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Learning Objectives Contrast the definitions of TN and basal-like.

Describe the undistinguishable global gene expression patterns of non-basal-like TN tumors versus
non-TN tumors that are non-basal-like.

Describe the relationship between TN heterogeneity and tumor heterogeneity plus
microenvironmental heterogeneity.

KABSTRACT

Triple-negative (TN) and basal-like (BL) breast cancer defini-
tions have been used interchangeably to identify breast
cancers that lack expression of the hormone receptors and
overexpression and/or amplification of HER2. However,
both classifications show substantial discordance rates
when compared to each other. Here, we molecularly char-
acterize TN tumorsand BLtumors, comparing and contrast-
ing the results in terms of common patterns and distinct
patterns for each. In total, when testing 412 TN and 473 BL
tumors, 21.4% and 31.5% were identified as non-BL and
non-TN, respectively. TN tumors identified as luminal or
HER2-enriched (HER2E) showed undistinguishable overall
gene expression profiles when compared versus luminal or
HER2E tumors that were not TN. Similar findings were ob-

served within BLtumorsregardless of their TN status, which
suggests that molecular subtype is preserved regardless of
individual marker results. Interestingly, most TN tumors
identified as HER2E showed low HER2 expression and
lacked HER2 amplification, despite the similar overall gene
expression profiles to HER2E tumors that were clinically
HER2-positive. Lastly, additional genomic classifications
were examined within TN and BL cancers, most of which
were highly concordant with tumorintrinsic subtype. These
results suggest that future clinical trials focused on TN dis-
ease should consider stratifying patients based upon BL
versus non-BL gene expression profiles, which appears to
be the main biological difference seen in patients with TN
breast cancer. The Oncologist 2013;18:123-133

Implications for Practice: Basal-like breast canceris commonly known as triple-negative (TN) breast cancer because the majority
of cases lack expression of estrogen and progesterone receptors and overexpression and/or amplification of HER2. However, not
all TN tumors are identified as basal-like by gene expression, and not all basal-like tumors are TN. Here, we show that TN disease
is a broad and diverse category for which additional subclassifications are needed. We propose that clinical trials focused on TN
disease stratify patients based upon a tumor’s basal-like versus non-basal-like gene expression profiles, which appears to be the
main biological difference seen in patients with TN breast cancer.

INTRODUCTION

Studies based upon global gene expression analyses have
identified four main intrinsic molecular subtypes of breast
cancer known as luminal A, luminal B, HER2-enriched [HER2E]
and basal-like [1-4]. These molecular entities have shown sig-
nificant differencesinterms ofincidence, risk factors, baseline
prognosis, age at diagnosis, and response to treatment [2-3,
5]. Among them, the basal-like subtype is of particular clinical

interest due to its high frequency, lack of effective targeted
therapies, poor baseline prognosis, and its tendency to affect
younger women.

Over the years, basal-like breast cancer has become more
commonly known as triple-negative (TN) breast cancer be-
cause the majority of tumors of thismolecular subtype lack ex-
pression of hormone receptors (HR) and overexpression
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and/or amplification of HER2; however, not all TN tumors are
identified as basal-like by gene expression, and not all basal-
like tumors are TN [2]. In fact, as we have previously reported
using publicly available microarray data, the discordance rate
between the two definitions is 20%—30% [2]. More recently,
subtyping of three large clinical trials (GEICAM/9906 [6],
MA.12 [7], and MA.5 [8]) using the PAM50 qRT-PCR-based as-
say revealed that approximately 30% of tumors identified as
TN by central pathology review do not fall into the basal-like
subtype category [9]. Therefore, significant biological hetero-
geneity exists within the group of patients diagnosed with TN
disease.

In this study, we undertook a molecular characterization
ofthe main molecular entities found within TN disease, as well
as a focused molecular characterization of basal-like tumors
that are not TN. In addition, we compared the features of the
main intrinsic subtypes, together with the recently identified
claudin-low subtype [10] and with the six subtypes of TN dis-
easerecentlyidentified by Lehmannetal.[11]. These analyses
revealed many common findings that should provide biologi-
cal value for the interpretation of data coming from TN breast
cancer trials.

MATERIALS AND METHODS

Microarray Data Sets

We evaluated 12 publicly available microarray data sets
(GSE12276 [12, 13], GSE2034 [13, 14], GSE25066 [15],
GSE16716 [16], GSE20194 [17], GSE23988 [18], MDACC133
[19], GSE18229 [10], GSE20711 [20], GSE2109 [21], GSE2603
[22], and GSE19615 [23]), each of which provided annotated
clinical-pathological data. Raw datafiles from each Affymetrix
(Santa Clara, CA) microarray-based cohort were normalized
using MAS5 and replicates samples removed. The probes of
the GSE18229 Agilent-based cohort were filtered by requiring
the Lowess normalized intensity values in both sample and
control to be >10. The normalized log2 ratios (Cy5 sample/
Cy3 control) or log2 intensity of probes mapping to the same
gene (entrez ID as defined by the manufacturer) were aver-
aged to generate independent expression estimates. In each
cohort, genes were median centered and standardized to zero
mean and unit variance. Finally, samples without clinical-
pathological annotation regarding estrogen receptor (ER) sta-
tus, progesterone receptor (PR) status, and HER2 status were
excluded, leaving a total of 1,703 samples with microarray
data and known ER/PR and HER2 status.

Combined Microarray Data Set

Of the 12 normalized gene/row median-centered and stan-
dardized data sets evaluated, seven (GSE20194 [17],
MDACC133 [19], GSE18229 [10], GSE20711 [20], GSE2109
[21], GSE2603 [22], and GSE19615 [20]) were successfully
combined into a single gene expression microarray matrix of
1,005 samples (including 17 normal breast samples)and 7,722
entrez ID genes in common. Loading plots of the two principal
components were evaluated to exclude important batch ef-
fects (supplemental online Fig. 1).

Gene Expression Molecular Subtyping

To be consistent with our previous studies, the PAMS50 intrin-
sicsubtype classifier was used as described in Parker et al. [24]
to determine the subtype calls (luminal A, luminal B, HER2E,
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basal-like, and normal-like) of each individual sample within
each cohort. For samples in data sets GSE18229, GSE12276
and GSE2034, we used the previously reported subtype calls
[10, 13]. Additionally, inthe combined microarray data set, we
also explored the identification of the claudin-low subtype
[10]. To do so, we applied a 9-cell line claudin-low predictor
[10], rank ordered the samples based on the Euclidian dis-
tance ratio to the “others” centroid versus the “claudin-low”
centroid, and thenidentified the top 10% of tumors as claudin-
low.

Toidentify the molecular subtypes of TN breast cancer, we
used the list published by Lehmann et al. [11] of 2,188 genes
that classifies TN tumors into six classes (immunomodulatory
[IM], basal-like 1 [BL1], basal-like 2 [BL2], mesenchymal [M],
mesenchymal stem-like [MSL], and luminal androgen recep-
tor [LAR]). This gene list was used in a hierarchical cluster anal-
ysis, with the six groups identified based upon the cluster-
associated dendrogram and the genes that defined each of
the groups.

The Cancer Genome Atlas Data Set

Gene expression, DNA copy number, reverse-phase protein
array (RPPA), and mutational data were obtained from The
Cancer Genome Atlas (TCGA) website (http://cancergenome.
nih.gov/) [25]. PAM50 subtype calls, ER/PR status, and HER2
status were used as provided from TCGA.

Microarray of Human Breast Samples and Cell

Line Models

All human tumor and normal tissue samples were collected
using protocols approved by the institutional review board.
Samples were obtained from fresh frozen breast specimens.
Invivo and in vitro human breast cancer and immortalized hu-
man mammary epithelial cell lines (HME-CC, BT474, BT483,
BT549, CAMA-1, HCC1143, HCC1187, HCC1395, HCC1428,
HCC1500, HCC1937, HCC1954, HCC38, Hs578T, MCF7,
MDAMB231, MDAMB361, MDAMB415, MDAMBA435,
MDAMB436, MDAMBA453, MDAMB468, ME16C, SKBR3,
SUM102, SUM1315, SUM149PT, SUM159PT, SUM9OPT,
T47D, UACC812, ZR75-1, MDA-IBC3, DU4775) were cultured
assuggested by providers. Three primary tumor breast cancer
xenografts (HIM2 [26], HIM5 [26], and HIM12), grown in im-
munocompromised mice, were also assayed by microarray.
RNA was purified using the RNeasy Mini kit. All samples were
profiled as previously described using oligo microarrays (Agi-
lent Technologies, Santa Clara, CA) [25], and microarray and
patient clinical data are available in the University of North
Carolina Microarray Database and have been deposited in
the Gene Expression Omnibus under the accession number
GEO:GSE41119.The probes of the GSE41119 Agilent-based
cohort were filtered by requiring the Lowess normalized in-
tensity values in both sample and control to be >10. The
normalized log2 ratios (Cy5 sample/Cy3 control) or log2 in-
tensity of probes mapping to the same gene (entrez ID as
defined by the manufacturer) were averaged to generate
independent expression estimates, and genes were me-
dian centered and standardized to zero mean and unit vari-
ance. PAM50 and claudin-low subtyping was performed as
described above.
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Figurel. Representativealgorithm of the two main clinical phenotypes (triple-negative versus non-triple-negative) and the various mo-
lecularintrinsic subtypes analyzed in this study. The gene expression heatmap represents the 50 genes of the PAM50 subtype predictor

and the PAMS50 microarray training data set.
Abbreviation: TN, triple-negative.

Statistical Analysis

All microarray cluster analyses were displayed using Java
Treeview version 1.1.4r2 [27]. Average-linkage hierarchical
clustering was performed using Cluster v3.0 [27]. Biologic
analysis of microarray data was performed with the Database
for Annotation, Visualization, and Integrated Discovery anno-
tationtool [28]. Unpaired two-class significance analysis of mi-
croarrays (SAM) was used to identify differentially expressed
genes between subtypes [29]. Analysis of variance and Stu-
dent’s t tests for gene expression data were done using R
2.10.1 (http://www.r-project.org/).

RESULTS

In this section, we refer to the various combinations of the
two main clinical phenotypes (TN versus non-TN) and the
various molecular intrinsic subtypes using the format
shown in Figure 1. For example, the two main clinical phe-
notypes of basal-like tumors will be defined as basal-
like/TN and basal-like/non-TN, whereas the two main
molecularintrinsic subtypes of TN tumors will be defined as
TN/basal-like and TN/non-basal-like.

Distribution of the Main Intrinsic Subtypes Within TN
Breast Cancer

We evaluated data from 12 publicly available microarray data
setswith known ER, PR, and HER2 clinical status (n = 1,703).In
each individual data set, we applied the PAMS50 subtype pre-
dictor and classified tumors as luminal A, luminal B, HER2E,
basal-like, and normal-like. The overall concordance rate was
found to be 79% (k = 0.62) between the immunohistochem-
istry (IHC)-based and PAMS50 subtype definitions (luminal A
and B tumors combined and normal-like cases excluded be-
cause this group is likely contaminated with true normal
breasttissue). Among 412 TN tumors, 78.6% were identified
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Figure 2. Distribution of the intrinsic molecular and pathology-
based subtypes within triple-negative and basal-like tumors.

Abbreviations: HR, hormone receptor; TNBC, triple-negative
breast cancer.

as basal-like, 7.8% as HER2E, 6.6% as luminal, and 7.0% as
normal-like (Fig. 2). This PAM50 subtype distribution within
TN tumors is similar to the distribution reported across
three large clinical trials with centrally reviewed IHC-based
and PAM50-based data [9]. Conversely, within 473 basal-
like tumors, 68.5% were identified as HR—/HER2—, 18.2%
as HR+/HER2—,10.6% as HR—/HER2+, and 2.7% as HR+/
HER2+.

Triple-Negative Subtype-Specific Gene Expression
Features

Toidentify genes whose expression characterizes the luminal,
HER2E, and basal-like subtypes within TN breast cancer only,
we performed a three-class SAM with a false-discovery rate of
0% and obtained alistof 1,510 genes (supplemental online Ta-
ble 1). Clustering of these genes across these three intrinsic
subtypes using only TN disease samples revealed six main
gene clusters (Fig. 3, supplemental online Fig. 2). As expected,
TN/luminal tumors showed high expression of estrogen-re-
lated and previously identified luminal genes (p <.0001) such
asESR1, PGR, MUC1, and GATA3, and low expression of cell cy-
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Figure 3. Subtype-specific gene expression profiles within triple-negative disease. Each colored square represents the relative mean
genescore for each subtype, with highest expressionshowninred, average expressioninblack, and lowest expressioningreen. Thisgene
list was obtained by performing a three-class (luminal, HER2E and basal-like) significance analysis of microarrays within triple-negative
disease (False Discovery Rate = 0%). On the right, selected genes symbols of several gene clusters are shown, as well as selected gene
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Abbreviations: AGR2, anterior gradient 2 homolog; APOD, apolipoprotein D; AR, androgen receptor; AURKB, aurora kinase B; BAG1,
BCL2-associated athanogene; CCNB2, cyclin B2; CDH1, E-cadherin 1; ESR1, estrogen receptor; FGFR4, fibroblast growth factor receptor
4, ITGA6, integrin alpha 6; KRT, keratin; MUC1, mucin 1; NEBL, nebulette; PGR, progesterone receptor; PTK6, protein tyrosine kinase 6;
$100, S100 calcium binding protein; SOD1, superoxide dismutase 1; XIST, inactive X specific transcripts.

cle-related genes (p <.0001) such asKI67 and aurora kinase B.
Conversely, TN/HER2E tumors showed an overall intermedi-
ate gene expression compared to the other two subtypes, ex-
cept for a gene cluster that included high expression of genes
involved in oxidation reduction-related biological processes
(p<<.0001), such asisocitrate dehydrogenase 1, fatty acid syn-
thase, and superoxide dismutase 1 (SOD1).

A large set of genes defined the TN/basal-like tumors, in-
cluding previously known basal epithelial cell genes such as
keratin 14 and ID4, and a large set of proliferation associated
genes including FOXML1. Finally, we identified a subcluster of
luminal-like genes, including the androgen receptor (AR),
FOXA1, E-Cadherin, and keratin 18, which was similarly and
highly expressed in TN/luminal and TN/HER2E tumors com-
pared to TN/basal-like tumors. Overall, this data suggested
that TN disease is biologically heterogeneous, and that all the
main gene expression features of the intrinsic molecular sub-
typesare maintained even when starting with this clinically re-
stricted subset.

Triple-Negative Versus Non-Triple-Negative Subtype-

Specific Gene Expression Features

To address how different non-TN versus TN tumors of a com-
mon subtype are (i.e., luminal/TN versus luminal/non-TN), we
identified differentially expressed genes between TN and
non-TN tumors within a given subtype using the 7,722 avail-
able genes of the combined microarray data set of 1,005 tu-
mors with known ER, PR, and HER2 status. Within the luminal
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A and luminal B subtypes, no differentially expressed gene
was identified between TN (n = 26) and non-TN (n = 553) tu-
mors, whereas only 13 (0.2%) and 18 (0.23%) genes were
found differentially expressed between TN and non-TN tu-
mors within basal-like (n = 164 vs. n = 82) and HER2E (n = 17
and n = 106) subtypes, respectively (supplemental online Ta-
bles 2, 3).

The five genes found significantly downregulated in
HER2E/TN compared to HER2E/non-TN were all found in the
17911-13 amplicon (HER2/ERBB2, GRB7, MED1, SCGB2A2
and STARD3). Thus, aside from the genes on the HER2 ampli-
con, almost no differences existed between subtype matched
TN vs. non-TN tumors when tested on the mRNA level.

Expression of Selected Genes Across the Subtypes
Based on Their TN Status
These results suggest that the overall gene expression profiles
of the PAMS50 subtypes are undistinguishable regardless of
theirclinical ER, PR, and HER2 status, particularly TN status. In-
deed, clustering of the 1,005 tumors using the PAM50 genes
revealed that luminal/TN and HER2E/TN tumors show very
similar overall PAM50 gene expression patternsas do luminal/
non-TN and HER2E/non-TN tumors, with extensive intermin-
gling (Fig. 4, supplemental online Table 4). Similarly, basal-
like/TN tumors showed undistinguishable PAM50 gene
expression patterns relative to basal-like/non-TN.

To more precisely test these findings, we evaluated the
expression of important selected genes across the sub-
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Figure4. Hierarchical clustering of 1,005 tumors from a combined data set using the available PAM50 genes (n = 40 of 50). All samples
have known estrogen receptor, progesterone receptor, and HER2 status. Triple-negative samples and the PAM50 calls are shown below

the array tree.
Abbreviation: TNBC, triple-negative breast cancer.

types and based on the TN status of the tumors. For exam-
ple, ESR1 and PGR expression in luminal/TN tumors were
found high and not statistically different when compared to
luminal/non-TN tumors (Fig. 5A, 5B), whereas the differ-
ences in ESR1 and PGR expression were minor within the
other subtypes.

HER2E/TN tumors showed a statistically significant
lower expression of HER2/ERBB2 compared to HER2E/
non-TN tumors, with the levels of HER2/ERBB2 expression
in HER2E/TN tumors being similar to the levels observed in
the other subtypes (Fig. 5C). Conversely, expression of
EGFR was found significantly increased in HER2E/TN tu-
mors compared to HER2E/non-TN tumors (Fig. 5D), thus
suggesting that some of the HER2E tumors that are clini-
cally HER2-not amplified may be driven by EGFR; a similar
finding for EGFR was observed within the TCGA data set of
HER2E tumors [25]. Finally, concordant with the similar
overall gene expression profiles of HER2E/TN and HER2E/
non-TN tumors, genes such as AR and the luminal transcrip-
tion factor FOXA1 were found to be similarly expressed
between TN and non-TN tumors (Fig. 5E, 5F), and with both
luminal and HER2E subtypes at a level significantly higher
than that seen in the basal-like subtype tumors.

Age at Diagnosis of Subtypes Based on Their TN Status
Previous studies have shown thatyounger women’s breast tu-
mors are enriched for more aggressive intrinsic subtypes,
namely basal-like [30]. In our combined data set, basal-like tu-
mors showed a statistically significant lower mean age at diag-
nosis than the rest of subtypes (50.8 years vs. 55.0 years; p <
.0001, normal-like tumors excluded); this was observed to be
true regardless of TN status (50.7 years in basal-like/non-TN
vs. 50.9 years in basal-like/TN tumors; p > .05).

Within TN disease (supplemental online Fig. 3), the mean
age at diagnosis of TN/basal-like versus TN/non-basal-like tu-
mors was found to be significantly different (50.7 vs. 57.1
years; p <.0001, normal-like tumors excluded). Interestingly,
26 0f 98 (26.5%) of TN tumors appearing in women =60 years
old were identified as non-basal-like compared to only 3 of 70
(4.3%) of TN tumors in women =40 years old (odds ratio for
identification of non-basal-like tumors = 8.1, p <.0001).

Independent Evaluation of TN Tumors From TCGA

The recently reported TCGA Breast Cancer data set offers the
opportunity to interrogate other data types beyond gene ex-
pression, including protein expression using RPPA, DNA copy
number changes, and somatic and germline DNA mutations
[25]. Among 90 TN tumors in the TCGA data set, the PAM50
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subtype distribution was as follows: basal-like (n = 78, 87%),
HER2E (n = 5, 5.6%), luminal A/B (n = 5, 5.6%), and normal-
like (n = 2,2.2%). A summary of the TCGA TN tumor data is
provided in Figure 6, with the top portion devoted to a de-
tailed molecular analysis of the TN/non-basal-like tumors (Fig.
6A), and the bottom focused on the overall features of each
subtype within TCGA TN cancers only (Fig. 6B).

First, we explored the RPPA data (i.e., 172 proteins) to
identify differentially expressed proteins between TN/non-
basal-like versus TN/basal-like tumors (supplemental online
Table 5). A total of 10 proteins were identified (unpaired two-
classSAM, FDR = 0%); the six upregulated proteinsin TN/non-
basal-like tumors were AR, PR, ER, cyclin D1, GATA3, and
INPP4B, which has recently been shown to be a tumor sup-
pressorfound deleted and with low expressionin basal-like tu-
mors [31, 32]. Similar to the gene expression data, the
expression of AR in TN/HER2E tumors was found to be similar
to expression levelsin non-TN/HER2E tumors, and higherthan
TN/basal-like or non-TN/basal-like tumors (data not shown).
Finally, the four downregulated proteins in TN/non-basal-like
tumors compared to TN/basal-like tumors were cyclin B1, ani-
lin, MSH®6, and disheveled 3.

Secondly, we explored the DNA mutation data. As ex-
pected, TN/basal-like and TN/HER2E tumors showed the larg-
est number of total somatic mutations (mean number of
mutations = 90.39 and 97.2, respectively) compared to TN/
luminaltumors (mean number of mutations = 43). Interms of
TP53 somatic mutations, 2 of 5 (40%) TN/luminal tumors had
TP53 mutations versus 63 of 74 (85%) TP53 mutations within
TN/basal-like tumors and 6 of 6 (100%) TP53 mutationsin TN/
HER2E (p = .019, x* test). In fact, a TP53 wild-type TN/luminal
Atumor had a MAP2K4 mutation that is typically identified in
ER+ luminal tumors. Moreover, BRCA1/2 deleterious muta-
tions (somaticand germline mutations combined) were found
in 16 of 73 (22%) TN/basal-like tumors versus 1 of 5 (20%) in
TN/luminal tumors (which was a BRCA2 germline mutation)
and 0 of 5 (0%) in TN/HER2E tumors. Conversely, somatic mu-
tationsin PI3KCA, whichis afrequent ER+/luminal tumor mu-
tation, were found in 2 of 5 (40%) TN/luminal tumors versus 5
of 74 (6.8%) in TN/basal-like tumors (all 5 samples were TP53
mutated) and 0 of 6 (0%) in TN/HER2E tumors (p = .035, x*
test). Thus, even within TN cancers, the mutation spectrum
observed continued to follow molecular subtype as opposed
to following a common biology possibly laid out by being TN.

Finally, concordant with our results, we observed that all
TN/HER2E tumors did not show overexpression of the HER2
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Figure 5. Box-and-whisker plots for expression of selected breast cancer-related genes based on the intrinsic subtype and triple-

Basal-like M HER2-enriched

negative status. p values were calculated by comparing mean values across all groups.
Abbreviation: TNBC, triple-negative breast cancer.

Luminal A/B M

A PAMS50 data RPPA data DNA_CNA Somatic Mutations Germline Mutations
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Figure6. Summarized molecular data of triple-negative tumorsfrom The Cancer Genome Atlas (TCGA) dataset[25]. (A): Molecular data
of the 12 triple-negative (TN)/non-basal-like tumors is shown. (B): Overall data of the HER2E (n = 5), luminal/normal (n = 7), and basal-
like (n = 78) groups within TN disease is shown. The PAM50 proliferation score was calculated by estimating the mean expression of 11
proliferation-related genes. Percentiles of the PAMS50 proliferation score across the entire TCGA data set are shown for each sample. For
reverse-phase protein array data, low, average and high values are relative to the log base 2 median expression of that particular protein
across the entire TCGA data set (< —1 expression = low; —1to +1 = average; >+1 = high).

Abbreviations: AR, androgen receptor; ER, estrogen receptor; Mut, mutations; NA, notavailable; PR, progesterone receptor; PROLIF,
PAMS0 proliferation score; ROR, risk of relapse; RPPA, reverse-phase protein array; TN, triple-negative.

i :
©AlphaMed Press 2013 OﬂCOlOngf



Prat, Adamo, Cheangetal.

129

gene or protein, and all TN/HER2E tumors lacked high amplifi-
cation of the HER2/GRB7 17g12 amplicon based on the AFFY
SNP array data. Interestingly, a TN/HER2E tumor was found to
be alobularinvasive carcinoma with a frame-shift mutation in
E-cadherin.

Beyond the Main Subtypes of Triple-Negative Disease
Lehmann et al. [11] reported the identification of six molecu-
lar subtypes within TN disease (IM, BL1, BL2, M, MSL, and LAR).
To explore the similarities and differences between these mo-
lecular entitiesand the PAM50 subtypes, together with ourre-
cently identified claudin-low subtype, we performed a
supervised hierarchical clustering using the list of 2,188 genes
by Lehmann et al. onthe 224 TN tumors of our combined data
set (many of which were also contained withinthe Lehmann et
al. data set).

Asshownin Figure 7A, sixto seven tumor clusters were ob-
served and four main gene expression clusters were identified
representing a stromal gene signature (i.e., fibroblast activa-
tion protein), a luminal signature (i.e., ESR1, FOXA1), an im-
mune signature (i.e., CD8A), and a basal epithelial signature
(i.e., keratin 5and 14). The stromal and immune gene clusters,
which are likely identifying gene expression patterns coming
from the microenvironment (i.e., invading fibroblasts and im-
mune cells), are critical for the identification of Lehmann’s M,
MSL, and IM subtypes, respectively (Fig. 7B). Nonetheless, the
PAMS5O0 subtypes were clearly identified, with the vast major-
ity of HER2E and luminal tumors highly expressing the LAR
cluster and the true normals and normal-like tumor samples
highly expressing the stromal/fibroblast cluster. Interestingly,
the PAMS50-defined basal-like tumors were split into three
main groups based on the expression of the immune-related
genes, the stromal-related genes, and the basal genes. Finally,
the claudin-low tumors were found scattered within the large
basal-like group of tumors based on their expression of the im-
mune and/or stromal gene clusters.

Overall, this data suggested that the IM and MSL subtypes
are mostly defined by the high expression of genes likely com-
ing from the microenvironment, not from the actual tumor
cells. To explore this hypothesis, we performed hierarchical
clustering analysis using the list of 2,188 genes by Lehmann et
al. [11] and a sample set composed of 230 human breast tu-
mor samples, 20 normal breast samples, 34 in vitro human
breast cancer cell lines, and 3 human breast cancer xenografts
grown in immunocompromised mice, all assayed on Agilent
DNA microarrays (Fig. 7C). As expected, the genes whose high
expression defined the IM and MSL subtypes (Fig. 7D), namely
the stromal/fibroblast and immune signature genes, were not
found expressed in any of the cell line or xenograft models
(Fig. 7C), which is concordant with their expression coming
from the microenvironment (i.e., the microenvironment is
lacking in vitro and is coming from mouse cells for the xeno-
grafts, and which does not hybridize to human DNA microar-
rays).

DISCUSSION

In this study, we evaluated a large number of breast cancer
datasetsand madethefollowing major observationsconcern-
ing TN breast cancers:
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1. TNand basal-like definitions should not be considered syn-
onymous because considerable discordance exists
(~25%).

2. TN disease is a heterogeneous clinical entity composed of
all the intrinsic molecular subtypes, with the basal-like tu-
mors predominating (~70%).

3. TNtumorsthatareidentified as non-basal-like (i.e., HER2E
or luminal A/B) show nearly undistinguishable global gene
expression patterns versus non-TN tumors that are non-
basal-like (i.e., HER2E or luminal A/B).

4. Basal-like tumors that are non-TN show similar genomic
features and an association with age at diagnosis as do ba-
sal-like tumors that are TN.

5. Previously described TN heterogeneity in part reflects tu-
mor heterogeneity plus microenvironmental heterogene-
ity. Thus, TN disease is a broad and diverse category for
which additional subclassifications are needed.

Agroupof TNtumorsthat hasattracted alot of attentionin
recent years is the subset that expresses the AR. For example,
Niemeieretal.[33] evaluated a series of 189 consecutive inva-
sive breast cancers; 151 (80%) were positive for AR. As ex-
pected, the majority (95%) of ER+ tumors were AR+, and AR
positivity was observed in 5 of 8 (63%) ER—/PR—/HER2+
casesand onlyin3 of 30 TN cases (10%). AR expression in ER—
tumors was associated with lower histological grade and apo-
crine histological differentiation—a finding that has also been
observed by other groups [34, 35]. Concordant with this data,
we observed that TN tumors with high AR protein and/or gene
expression were usually identified as HER2E or luminal (or lu-
minal AR, according to Lehmann et al.[11]), and their levels of
AR expression resembled the levels observed in HER2E and lu-
minal tumors that were not TN. In addition, we have previ-
ously shown that among six apocrine tumors with published
gene expression data, three (50%) were identified as HER2E
and 3 (50%) as luminal [10]. Interestingly, one clinical trial
evaluating antiandrogens for patients with TN tumors with ex-
pression of AR is underway (NCT00972023). In another study
(NCT00468715), 12% (51/424) of TN tumors expressed AR by
IHC, which showed a 21% clinical benefit with bicalutamide
[36]; thus, the overwhelming majority of TN tumors were
AR—.

At first glance, the identification of TN/luminal tumors,
clinically HER2 —/HER2E tumors, or non-TN/basal-like tumors
might seem counterintuitive; however, several plausible ex-
planations exist. One possibility is the false positivity or false
negativity of the IHC-based assays for determining the HR or
HER2 status, especially because these pathology-based tests
are challenged by interlaboratory and intermethod discor-
dance rates of ~20% [3, 37]. Another possibility is that the pa-
thology and gene expression data could have been obtained
from two different areas of the same tumor, one being en-
riched for HR and/or HER2 expression from tumors cells and
another area enriched for HR— tumors cells (i.e., intratumor
heterogeneity). Although some of the cases evaluated here
from publicly available data might be explained by this possi-
bility, we believe it is unlikely that two different subtypes co-
exist in the same tumor enough to explain this discordance
rate. In fact, we have previously reported that the intraclass
correlation of two arrays performed on two different pieces of
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Figure 7. Triple-negative (TN) tumors classified by gene signatures from Lehmann et al. [11]. (A): Supervised hierarchical clustering of
224 TN tumors from the combined data set using the centroid gene list from from Lehmann et al. Each colored square represents the
relative mean transcript abundance (in log2 space) for each subtype, with highest expression shown in red, median expression in black,
and lowest expression in green. PAMS50 and claudin-low subtype calls are identified below the array tree. (B): Genes from the clustering
in (A) that distinguish each subtype identified in Lehmann et al. Red and green indicate the expression direction (upregulated or down-
regulated, respectively) in each subtype. (C): Supervised hierarchical clustering of 250 breast samples and 37 cell lines representing all
subtypes using the centroid gene list from Lehmann et al. (D): Genes from the clustering in (C) that distinguish each subtype identified in
Lehmannetal.

Abbreviations: AR, androgen receptor; BL1, basal-like 1; BL2, basal-like 2; CAV1, caveolin 1; ESR1, estrogen receptor; FAP, fibroblast
activation protein; IM, immunomodulatory; KRT, keratin; LAR, luminal androgen receptor; LY96, lymphocyte antigen 96; M, mesenchy-
mal; MSL, mesenchymal stem-like; NA, not available.

the same primary tumor is ~0.90 [13]. In addition, data from of a given tumor versus three or four individual biomarkers
three large clinical trials where both pathology-based assays [38]. For example, a TN tumor that has low levels of ESR1 and
and the PAMS50 qRT-PCR-based subtype predictor were per- PGR, and consequentlyis ER— and PR— by IHC, might be iden-

formed from the same FFPE tumor block in a centralized labo- tified as luminal due to the high expression of other luminal-
ratory suggest that basal-like tumors can be HR+ and that TN related genes (i.e., AR, GATA3, and/or FOXA1) and the low
tumors can be luminal A, luminal B, or HER2E [9]. expression of basal- and proliferation-related genes. Another

Another possibility regarding the discrepancy between example comes from the identification of HER2E/TN tumors
gene expression and IHC-based assays is that gene expression that do not amplify/overexpress HER2/ERBB2, some of which
measures alarge number of related genes, compared with the might be driven by high EGFR.
three individual pathology-based biomarkers that define TN Beyond the four main tumor intrinsic subtypes of breast
disease. Thus, multigene expression data using tens to hun- cancer, we have recently identified another subtype called
dreds of genes might better capture the true biological profile claudin-low [10, 39], whichis characterized by the low expres-
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Abbreviations: EGFR, epidermal growth factor receptor; PARP, poly (ADP-ribose) polymerase.

sion of tight-junctions related genes (claudin 3, 4, 7) and high
expression of mesenchymal and stem cell-like biological pro-
cesses. The majority of claudin-low tumors were found to be
either basal-like or normal-like by PAMS50, and most showed a
TN phenotype. In addition, claudin-low tumors were associ-
ated with metaplastic and medullary histological differentia-
tion, and lymphocytic infiltration was found in 37% of cases.
Since its identification, many groups have further character-
ized the claudin-low subtype in human tumors and preclinical
models [40—-47]. However, its real frequency and clinical rele-
vance are still under investigation.

Lehmann et al. [11] reported the identification of up to six
subtypes within TN disease. Here, we have shown that these
entities largely overlap with the PAM50 and claudin-low sub-
types. However, it is important to note that two of the four
main gene clusters used to identify the Lehmann et al. entities
are tracking biological processes most likely coming from the
microenvironment (i.e., coming from fibroblasts and immune
cells) and not from the actual tumor cells. Concordant with
this, the two in vitro tumor cell lines identified by Lehmann et
al.asimmunomodulatory-like (HCC1187 and DU4475) did not
show expression of the genes whose high expression defines
the immunomodulatory tumor subtype (Fig. 7C). In addition,
despite the identification of six subtypes of TN disease in hu-
man tumors, the classification ultimately used by Lehmann et
al. for classifying the preclinical models of TN breast cancer
was based on three main groups (mesenchymal, basal-like,
and LAR) that showed different responsesto cytotoxicandtar-
geted therapies. This three subtype classification is very con-
cordant with the three main groups previously identified by
our group (claudin-low, basal-like and luminal/HER2E), and
others based upon cell lines alone (basal B, basal A, and lumi-
nal/HER2+) [48-50]; thus multiple groups and multiple
methods have all arrived at these same three basic subtypes
present within TN disease. The microenvironment clearly
plays a critical role in prognosis [51, 52] and treatment re-
sponse [53]. However, classification of tumors based on non-
tumor features (e.g., the presence or absence of lymphocytes)
should be considered separately from classifications based
upontumor cellfeatures, as microenvironmental features can
and do span tumor-based subtypes.

Based upon all of these data, and when discussing TN dis-
ease, we propose that TN breast cancers identified as luminal
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or HER2E should be considered as separate entities because
they show a different biology (and mutation spectrum) versus
basal-like and claudin-low tumors. In fact, TN luminal and
HER2E are almost undistinguishable, in general terms, from
non-TN luminal and HER2E that are typically ER+ or HER2+.
However, whether these TN tumors that are non-basal-like
might benefit from endocrine, anti-HER2 and/or anti-EGFR
therapies, and/or PI3K inhibitors, will need further evaluation
in the clinical research setting (Fig. 8). For example, the
NSABP-B47 trial (NCT01275677) is evaluating the value of
adding adjuvant trastuzumab to chemotherapy in patients
with HER2-normal tumors (i.e., those with HER2 IHC 1+ or 2+
tumors without evidence of HER2 gene amplification), which
will include patients with TN breast cancer. The rationale of
thisstudyis based on retrospective data from the NSABP-B-31
trial, in which approximately 10% of the patients tested nega-
tive for HER2 positivity when centrally reviewed but experi-
encedthe same benefit from adjuvant trastuzumab aswomen
whose tumors were HER2+ [54]. Another example is the re-
cently reported BEATRICE trial [55] that evaluated the addi-
tion of adjuvant bevacizumab during and after chemotherapy
in 2,591 triple-negative breast cancers, but which failed to
show an improved disease-free survival (DFS) rate. However,
a tendency for improved DFS in the bevacizumab arm was
noted (hazard ratio = 0.87, 95% Cl: 0.72-1.07), suggesting
that a subset of patients, likely within the basal-like subtype,
might benefit from this drug.

Our findings have very important implications for clinical
trials focused on TN breast cancers. For example, clinical trials
focused on TN tumors could be powered to detect differences
in terms of response or survival between basal-like and non-
basal-like disease. However, given the low frequency of TN/
non-basal-like tumors (~25% of TN disease that contains at
least two expression subtypes), it is highly unlikely that any
trial will be powered to see effects within these minor fre-
quency TN subtypes. Therefore, trials may wish to be powered
to see treatment effects within all TN tumors and within the
TN/basal-like subset.

Moreover, future studies focusing on TN/basal-like dis-
ease should try to identify new biomarkers within this group
using different data types, such as gene expression, DNA mu-
tations, DNA copy number, methylation profiles, and protein
expression, eitheralone orin combination. Forexample, Silver
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etal. [56] identified a gene signature of the E2F3-related tran-
scription factor that was associated with response to neoadju-
vant cisplatin in TN tumors, all of which had a basal-like gene
expression profile. Lastly, it is likely that the immune-cell dif-
ference seeninthe Lehman et al. study [11] isimportant both
clinically and biologically, as others have also shown that the
presence of CD8+ T-cells portents a better outcome within
patients with TN disease [57, 58]. With the advancement of
immune-targeted therapies, such as inhibitors of PD-1/PDL-1
[59], and the presence ofimmune infiltratesin many basal-like
and claudin-low tumors, it seems like TN disease, and espe-
cially TN/basal-like disease, may be a logical place to first test
these new therapies for patients with breast cancer.

To conclude, TN tumors are a heterogeneous disease
entity and further subclassification is needed. Fortunately,
most classification methods have identified three or four
disease subtypes within TN disease, with the basal-like sub-
type being undoubtedly the most frequently observed
(~75%). Molecular tools, such as gene expression and DNA
sequencing, can help stratify TN tumors, as well as HR+ tu-
mors, into more biologically homogenous groups. Future
studies are warranted to determine the potential clinical
utility of the identification of these biological subtypes
found within TN breast cancers.
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