1 [21], and similarly, safe 
levels of nitrite-N (0.0412 ± 0.0014 mg  L−1) were observed 
in the bioaugmented shrimp pond on the 85th day of 
culture. Prior to the harvest (85th day), when there were 
maximum nutrient and biomass load, an interesting 
observation was the low level of total ammonia–nitrogen 
(TAN). The low levels of TAN obtained in the present study 
comply with previous observations of low levels of TAN in 
bioaugmented ZWE shrimp culture pond throughout the 
culture period [34, 44]. The low level of TAN was attained 
by the microbial degradative processes being carried out 
by the microbial community in the sediment of the ZWE 
pond. Therefore, bio-geochemically ammonia-oxidation 
gains a vital role in the ZWE system. In the ZWE system, 
microbial-mediated processes and players acquire more 
importance to maintain low levels of ammonia, and in 
this context, understanding microbial players in ammonia 
oxidation from the sediment will be helpful to highlight 
the role of microorganisms in bioaugmented ZWE shrimp 
culture ponds.

9  Bacterial and archaeal 16S rRNA gene 
analysis of ZWE pond

Metagenomic DNA of good yield and purity with a con-
centration of 35 µg  mL−1 was obtained from the ZWE pond 
sediment sample (Fig. S1). The ampli�cation of bacterial 
16S rRNA (1500 base-pair (bp)) (Fig. S2a) and archaeal 
16S rRNA (950 bp) genes (Fig. S2b) were successful. Simi-
larly, the PCR analysis of functional genes of bacterial 
amoA gene (491 bp) (Fig. S3a), archaeal amoA (635 bp) 
(Fig. S3b), and planctomycetes group-speci�c 16S rRNA 
gene (478 bp) (Fig. S3c) was also successful, con�rming 
the existence of all the three ammonia oxidizers in tropical 
shallow ZWE shrimp culture pond. The clone libraries of 
the 16S rRNA genes of bacterial and archaeal communities 
and ammonia oxidizers were successfully generated and 
similar approach of PCR and clone library analyses were 
carried out to study estuary [82], OMZ (oxygen minimum 
zone) of ocean [53, 54], and varied environments.

The ARDRA of 128 bacterial (Fig. S4a, b) and 44 archaeal 
(Fig. S4c, d) positive clones showed diverse banding pro-
files, indicating the level of molecular heterogeneity 
among the bacterial and archaeal populations in the sedi-
ment. The banding patterns were analysed and grouped 
using NTSYSpc. Each group represents a speci�c banding 
pattern. Dendrogram of bacteria (Fig. S5) and archaea 
(Fig.  S6) based on ARDRA profiling were generated. 
ARDRA of 128 bacterial clones resulted in a dendrogram 

Table 2  Physiochemical properties of bioaugmented zero-water 
exchange shrimp culture ponds (n = 5)

Parameters Values

pH 7.6 ± 0.043

Salinity 17 PSU

Alkalinity 65 mg  L−1

Total hardness 3100 mg  CaCO3  L−1

Ammonia-N 0.212 ± 0.0706 mg  L−1

Nitrite-N 0.0412 ± 0.0014 mg  L−1

Nitrate–N 0.00545 ± 0.0008 mg  L−1

http://www.ncbi.nlm.nih.gov/VecScreen
http://www.ncbi.nlm.nih.gov/VecScreen
http://www.ncbi.nlm.nih.gov/BLAST
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consisting of 25 groups and few individual representative 
clones, from which 33 representative clones were selected 
and sequenced. Similarly, ARDRA of 44 archaeal clones 
resulted in 9 groups and individual representatives, from 
which 25 representative clones were selected for sequenc-
ing. The distance coe�cient of the dendrogram of bacte-
rial 16S rRNA gene clone library ranged from 0.87 to 1.00, 
and the archaeal 16S rRNA clone library ranged from 0.82 
to 1.00. ARDRA pro�ling was used as a tool to analyse the 
genetic diversity of microbial communities from di�erent 
environments [64, 78].

10  Phylogenetic analysis of bacterial 
and archaeal 16S rRNA genes

Based on a 3% cut-off, 33 bacterial clone sequences 
obtained from shrimp pond sediments were clustered 
into 29 OTUs (Fig.S7). Phylogenetic analysis (Fig. 1) of bac-
terial clones revealed Delta-Proteobacteria and Bacteroi-
detes as the most important bacterial communities in the 
bioaugmented ZWE shrimp pond. The clone sequences 
also showed similarity to the earlier reported uncultured 
Gamma-Proteobacteria [43], uncultured Nitrospira bacte-
rium clone [1], uncultured Planctomycetales group, uncul-
tured deep-sea bacterial clones, sulphate-reducing Olavius 
sp. [1, 49], uncultured Chloro�exi [103], Acidobacteria [1], 
Crocinitomix sp. [41], purple-sulphur bacteria (PBS)-Thio-

halocapsa sp. [52, 74], Spirochaeta [35], Desulfuromonas, 
and Desulfucoccus. The bacterial communities in the bio-
augmented ZWE shrimp pond showed similarity to mostly 
sulphur-oxidizing and reducing bacteria.

A total of 25 representative clones from the archaeal 
library clustered within 16 OTUs based on a 3% cut-o� 
(Fig.S7). Phylogenetic analysis (Fig. 2) of archaeal clones 
showed close a�liation to uncultured archaeal clones. To 
acquire an accurate description of phylogenetic relation-
ships of ZWE shrimp pond sediment clones, we included 
representative sequences of both cultivated and uncul-
tivated archaeal clones (showing maximum similarity) in 
the analysis. Based on their phylogenetic a�liation (Fig. 2), 
archaeal 16S rRNA gene sequences were seen distributed 
among Crenarchaeota and Thaumarchaeota. The iso-
lated clones from ZWE pond showed similarity (> 95%) to 
sequences from habitats such as marine sediment [25, 38, 
61], mangrove and estuarine sediments [42, 94, 115], and 
thermal spring [113].

The Geneious R8 biodiversity map of the bacterial 16S 
rRNA gene (Fig. 3) showed the presence of three proteo-
bacterial classes and nine other major phyla. The bacte-
rial communities in the ZWE pond were belonging to Pro-
teobacteria, Bacteroidetes, Ignavibacteriae, Firmicutes, 
Gyanobacteria, Planctomycetes, Spirochaetes, Chloro�exi, 

Hydrogenedentes, and Acidobacteria. The relative abun-
dance of Proteobacteria accounts for 39%, with a pre-
dominance of Delta-Proteobacteria (27%), followed by 
Gamma-Proteobacteria (9%) and Alpha-Proteobacteria 
(3%). The Delta-Proteobacteria comprised the major rep-
resentatives with 3% Desulfuromonadaceae, 6% Deferri-
soma, 6% Cystobacteraceae, 3% Desulfobulbaceae, and 
9% Desulfobacteraceae. The second relatively abundant 
Gamma-Proteobacteria represented 3% Coxiellaceae, 3% 
Chromatiaceae, and 3% Ectothiorhodospiracaea. Rhodo-
bacteraceae (3%) was represented in the Alpha-Proteo-
bacteria. Bacteroidetes (24%) was another major repre-
sentative followed by Proteobacteria, which showed the 
presence of Flavobacteria (9% Cryomophaceae, and 6% 
Flavobacteriaceae), Bacteroidia (6% Prolixibacteraceae), 
and Cytophagia (3% Flammeovirgaceae). Ignavibacte-
riaceae (12%) was the third dominant group of bacteria in 
ZWE ponds. The remaining bacterial groups present in the 
bioaugmented ZWE pond were 3% Thermoanaerobacte-
rales and 3% Clostridiales of Firmicutes, 3% Gyanobacteria, 
3% Phycisphaeraceae of Planctomycetes, 3% Spirochaetes, 
3% Dehalococcoidaceae of Chloro�exi, 3% Candidatus 
Hydrogenedenes of Hydrogenedentes, and 3% Gp23 genus 
of Acidobacteria Gp23. The VITCOMIC plot of the overall 
taxonomic composition of bacterial communities (Fig. 4) 
demonstrated the predominance of Proteobacteria and 
Bacteroidetes, with ≤ 5% relative abundance. 

The presence of relevant microorganisms in the sedi-
ment metagenome signifies their contribution to the 
sulphur and nitrogen cycle in the ZWE shrimp pond. 
The presence of these microbial communities reflects 
the ecological functions that they could perform in the 
system. In the overall diversity of the sediment metage-
nome, the substantial fraction was comprised of Delta-
Proteobacteria. They are predominantly anaerobic genera 
containing sulphate and sulphur-reducing bacteria. The 
sequences affiliated to Desulfuromonas genera, Defer-

risoma sp., Myxococcales, and Desulfobacterales order 
were detected. Genera Desulfuromonas (family Desul-
furomonadaceae) are anaerobic bacterium, performing 
organic matter degradation and sulphur respiration [22, 
23, 76]. Deferrisoma sp., a thermophilic, anaerobic, mixo-
trophic bacterium [75], could oxidize the electron donors 
completely into  CO2 and  H2O with elemental sulphur and 
iron (III) as electron acceptors [96]. Anaeromyxobacter sp., 
an anaerobic myxobacterium within the order Myxococ-
cales, grows anaerobically with acetate oxidation and 
reduction of electron acceptors (oxygen, nitrate, nitrite, 
and fumarate). They are physiologically adapted to both 
oxic and anoxic conditions and found distributed through-
out soil and sediment environments [102, 104]. Sulphate-
reducing bacteria, Desulfobacterales, included among 
the Delta-Proteobacteria reduces sulphates to sulphides 
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Fig. 1  Phylogenetic tree of 
bacterial 16S rRNA genes from 
the sediment metagenome 
of bioaugmented zero-water 
exchange shrimp pond con-
structed using MEGA version 
6.06 software with Maximum 
Likelihood method and Kimura 
2-parameter model (1000 
Bootstrap). Sequences of bac-
terial 16S rRNA gene obtained 
from the present study are 
represented using the symbol 
(■) in the phylogenetic tree
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Fig. 2  Phylogenetic tree of 
archaeal 16S rRNA genes from 
the sediment metagenome 
of bioaugmented zero-water 
exchange shrimp pond was 
constructed using MEGA ver-
sion 6.06 software with Maxi-
mum Likelihood method and 
Kimura 2-parameter model 
(1000 Bootstrap). Sequences 
of archaeal 16S rRNA gene 
obtained from the present 
study are represented using 
the symbol (■) in the phyloge-
netic tree
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to obtain energy. Further, sequences associated with Thio-

halocapsa sp. (family Chromatiaceae) and Thiogranum sp. 
(family Ectothiorhodospiraceae) of order Chromatiales 
belonging to Gamma-Proteobacteria were observed in 
the clone library analyses, denoting the prominent role 
of Gamma-Proteobacteria in sediments. The families of 
Chromatiaceae and Ectothiorhodospiraceae are found in 
marine ecosystems and consuming sulphide originating 

from active sulphate reduction as an electron donor [12]. 
Thiohalocapsa sp. is phototrophic, purple-sulphur bacte-
ria (PSB) found in anoxic zones of a marine aquaculture 
pond sediment [52], and Thiogranum sp. of Ectothiorho-
dospiraceae are obligately chemolithoautotrophic, sul-
phur-oxidizing bacteria [67]. In addition, Rhodobacte-
raceae family of Alpha-Proteobacteria was observed in the 
clone library. This Rhodobacteraceae family comprises of 

Fig. 3  Geneious map showing the distribution pattern of bacterial groups within the sediment metagenome of bioaugmented zero-water 
exchange shrimp pond
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photoheterotrophs and chemoorganotrophs capable of 
nitrogen �xation and metabolize various sulphur-contain-
ing compounds [80].

The clone library also comprised sequences related to 
Bacteroidetes. Most of the sequences within Bacteroidetes 
were closely a�liated with Crymorphaceaea. Members of 
this group play a signi�cant role in secondary produc-
tion in aquatic ecosystems [9], playing a potential role in 

organic matter degradation [118]. The sequences related 
to Sediminibacter sp. of Flavobacteriaceae were detected. 
They are chemoheterotrophic bacterium [48], and some 
members of the Flavobacteria have potential to degrade 
complex carbon [18]. Few sequences were a�liated to 
Mangrovibacterium sp. (Prolixibacteraceae family), a 
nitrogen-�xing bacterium [37], and some sequences to 
a marine bacterium Aureibacter sp. (Flammeovirgaceae 

Fig. 4  VITCOMIC merged map results of bacterial and archaeal groups within the sediment metagenome of bioaugmented zero-water 
exchange shrimp pond
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family) [116]. Sequences affiliated to Melioribacter sp. 
(class Ignavibacteria) were observed. Melioribacter sp. has 
glycoside hydrolases and transferases genes for polysac-
charide degradation and synthesis, and they also pos-
sess genes encoding superoxide dismutase and catalase 
to detoxify the oxygen respiration by-products [45, 77]. 
The sequence similarity to Firmicutes delineated the 
association with Thermanaeromonas sp. and Clostridium 

sensustricto. Thermanaeromonas sp. are anaerobic, ther-
mophilic bacteria, which use thiosulphate as an electron 
acceptor and can reduce nitrate and nitrite for growth 
[46, 66]. Clostridium sensustricto, abundant Firmicutes in 
RAS (recirculating aquaculture systems), are reported to 
have the potential in removing the accumulated nitrate 
[31, 83]. Very few sequences of GpIIa genus belonging to 
Cyanobacteria family II [20] were also found. The 16S rRNA 
gene sequences associated with facultative anaerobe Phy-

cisphaera sp. (third class of Planctomycetes) were present 
in the clone library; they perform nitrate-to-nitrite reduc-
tion under anaerobic conditions [27], also associated with 
fermentation at the sulphate–methane transition zone in 
marine sediments [33]. Species-speci�c sequence similar-
ity to Spirochaeta genus was observed, which were ubiq-
uitous inhabitants of many aquatic environments [74, 88], 
can colonize and form �occulent matter, and can metabo-
lize carbohydrates [109]. Dehalococcoidaceae (Chloro�exi 
family) contains dehalogenation complex [122] and is sig-
ni�cant indicator of the re-oxidation stage [56]. Acidobac-

teria Gp23 (Acidobacteria) are capable of nitrate and nitrite 
reduction. The presence of metabolically diverse bacterial 
groups in the sediment metagenome suggested their e�-
ciency in cycling the carbon, nitrogen, and sulphur loads 
and thereby bringing out e�cient bioremediation in the 
bioaugmented ZWE shrimp pond.

The Geneious R8 biodiversity map of archaeal 16S rRNA 
gene (Fig. 5) revealed the distribution patterns of archaea 
by demonstrating the presence of two major taxonomic 
classes, Thermoprotei of Phylum Crenarchaeota and 
Nitrosopumilales of phylum Thaumarchaeota. Thermopro-
teals, Desulfurococales, and Acidobales orders belonging 
to the Thermoprotei class (Phylum Crenarchaeota) were 
present. Phylogenetically, Thermoproteales included 44% 
Thermo�lum genus, and Acidobales included 8% Caldis-

phaera genus. Desulfurococcales included 4% of Hyper-

thermus genus belonging to Caldisphaeraceae family and 
12% of Stetteria genus belonging to Desulfurococcaceae 
family.

Phylum Crenarchaeota was found in the sediments 
of ZWE pond, with the archaebacterium Thermo�lum, a 
genus of the thermophilic, anaerobic sulphur respiring 
Thermoproteales, relatively abundant in the archaeal clone 
library. The growth of these archaebacterium is dependent 
on peptides, sulphur, and  H2S [120]. Similarly, the genus 

Caldisphaera (family Acidobales), a thermoacidophilic 
crenarchaeote, was present which was reported to grow 
anaerobically and heterotrophically and can be stimulated 
by the presence of sulphur [39]. Desulfurococcaceae are 
a family of anaerobic microorganisms belonging to the 
order Desulfurococcales. Stetteria is a genus (Desulfuro-
coccaceae family), mixotrophic sulphur-dependent Cre-
narchaeotae, which need elemental sulphur as an external 
electron acceptor, and dependent on the presence of  H2 
for its growth. Hyperthermusbutylicus sp. is a hyper-ther-
mophilic, sulphur-reducing archaebacterium [121]. The 
detection of these species in the archaeal clone library 
denoted the importance of archaea in sulphur cycling of 
the ZWE shrimp pond. Nitrosopumilus genus belonging to 
Thaumarchaeota accounted for 32%, which are chemo-
lithoautotrophic ammonia oxidizers. There are reports 
showing Nitrosopumilus sp. as the prominent AOA in the 
bio�lter of shrimp RAS and aquaculture ponds [11, 72]. The 
taxonomic composition of archaeal communities using 
VITCOMIC (Fig. 4) con�rms that N. maritimus belonging to 
Thaumarchaeota was the most abundant archaeal group 
with a relative abundance ≤ 10%, and similarity > 95%. N. 

maritimus was reported as the major archaeal ammonia-
oxidizer in marine sediment samples and zero-water 
exchange shrimp culture systems [19, 72].

Microorganisms are of great importance in pond 
ecosystem as it increases the self-puri�cation capacity, 
in turn, improving the water quality and enhancing the 
growth and immunity of the cultured animals. Bacterial 
and archaeal clone library dictates the relative abundance 
of phyla related to sulphur geochemical cycling. Sulphur 
cycling is important in these ponds as un-ionized dis-
solved hydrogen sulphide is toxic, and sulphate reduc-
tion can account for over 50% of organic matter degra-
dation [69]. The phyla Bacteroidetes was high in clones 
underscoring the enhanced capacity for organic matter 
degradation. Bacterial clone library also indicated the 
presence of a diverse bacterial group capable of nitrogen 
�xation, nitrate and nitrite reduction, and the archaeal 
clone library indicated the presence of ammonia oxidizers. 
Bioremediation of nitrogenous compounds is important 
as it removes the potentially toxic compounds ammonia 
and nitrite. Thus, the results of ARDRA and phylogenetic 
analysis (Mega 6.06, VITCOMIC, and Geneious map) depict 
the taxonomic composition of microbial community in the 
bioaugmentation ZWE shrimp pond sediment when there 
were the maximum biomass, inputs of feed, and metabolic 
wastes.
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11  Functional gene analyses of ammonia 
oxidizers in ZWE pond

In this ZWE pond and earlier reports [34, 44], the ammonia 
concentration was observed to be at a low level. Hence, 
the analysis of three major ammonia oxidizers (AOB, 
AOA, and anammox) was conducted using bacterial- and 
archaeal-speci�c functional gene (amoA) and anammox-
speci�c 16S rRNA gene primer.

Nitrosomonas and Nitrosospira are the two major gen-
era of AOB [81]. Ammonia-rich ecosystems generally dem-
onstrate the habitual predominance of Nitrosomonas sp. 
[6, 51]. The bacterial amoA gene sequences showed 99% 

identity to uncultured AOB. Phylogenetic analysis (Fig. 6) 
showed similarity to the bacterial amoA gene of Nitroso-

monas nitrosa [29]. Sequences also showed similarity to 
other uncultured bacterial amoA clones retrieved from 
bioreactors [28]. Based on the metagenomic sequence 
analysis, in the ZWE ponds, Nitrosomonas sp. represents 
the major AOB.

BLAST analyses of archaeal amoA gene sequences 
were similar to the ammonia monooxygenase gene of 
uncultured archaeon clone with an identity in the range 
of 96.7–99%. The phylogenetic analyses (Fig.  7) of the 
archaeal amoA clones showed identity to amoA gene 
of uncultured crenarchaeote obtained from tropical 

Fig. 5  Geneious map showing the distribution pattern of archaeal groups within the sediment metagenome of bioaugmented zero-water 
exchange shrimp pond
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estuarine sediment [94], intertidal [7, 70], and mangrove 
[59] ecosystems. The archaeal amoA clones formed two 
distinct clusters, and the clone JX524541 was seen widely 
separated in the phylogenetic tree. Phylogenetic analyses 
with pure cultures excluding the uncultured environmen-
tal sequences showed 90% similarity with 99% coverage to 
Nitrosopumilus maritimus amoA gene of Thaumarchaeota 
phylum. These sequences were also similar to the Nitros-

opumilus sequences retrieved from a bio�lter of a shrimp 
RAS [11], except for clone JX524541. The clone JX524541 
formed a distinct cluster that showed 81% similarity with 

99% coverage to CandidatusNitrososphaera  gargensis 
Ga9.2, belonging to phylum Thaumarchaeota of Nitros-

osphaera genus [97]. Based on the metagenomic sequence 
analysis, Nitrosopumilus sp. was the major AOA present in 
the ZWE ponds.

The Planctomycetae-speci�c 16S rRNA gene sequences 
were identical to uncultured Planctomycetes, Candidatus 
Kuenenia stuttgartiensis, and uncultured anammox bac-
teria, with a sequence similarity ranging from 98 to 99%. 
Phylogenetic analysis (Fig.  8) showed similarity to the 
Candidatus Kuenenia from the sediments of mangrove, 

Fig. 6  Phylogenetic tree of uncultured AOB clones obtained from 
the sediment metagenome of bioaugmented zero-water exchange 
shrimp pond constructed using MEGA version 6.06 software with 
Maximum Likelihood method and Kimura 2-parameter model 

(1000 Bootstrap). Sequences of bacterial amoA obtained in the 
present study are represented using the symbol (■) in the phylo-
genetic tree
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estuary, and high-temperature reservoirs [16, 57, 112]. 
The presence of anammox in the pond bottom is very 
signi�cant, as they play an active role in the conversion 
of ammonia to maintain it at low levels. There are reports 
on the survival of anammox in natural environments such 
as coastal, marine, natural freshwater wetland, aerated 
marine RAS, and anoxic zones of nitrifying bio�lters [40, 
92, 100, 106].

Nitrosomonas sp. (AOB), Nitrosopumilus sp. (AOA), 
and Candidatus Kuenenia (anammox) were predomi-
nant in the bioaugmented pond. All the three groups 
of ammonia oxidizers co-existed in the system, with 

distinctly different mechanism of ammonia oxidation, 
substrate complementation, and metabolic interaction 
[71, 72]. In oxic environments, ammonia is quickly oxi-
dized by AOB and AOA [89]. Anammox bacteria have 
the ability to oxidize ammonia and reduce nitrite into 
 N2 gas under anaerobic conditions, and their presence 
is widely seen in wastewater treatment plants, coastal 
marine sediments, estuaries, terrestrial habitats, oce-
anic and freshwater oxygen minimum zones [17, 54]. 
The anaerobic ammonia-oxidation process by anam-
mox is important to the aquaculture, as it removes both 
ammonia and nitrite, which is toxic to aquatic animals. 

Fig. 7  Phylogenetic tree of uncultured AOA clones obtained from 
the sediment metagenome of bioaugmented zero-water exchange 
shrimp pond constructed using MEGA version 6.06 software with 
Maximum Likelihood method and Kimura 2-parameter model 

(1000 Bootstrap). Sequences of archaeal  amoA obtained in the 
present study are represented using the symbol (■) in the phylo-
genetic tree
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Usually, anammox bacteria are inhibited by the presence 
of oxygen, but can be detected in the aerated systems 
due to anoxic zones created by oxygen consumption and 
limited penetration of oxygen. The presence of AOB and 
AOA near anammox bacteria has a second great benefit 

since these organisms supply the nitrite by the oxidation 
of ammonia. Nitrite produced is required by anammox 
bacteria to oxidize ammonia [99]. The coexistence of 
AOB, AOA, and anammox would be ideal in aquaculture 

Fig. 8  Phylogenetic tree of uncultured anammox clones obtained 
from the sediment metagenome of bioaugmented zero-water 
exchange shrimp pond constructed using MEGA version 6.06 soft-
ware with Maximum Likelihood method and Kimura 2-parameter 

model (1000 Bootstrap). Sequences of anammox 16S rRNA gene 
obtained in the present study are represented using the symbol (■) 
in the phylogenetic tree
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systems, to remove both ammonia and nitrite which are 
toxic to aquatic animals [53, 54, 71, 72].

12  Conclusions

Bacterial and archaeal communities involved in the sul-
phur, carbon, and nitrogen cycles were observed in ZWE 
shrimp culture pond sediment metagenome, which are 
critical in the maintenance of environmental quality and 
sustainability of the culture system. The phylogenetic 
analyses targeting ammonia oxidizers showed the pres-
ence of all the three communities (AOB, AOA, and anam-
mox), indicating the key role of microbial communities 
in maintaining permissible or low levels of ammonia in 
the ZWE shrimp culture pond. The present study revealed 
the capability of the pond sediment to act as a bioreactor 
augmenting the removal of ammonia and nitrite from the 
culture systems, thus maintaining the optimal conditions 
required for aquaculture. The addition of the bioaugmen-
tor, which is not a nitri�er, helped to degrade the organic 
matter and improve the environmental conditions to stim-
ulate growth and activity of naturally occurring microbial 
communities. Altering the microbial ecology plays sig-
ni�cant roles in nutrient cycling, thereby improving the 
survival and productivity of the cultured animals. Further 
knowledge on relevant microbial interactions and the 
overall ecology of these systems is essential for the suc-
cessful management of the aquaculture systems.
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