
ABSTRACT

Triple-negative (TN) and basal-like (BL) breast cancer defini-

tions have been used interchangeably to identify breast

cancers that lack expression of the hormone receptors and

overexpression and/or amplification of HER2. However,

both classifications show substantial discordance rates

when compared to each other. Here, we molecularly char-

acterize TN tumors andBL tumors, comparing and contrast-

ing the results in terms of common patterns and distinct

patterns for each. In total, when testing 412 TN and 473 BL

tumors, 21.4% and 31.5% were identified as non-BL and

non-TN, respectively. TN tumors identified as luminal or

HER2-enriched (HER2E) showed undistinguishable overall

gene expression profiles when compared versus luminal or

HER2E tumors that were not TN. Similar findings were ob-

servedwithinBL tumors regardless of their TN status,which

suggests that molecular subtype is preserved regardless of

individual marker results. Interestingly, most TN tumors

identified as HER2E showed low HER2 expression and

lacked HER2 amplification, despite the similar overall gene

expression profiles to HER2E tumors that were clinically

HER2-positive. Lastly, additional genomic classifications

were examined within TN and BL cancers, most of which

werehighly concordantwith tumor intrinsic subtype. These

results suggest that future clinical trials focused on TN dis-

ease should consider stratifying patients based upon BL

versus non-BL gene expression profiles, which appears to

be the main biological difference seen in patients with TN

breast cancer. TheOncologist2013;18:123–133

Implications forPractice: Basal-likebreast cancer is commonly knownas triple-negative (TN)breast cancerbecause themajority

of cases lackexpressionof estrogenandprogesterone receptors andoverexpressionand/or amplificationofHER2.However, not

all TN tumors are identified as basal-like by gene expression, and not all basal-like tumors are TN. Here, we show that TN disease

is a broad and diverse category for which additional subclassifications are needed.We propose that clinical trials focused on TN

disease stratify patients based upon a tumor�s basal-like versus non-basal-like gene expression profiles, which appears to be the

main biological difference seen in patients with TN breast cancer.

INTRODUCTION

Studies based upon global gene expression analyses have

identified four main intrinsic molecular subtypes of breast

cancer knownas luminal A, luminal B, HER2-enriched [HER2E]

andbasal-like [1–4]. Thesemolecular entities have shownsig-

nificantdifferences in termsof incidence, risk factors,baseline

prognosis, age at diagnosis, and response to treatment [2–3,

5]. Among them, the basal-like subtype is of particular clinical

interest due to its high frequency, lack of effective targeted

therapies, poor baseline prognosis, and its tendency to affect

youngerwomen.

Over the years, basal-like breast cancer has becomemore

commonly known as triple-negative (TN) breast cancer be-

causethemajorityof tumorsof thismolecular subtype lackex-

pression of hormone receptors (HR) and overexpression

Correspondence: Charles M. Perou, Ph.D., Lineberger Comprehensive Cancer Center, CB #7295, University of North Carolina, Chapel Hill, NC
27599,USA. Telephone: 919-843-5740; Fax: 919-843-5718; E-mail: cperou@med.unc.edu ReceivedOctober 7, 2012; accepted for publication
January 15, 2013; first published online in The Oncologist Express on February 12, 2013. ©AlphaMed Press 1083-7159/2013/$20.00/0 http://
dx.doi.org/10.1634/theoncologist.2012-0397

MolecularCharacterizationofBasal-LikeandNon-Basal-Like

Triple-NegativeBreastCancer

ALEIX PRAT,a,b,c BARBARAADAMO,b,cMAGGIE C.U. CHEANG,d CAREY K. ANDERS,d LISAA. CAREY,d CHARLESM. PEROUd,e,f

aTranslational Genomics Unit, bBreast Cancer Unit, and cMedical Oncology Department, Vall d’Hebron Institute of Oncology, Barcelona,

Spain; dLineberger Comprehensive Cancer Center, eDepartment of Genetics, and fDepartment of Pathology and LaboratoryMedicine,

University of North Carolina, Chapel Hill, North Carolina, USA

Disclosures of potential conflicts of interestmay be found at the end of this article.

KeyWords. Breast cancer • Subtype • Gene expression • Triple-negative • basal-like

LearningObjectives Contrast the definitions of TN and basal-like.

Describe the undistinguishable global gene expression patterns of non-basal-like TN tumors versus

non-TN tumors that are non-basal-like.

Describe the relationship between TN heterogeneity and tumor heterogeneity plus

microenvironmental heterogeneity.

TheOncologist®

Breast Cancer

C
M
E

TheOncologist2013;18:123–133 www.TheOncologist.com ©AlphaMed Press 2013

http://dx.doi.org/10.1634/theoncologist.2012-0397
http://dx.doi.org/10.1634/theoncologist.2012-0397


and/or amplification of HER2; however, not all TN tumors are

identified as basal-like by gene expression, and not all basal-

like tumors are TN [2]. In fact, as we have previously reported

using publicly availablemicroarray data, the discordance rate

between the two definitions is 20%–30% [2]. More recently,

subtyping of three large clinical trials (GEICAM/9906 [6],

MA.12 [7], andMA.5 [8]) using the PAM50qRT-PCR-based as-

say revealed that approximately 30% of tumors identified as

TN by central pathology review do not fall into the basal-like

subtype category [9]. Therefore, significant biological hetero-

geneity exists within the group of patients diagnosedwith TN

disease.

In this study, we undertook a molecular characterization

of themainmolecularentities foundwithinTNdisease, aswell

as a focused molecular characterization of basal-like tumors

that are not TN. In addition, we compared the features of the

main intrinsic subtypes, together with the recently identified

claudin-low subtype [10] and with the six subtypes of TN dis-

ease recently identifiedbyLehmannetal. [11]. Theseanalyses

revealed many common findings that should provide biologi-

cal value for the interpretation of data coming fromTNbreast

cancer trials.

MATERIALS ANDMETHODS

Microarray Data Sets
We evaluated 12 publicly available microarray data sets

(GSE12276 [12, 13], GSE2034 [13, 14], GSE25066 [15],

GSE16716 [16], GSE20194 [17], GSE23988 [18], MDACC133

[19], GSE18229 [10], GSE20711 [20], GSE2109 [21], GSE2603

[22], and GSE19615 [23]), each of which provided annotated

clinical-pathological data. Rawdata files fromeachAffymetrix

(Santa Clara, CA) microarray-based cohort were normalized

using MAS5 and replicates samples removed. The probes of

theGSE18229Agilent-based cohortwere filteredby requiring

the Lowess normalized intensity values in both sample and

control to be �10. The normalized log2 ratios (Cy5 sample/

Cy3 control) or log2 intensity of probes mapping to the same

gene (entrez ID as defined by the manufacturer) were aver-

aged to generate independent expression estimates. In each

cohort, genesweremediancenteredandstandardized tozero

mean and unit variance. Finally, samples without clinical-

pathological annotation regarding estrogen receptor (ER) sta-

tus, progesterone receptor (PR) status, and HER2 status were

excluded, leaving a total of 1,703 samples with microarray

data and known ER/PR andHER2 status.

CombinedMicroarray Data Set
Of the 12 normalized gene/row median-centered and stan-

dardized data sets evaluated, seven (GSE20194 [17],

MDACC133 [19], GSE18229 [10], GSE20711 [20], GSE2109

[21], GSE2603 [22], and GSE19615 [20]) were successfully

combined into a single gene expression microarray matrix of

1,005samples (including17normalbreast samples)and7,722

entrez ID genes in common. Loading plots of the twoprincipal

components were evaluated to exclude important batch ef-

fects (supplemental online Fig. 1).

Gene ExpressionMolecular Subtyping
To be consistent with our previous studies, the PAM50 intrin-

sic subtypeclassifierwasusedasdescribed inParkeret al. [24]

to determine the subtype calls (luminal A, luminal B, HER2E,

basal-like, and normal-like) of each individual sample within

each cohort. For samples in data sets GSE18229, GSE12276

and GSE2034, we used the previously reported subtype calls

[10,13].Additionally, in thecombinedmicroarraydataset,we

also explored the identification of the claudin-low subtype

[10]. To do so, we applied a 9-cell line claudin-low predictor

[10], rank ordered the samples based on the Euclidian dis-

tance ratio to the “others” centroid versus the “claudin-low”

centroid,andthen identifiedthetop10%of tumorsasclaudin-

low.

To identify themolecular subtypesofTNbreast cancer,we

used the list published by Lehmann et al. [11] of 2,188 genes

that classifies TN tumors into six classes (immunomodulatory

[IM], basal-like 1 [BL1], basal-like 2 [BL2], mesenchymal [M],

mesenchymal stem-like [MSL], and luminal androgen recep-

tor [LAR]). This gene listwasused inahierarchical cluster anal-

ysis, with the six groups identified based upon the cluster-

associated dendrogram and the genes that defined each of

the groups.

The Cancer GenomeAtlas Data Set
Gene expression, DNA copy number, reverse-phase protein

array (RPPA), and mutational data were obtained from The

Cancer Genome Atlas (TCGA) website (http://cancergenome.

nih.gov/) [25]. PAM50 subtype calls, ER/PR status, and HER2

statuswere used as provided from TCGA.

Microarray of Human Breast Samples and Cell

LineModels
All human tumor and normal tissue samples were collected

using protocols approved by the institutional review board.

Samples were obtained from fresh frozen breast specimens.

In vivo and in vitro humanbreast cancer and immortalizedhu-

man mammary epithelial cell lines (HME-CC, BT474, BT483,

BT549, CAMA-1, HCC1143, HCC1187, HCC1395, HCC1428,

HCC1500, HCC1937, HCC1954, HCC38, Hs578T, MCF7,

MDAMB231, MDAMB361, MDAMB415, MDAMB435,

MDAMB436, MDAMB453, MDAMB468, ME16C, SKBR3,

SUM102, SUM1315, SUM149PT, SUM159PT, SUM90PT,

T47D, UACC812, ZR75–1, MDA-IBC3, DU4775) were cultured

as suggestedbyproviders. Threeprimary tumorbreast cancer

xenografts (HIM2 [26], HIM5 [26], and HIM12), grown in im-

munocompromised mice, were also assayed by microarray.

RNAwas purified using the RNeasyMini kit. All samples were

profiled as previously described using oligo microarrays (Agi-

lent Technologies, Santa Clara, CA) [25], and microarray and

patient clinical data are available in the University of North

Carolina Microarray Database and have been deposited in

the Gene Expression Omnibus under the accession number

GEO:GSE41119. The probes of the GSE41119 Agilent-based

cohort were filtered by requiring the Lowess normalized in-

tensity values in both sample and control to be �10. The

normalized log2 ratios (Cy5 sample/Cy3 control) or log2 in-

tensity of probes mapping to the same gene (entrez ID as

defined by the manufacturer) were averaged to generate

independent expression estimates, and genes were me-

dian centered and standardized to zeromean and unit vari-

ance. PAM50 and claudin-low subtyping was performed as

described above.
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Statistical Analysis
All microarray cluster analyses were displayed using Java

Treeview version 1.1.4r2 [27]. Average-linkage hierarchical

clustering was performed using Cluster v3.0 [27]. Biologic

analysis ofmicroarray datawas performedwith theDatabase

for Annotation, Visualization, and IntegratedDiscovery anno-

tationtool [28].Unpairedtwo-classsignificanceanalysisofmi-

croarrays (SAM) was used to identify differentially expressed

genes between subtypes [29]. Analysis of variance and Stu-

dent’s t tests for gene expression data were done using R

2.10.1 (http://www.r-project.org/).

RESULTS

In this section, we refer to the various combinations of the

two main clinical phenotypes (TN versus non-TN) and the

various molecular intrinsic subtypes using the format

shown in Figure 1. For example, the two main clinical phe-

notypes of basal-like tumors will be defined as basal-

like/TN and basal-like/non-TN, whereas the two main

molecular intrinsic subtypes of TN tumorswill be defined as

TN/basal-like and TN/non-basal-like.

Distribution of theMain Intrinsic SubtypesWithin TN

Breast Cancer
Weevaluated data from12publicly availablemicroarray data

setswithknownER,PR, andHER2clinical status (n�1,703). In

each individual data set, we applied the PAM50 subtype pre-

dictor and classified tumors as luminal A, luminal B, HER2E,

basal-like, and normal-like. The overall concordance rate was

found to be 79% (� � 0.62) between the immunohistochem-

istry (IHC)-based and PAM50 subtype definitions (luminal A

and B tumors combined and normal-like cases excluded be-

cause this group is likely contaminated with true normal

breast tissue). Among 412 TN tumors, 78.6%were identified

as basal-like, 7.8% as HER2E, 6.6% as luminal, and 7.0% as

normal-like (Fig. 2). This PAM50 subtypedistributionwithin

TN tumors is similar to the distribution reported across

three large clinical trials with centrally reviewed IHC-based

and PAM50-based data [9]. Conversely, within 473 basal-

like tumors, 68.5% were identified as HR�/HER2�, 18.2%

as HR�/HER2�, 10.6% as HR�/HER2�, and 2.7% as HR�/

HER2�.

Triple-Negative Subtype-Specific Gene Expression

Features
To identify geneswhoseexpression characterizes the luminal,

HER2E, and basal-like subtypes within TN breast cancer only,

weperformeda three-class SAMwitha false-discovery rateof

0%andobtaineda listof1,510genes (supplementalonlineTa-

ble 1). Clustering of these genes across these three intrinsic

subtypes using only TN disease samples revealed six main

gene clusters (Fig. 3, supplemental online Fig. 2). As expected,

TN/luminal tumors showed high expression of estrogen-re-

lated andpreviously identified luminal genes (p� .0001) such

asESR1,PGR,MUC1,andGATA3,and lowexpressionofcell cy-

Figure1. Representativealgorithmof thetwomainclinicalphenotypes (triple-negativeversusnon-triple-negative)andthevariousmo-
lecular intrinsic subtypes analyzed in this study. The gene expression heatmap represents the 50 genes of the PAM50 subtype predictor
and the PAM50microarray training data set.

Abbreviation: TN, triple-negative.

Figure 2. Distribution of the intrinsic molecular and pathology-
based subtypeswithin triple-negative and basal-like tumors.

Abbreviations: HR, hormone receptor; TNBC, triple-negative
breast cancer.
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cle-relatedgenes (p� .0001) suchasKI67andaurorakinaseB.

Conversely, TN/HER2E tumors showed an overall intermedi-

ate gene expression compared to the other two subtypes, ex-

cept for a gene cluster that included high expression of genes

involved in oxidation reduction-related biological processes

(p� .0001), suchas isocitratedehydrogenase1, fattyacidsyn-

thase, and superoxide dismutase 1 (SOD1).

A large set of genes defined the TN/basal-like tumors, in-

cluding previously known basal epithelial cell genes such as

keratin 14 and ID4, and a large set of proliferation associated

genes including FOXM1. Finally, we identified a subcluster of

luminal-like genes, including the androgen receptor (AR),

FOXA1, E-Cadherin, and keratin 18, which was similarly and

highly expressed in TN/luminal and TN/HER2E tumors com-

pared to TN/basal-like tumors. Overall, this data suggested

that TN disease is biologically heterogeneous, and that all the

main gene expression features of the intrinsic molecular sub-

typesaremaintainedevenwhenstartingwith this clinically re-

stricted subset.

Triple-Negative Versus Non-Triple-Negative Subtype-

Specific Gene Expression Features
To address how different non-TN versus TN tumors of a com-

monsubtypeare (i.e., luminal/TNversus luminal/non-TN),we

identified differentially expressed genes between TN and

non-TN tumors within a given subtype using the 7,722 avail-

able genes of the combined microarray data set of 1,005 tu-

mors with known ER, PR, and HER2 status.Within the luminal

A and luminal B subtypes, no differentially expressed gene

was identified between TN (n� 26) and non-TN (n� 553) tu-

mors, whereas only 13 (0.2%) and 18 (0.23%) genes were

found differentially expressed between TN and non-TN tu-

morswithin basal-like (n� 164 vs. n� 82) andHER2E (n� 17

and n� 106) subtypes, respectively (supplemental online Ta-

bles 2, 3).

The five genes found significantly downregulated in

HER2E/TN compared to HER2E/non-TN were all found in the

17q11–13 amplicon (HER2/ERBB2, GRB7, MED1, SCGB2A2

and STARD3). Thus, aside from the genes on the HER2 ampli-

con, almost nodifferences existed between subtypematched

TN vs. non-TN tumorswhen tested on themRNA level.

Expression of Selected Genes Across the Subtypes

Based on Their TN Status
These results suggest that theoverall geneexpressionprofiles

of the PAM50 subtypes are undistinguishable regardless of

their clinical ER,PR,andHER2status,particularlyTNstatus. In-

deed, clustering of the 1,005 tumors using the PAM50 genes

revealed that luminal/TN and HER2E/TN tumors show very

similaroverallPAM50geneexpressionpatternsasdo luminal/

non-TN and HER2E/non-TN tumors, with extensive intermin-

gling (Fig. 4, supplemental online Table 4). Similarly, basal-

like/TN tumors showed undistinguishable PAM50 gene

expression patterns relative to basal-like/non-TN.

To more precisely test these findings, we evaluated the

expression of important selected genes across the sub-

Figure 3. Subtype-specific gene expression profiles within triple-negative disease. Each colored square represents the relative mean
genescore foreachsubtype,withhighestexpressionshowninred,averageexpression inblack,and lowestexpression ingreen.Thisgene
list was obtained by performing a three-class (luminal, HER2E and basal-like) significance analysis of microarrays within triple-negative
disease (False Discovery Rate� 0%). On the right, selected genes symbols of several gene clusters are shown, as well as selected gene
ontology biological processes found significantly enriched in each gene cluster.

Abbreviations: AGR2, anterior gradient 2 homolog; APOD, apolipoproteinD; AR, androgen receptor; AURKB, aurora kinase B; BAG1,
BCL2-associated athanogene; CCNB2, cyclin B2; CDH1, E-cadherin 1; ESR1, estrogen receptor; FGFR4, fibroblast growth factor receptor
4; ITGA6, integrin alpha 6; KRT, keratin;MUC1,mucin 1; NEBL, nebulette; PGR, progesterone receptor; PTK6, protein tyrosine kinase 6;
S100, S100 calciumbinding protein; SOD1, superoxide dismutase 1; XIST, inactive X specific transcripts.
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types and based on the TN status of the tumors. For exam-

ple, ESR1 and PGR expression in luminal/TN tumors were

foundhigh andnot statistically differentwhen compared to

luminal/non-TN tumors (Fig. 5A, 5B), whereas the differ-

ences in ESR1 and PGR expression were minor within the

other subtypes.

HER2E/TN tumors showed a statistically significant

lower expression of HER2/ERBB2 compared to HER2E/

non-TN tumors, with the levels of HER2/ERBB2 expression

in HER2E/TN tumors being similar to the levels observed in

the other subtypes (Fig. 5C). Conversely, expression of

EGFR was found significantly increased in HER2E/TN tu-

mors compared to HER2E/non-TN tumors (Fig. 5D), thus

suggesting that some of the HER2E tumors that are clini-

cally HER2-not amplified may be driven by EGFR; a similar

finding for EGFR was observed within the TCGA data set of

HER2E tumors [25]. Finally, concordant with the similar

overall gene expression profiles of HER2E/TN and HER2E/

non-TN tumors, genes such as AR and the luminal transcrip-

tion factor FOXA1 were found to be similarly expressed

between TN and non-TN tumors (Fig. 5E, 5F), and with both

luminal and HER2E subtypes at a level significantly higher

than that seen in the basal-like subtype tumors.

Age at Diagnosis of Subtypes Based on Their TN Status
Previousstudieshaveshownthatyoungerwomen’sbreast tu-

mors are enriched for more aggressive intrinsic subtypes,

namely basal-like [30]. In our combineddata set, basal-like tu-

mors showedastatistically significant lowermeanageatdiag-

nosis than the rest of subtypes (50.8 years vs. 55.0 years; p�

.0001, normal-like tumors excluded); this was observed to be

true regardless of TN status (50.7 years in basal-like/non-TN

vs. 50.9 years in basal-like/TN tumors; p� .05).

Within TN disease (supplemental online Fig. 3), the mean

age at diagnosis of TN/basal-like versus TN/non-basal-like tu-

mors was found to be significantly different (50.7 vs. 57.1

years;p� .0001, normal-like tumors excluded). Interestingly,

26 of 98 (26.5%) of TN tumors appearing inwomen�60 years

oldwere identified as non-basal-like compared to only 3 of 70

(4.3%) of TN tumors in women �40 years old (odds ratio for

identification of non-basal-like tumors� 8.1, p� .0001).

Independent Evaluation of TN Tumors FromTCGA
The recently reported TCGA Breast Cancer data set offers the

opportunity to interrogate other data types beyond gene ex-

pression, including protein expression using RPPA, DNA copy

number changes, and somatic and germline DNA mutations

[25]. Among 90 TN tumors in the TCGA data set, the PAM50

subtype distribution was as follows: basal-like (n � 78, 87%),

HER2E (n � 5, 5.6%), luminal A/B (n � 5, 5.6%), and normal-

like (n � 2, 2.2%). A summary of the TCGA TN tumor data is

provided in Figure 6, with the top portion devoted to a de-

tailedmolecularanalysisof theTN/non-basal-like tumors (Fig.

6A), and the bottom focused on the overall features of each

subtypewithin TCGA TN cancers only (Fig. 6B).

First, we explored the RPPA data (i.e., 172 proteins) to

identify differentially expressed proteins between TN/non-

basal-like versus TN/basal-like tumors (supplemental online

Table 5). A total of 10 proteins were identified (unpaired two-

classSAM,FDR�0%); thesixupregulatedproteins inTN/non-

basal-like tumors were AR, PR, ER, cyclin D1, GATA3, and

INPP4B, which has recently been shown to be a tumor sup-

pressor founddeletedandwith lowexpression inbasal-liketu-

mors [31, 32]. Similar to the gene expression data, the

expression of AR in TN/HER2E tumors was found to be similar

toexpression levels innon-TN/HER2Etumors, andhigher than

TN/basal-like or non-TN/basal-like tumors (data not shown).

Finally, the four downregulated proteins in TN/non-basal-like

tumors compared toTN/basal-like tumorswere cyclinB1, ani-

lin,MSH6, and disheveled 3.

Secondly, we explored the DNA mutation data. As ex-

pected, TN/basal-like and TN/HER2E tumors showed the larg-

est number of total somatic mutations (mean number of

mutations � 90.39 and 97.2, respectively) compared to TN/

luminal tumors (meannumberofmutations�43). In termsof

TP53 somatic mutations, 2 of 5 (40%) TN/luminal tumors had

TP53 mutations versus 63 of 74 (85%) TP53 mutations within

TN/basal-like tumors and 6 of 6 (100%) TP53mutations in TN/

HER2E (p� .019,�2 test). In fact, a TP53wild-type TN/luminal

A tumor had aMAP2K4mutation that is typically identified in

ER� luminal tumors. Moreover, BRCA1/2 deleterious muta-

tions (somaticandgermlinemutationscombined)were found

in 16 of 73 (22%) TN/basal-like tumors versus 1 of 5 (20%) in

TN/luminal tumors (which was a BRCA2 germline mutation)

and 0 of 5 (0%) in TN/HER2E tumors. Conversely, somaticmu-

tations inPI3KCA,which is a frequent ER�/luminal tumormu-

tation, were found in 2 of 5 (40%) TN/luminal tumors versus 5

of 74 (6.8%) in TN/basal-like tumors (all 5 samples were TP53

mutated) and 0 of 6 (0%) in TN/HER2E tumors (p � .035, �
2

test). Thus, even within TN cancers, the mutation spectrum

observed continued to follow molecular subtype as opposed

to following a common biology possibly laid out by being TN.

Finally, concordant with our results, we observed that all

TN/HER2E tumors did not show overexpression of the HER2

Figure 4. Hierarchical clustering of 1,005 tumors froma combined data set using the available PAM50 genes (n� 40 of 50). All samples
have knownestrogen receptor, progesterone receptor, andHER2 status. Triple-negative samples and thePAM50calls are shownbelow
the array tree.

Abbreviation: TNBC, triple-negative breast cancer.
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Figure 5. Box-and-whisker plots for expression of selected breast cancer-related genes based on the intrinsic subtype and triple-
negative status. p valueswere calculated by comparingmean values across all groups.

Abbreviation: TNBC, triple-negative breast cancer.

Figure6. Summarizedmoleculardataof triple-negativetumors fromTheCancerGenomeAtlas (TCGA)dataset [25]. (A):Moleculardata
of the 12 triple-negative (TN)/non-basal-like tumors is shown. (B):Overall data of theHER2E (n� 5), luminal/normal (n� 7), and basal-
like (n� 78) groupswithin TN disease is shown. The PAM50 proliferation scorewas calculated by estimating themean expression of 11
proliferation-relatedgenes. Percentilesof thePAM50proliferation scoreacross theentireTCGAdata set are shown foreach sample. For
reverse-phaseprotein arraydata, low, averageandhighvalues are relative to the logbase2medianexpressionof thatparticular protein
across the entire TCGA data set (��1 expression� low;�1 to�1� average;��1� high).

Abbreviations:AR,androgenreceptor;ER,estrogenreceptor;Mut,mutations;NA,notavailable;PR,progesteronereceptor;PROLIF,
PAM50 proliferation score; ROR, risk of relapse; RPPA, reverse-phase protein array; TN, triple-negative.

128 Basal-Like andNon-Basal-Like TN Breast Cancer

©AlphaMed Press 2013

C
M
E



geneor protein, and all TN/HER2E tumors lackedhigh amplifi-

cation of the HER2/GRB7 17q12 amplicon based on the AFFY

SNParraydata. Interestingly, a TN/HER2E tumorwas found to

bea lobular invasive carcinomawith a frame-shiftmutation in

E-cadherin.

Beyond theMain Subtypes of Triple-Negative Disease
Lehmann et al. [11] reported the identification of six molecu-

lar subtypeswithinTNdisease(IM,BL1,BL2,M,MSL,andLAR).

Toexplore the similarities anddifferencesbetween thesemo-

lecularentitiesandthePAM50subtypes, togetherwithour re-

cently identified claudin-low subtype, we performed a

supervised hierarchical clustering using the list of 2,188 genes

by Lehmannet al. on the 224 TN tumors of our combineddata

set (manyofwhichwerealsocontainedwithin theLehmannet

al. data set).

As shown inFigure7A, six toseventumorclusterswereob-

servedand fourmaingeneexpressionclusterswere identified

representing a stromal gene signature (i.e., fibroblast activa-

tion protein), a luminal signature (i.e., ESR1, FOXA1), an im-

mune signature (i.e., CD8A), and a basal epithelial signature

(i.e., keratin5and14). The stromal and immunegeneclusters,

which are likely identifying gene expression patterns coming

from themicroenvironment (i.e., invading fibroblasts and im-

mune cells), are critical for the identification of Lehmann’sM,

MSL, and IMsubtypes, respectively (Fig. 7B).Nonetheless, the

PAM50 subtypes were clearly identified, with the vast major-

ity of HER2E and luminal tumors highly expressing the LAR

cluster and the true normals and normal-like tumor samples

highlyexpressing thestromal/fibroblast cluster. Interestingly,

the PAM50-defined basal-like tumors were split into three

main groups based on the expression of the immune-related

genes, the stromal-relatedgenes, and thebasal genes. Finally,

the claudin-low tumorswere found scatteredwithin the large

basal-likegroupof tumorsbasedontheirexpressionof the im-

mune and/or stromal gene clusters.

Overall, this data suggested that the IMandMSL subtypes

aremostly definedby thehigh expressionof genes likely com-

ing from the microenvironment, not from the actual tumor

cells. To explore this hypothesis, we performed hierarchical

clustering analysis using the list of 2,188 genes by Lehmann et

al. [11] and a sample set composed of 230 human breast tu-

mor samples, 20 normal breast samples, 34 in vitro human

breast cancer cell lines, and3humanbreast cancer xenografts

grown in immunocompromised mice, all assayed on Agilent

DNAmicroarrays (Fig. 7C). As expected, the geneswhose high

expressiondefined the IMandMSL subtypes (Fig. 7D), namely

the stromal/fibroblast and immunesignaturegenes,werenot

found expressed in any of the cell line or xenograft models

(Fig. 7C), which is concordant with their expression coming

from the microenvironment (i.e., the microenvironment is

lacking in vitro and is coming from mouse cells for the xeno-

grafts, and which does not hybridize to human DNAmicroar-

rays).

DISCUSSION

In this study, we evaluated a large number of breast cancer

datasetsandmadethefollowingmajorobservationsconcern-

ing TN breast cancers:

1. TNandbasal-likedefinitions shouldnotbeconsideredsyn-

onymous because considerable discordance exists

(�25%).

2. TN disease is a heterogeneous clinical entity composed of

all the intrinsic molecular subtypes, with the basal-like tu-

mors predominating (�70%).

3. TN tumors that are identified asnon-basal-like (i.e., HER2E

or luminal A/B) shownearly undistinguishable global gene

expression patterns versus non-TN tumors that are non-

basal-like (i.e., HER2E or luminal A/B).

4. Basal-like tumors that are non-TN show similar genomic

features and an associationwith age at diagnosis as do ba-

sal-like tumors that are TN.

5. Previously described TN heterogeneity in part reflects tu-

mor heterogeneity plusmicroenvironmental heterogene-

ity. Thus, TN disease is a broad and diverse category for

which additional subclassifications are needed.

AgroupofTNtumorsthathasattracteda lotofattention in

recent years is the subset that expresses the AR. For example,

Niemeieretal. [33]evaluatedaseriesof189consecutive inva-

sive breast cancers; 151 (80%) were positive for AR. As ex-

pected, themajority (95%) of ER� tumors were AR�, and AR

positivity was observed in 5 of 8 (63%) ER�/PR�/HER2�

cases andonly in 3of 30 TNcases (10%). ARexpression in ER�

tumorswas associatedwith lower histological grade and apo-

crine histological differentiation—a finding that has also been

observed by other groups [34, 35]. Concordantwith this data,

weobserved thatTNtumorswithhighARproteinand/orgene

expression were usually identified as HER2E or luminal (or lu-

minal AR, according to Lehmann et al.[11]), and their levels of

ARexpression resembled the levels observed inHER2Eand lu-

minal tumors that were not TN. In addition, we have previ-

ously shown that among six apocrine tumors with published

gene expression data, three (50%) were identified as HER2E

and 3 (50%) as luminal [10]. Interestingly, one clinical trial

evaluatingantiandrogens forpatientswithTNtumorswithex-

pression of AR is underway (NCT00972023). In another study

(NCT00468715), 12% (51/424) of TN tumors expressed AR by

IHC, which showed a 21% clinical benefit with bicalutamide

[36]; thus, the overwhelming majority of TN tumors were

AR�.

At first glance, the identification of TN/luminal tumors,

clinically HER2�/HER2E tumors, or non-TN/basal-like tumors

might seem counterintuitive; however, several plausible ex-

planations exist. One possibility is the false positivity or false

negativity of the IHC-based assays for determining the HR or

HER2 status, especially because these pathology-based tests

are challenged by interlaboratory and intermethod discor-

dance rates of�20% [3, 37]. Another possibility is that thepa-

thology and gene expression data could have been obtained

from two different areas of the same tumor, one being en-

riched for HR and/or HER2 expression from tumors cells and

another area enriched for HR� tumors cells (i.e., intratumor

heterogeneity). Although some of the cases evaluated here

from publicly available data might be explained by this possi-

bility, we believe it is unlikely that two different subtypes co-

exist in the same tumor enough to explain this discordance

rate. In fact, we have previously reported that the intraclass

correlationof twoarraysperformedontwodifferentpiecesof
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the same primary tumor is�0.90 [13]. In addition, data from

three large clinical trials where both pathology-based assays

and the PAM50 qRT-PCR-based subtype predictor were per-

formed from the same FFPE tumor block in a centralized labo-

ratory suggest that basal-like tumors can be HR� and that TN

tumors can be luminal A, luminal B, or HER2E [9].

Another possibility regarding the discrepancy between

gene expression and IHC-based assays is that gene expression

measuresa largenumberof relatedgenes, comparedwith the

three individual pathology-based biomarkers that define TN

disease. Thus, multigene expression data using tens to hun-

dreds of genesmight better capture the truebiological profile

of a given tumor versus three or four individual biomarkers

[38]. For example, a TN tumor that has low levels of ESR1 and

PGR, and consequently is ER�andPR�by IHC,might be iden-

tified as luminal due to the high expression of other luminal-

related genes (i.e., AR, GATA3, and/or FOXA1) and the low

expression of basal- and proliferation-related genes. Another

example comes from the identification of HER2E/TN tumors

that do not amplify/overexpress HER2/ERBB2, some ofwhich

might be driven by high EGFR.

Beyond the four main tumor intrinsic subtypes of breast

cancer, we have recently identified another subtype called

claudin-low [10, 39],which is characterizedby the lowexpres-

Figure 7. Triple-negative (TN) tumors classified by gene signatures from Lehmann et al. [11]. (A): Supervised hierarchical clustering of
224 TN tumors from the combined data set using the centroid gene list from from Lehmann et al. Each colored square represents the
relativemean transcript abundance (in log2 space) for each subtype, with highest expression shown in red,median expression in black,
and lowest expression in green. PAM50 and claudin-low subtype calls are identified below the array tree. (B):Genes from the clustering
in (A) that distinguish each subtype identified in Lehmann et al. Red and green indicate the expression direction (upregulated or down-
regulated, respectively) in each subtype. (C): Supervised hierarchical clustering of 250 breast samples and 37 cell lines representing all
subtypes using the centroid gene list fromLehmannet al. (D):Genes from the clustering in (C) that distinguish each subtype identified in
Lehmann et al.

Abbreviations: AR, androgen receptor; BL1, basal-like 1; BL2, basal-like 2; CAV1, caveolin 1; ESR1, estrogen receptor; FAP, fibroblast
activation protein; IM, immunomodulatory; KRT, keratin; LAR, luminal androgen receptor; LY96, lymphocyte antigen 96;M,mesenchy-
mal;MSL,mesenchymal stem-like; NA, not available.
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sion of tight-junctions related genes (claudin 3, 4, 7) and high

expression of mesenchymal and stem cell-like biological pro-

cesses. The majority of claudin-low tumors were found to be

either basal-like or normal-like byPAM50, andmost showeda

TN phenotype. In addition, claudin-low tumors were associ-

ated with metaplastic and medullary histological differentia-

tion, and lymphocytic infiltration was found in 37% of cases.

Since its identification, many groups have further character-

ized the claudin-low subtype in human tumors and preclinical

models [40–47]. However, its real frequency and clinical rele-

vance are still under investigation.

Lehmann et al. [11] reported the identification of up to six

subtypes within TN disease. Here, we have shown that these

entities largely overlap with the PAM50 and claudin-low sub-

types. However, it is important to note that two of the four

main gene clusters used to identify the Lehmannet al. entities

are tracking biological processes most likely coming from the

microenvironment (i.e., coming from fibroblasts and immune

cells) and not from the actual tumor cells. Concordant with

this, the two in vitro tumor cell lines identified by Lehmann et

al. as immunomodulatory-like (HCC1187andDU4475)didnot

show expression of the genes whose high expression defines

the immunomodulatory tumor subtype (Fig. 7C). In addition,

despite the identification of six subtypes of TN disease in hu-

man tumors, the classification ultimately used by Lehmann et

al. for classifying the preclinical models of TN breast cancer

was based on three main groups (mesenchymal, basal-like,

andLAR) thatshoweddifferent responses tocytotoxicandtar-

geted therapies. This three subtype classification is very con-

cordant with the three main groups previously identified by

our group (claudin-low, basal-like and luminal/HER2E), and

others based upon cell lines alone (basal B, basal A, and lumi-

nal/HER2�) [48–50]; thus multiple groups and multiple

methods have all arrived at these same three basic subtypes

present within TN disease. The microenvironment clearly

plays a critical role in prognosis [51, 52] and treatment re-

sponse [53]. However, classification of tumors based on non-

tumor features (e.g., thepresenceorabsenceof lymphocytes)

should be considered separately from classifications based

upontumorcell features, asmicroenvironmental featurescan

and do span tumor-based subtypes.

Based upon all of these data, and when discussing TN dis-

ease, we propose that TN breast cancers identified as luminal

or HER2E should be considered as separate entities because

they showadifferent biology (andmutation spectrum) versus

basal-like and claudin-low tumors. In fact, TN luminal and

HER2E are almost undistinguishable, in general terms, from

non-TN luminal and HER2E that are typically ER� or HER2�.

However, whether these TN tumors that are non-basal-like

might benefit from endocrine, anti-HER2 and/or anti-EGFR

therapies, and/or PI3K inhibitors, will need further evaluation

in the clinical research setting (Fig. 8). For example, the

NSABP-B47 trial (NCT01275677) is evaluating the value of

adding adjuvant trastuzumab to chemotherapy in patients

withHER2-normal tumors (i.e., thosewithHER2 IHC1�or2�

tumors without evidence of HER2 gene amplification), which

will include patients with TN breast cancer. The rationale of

this study isbasedon retrospectivedata fromtheNSABP-B-31

trial, inwhich approximately 10%of the patients tested nega-

tive for HER2 positivity when centrally reviewed but experi-

encedthesamebenefit fromadjuvant trastuzumabaswomen

whose tumors were HER2� [54]. Another example is the re-

cently reported BEATRICE trial [55] that evaluated the addi-

tion of adjuvant bevacizumabduring and after chemotherapy

in 2,591 triple-negative breast cancers, but which failed to

show an improved disease-free survival (DFS) rate. However,

a tendency for improved DFS in the bevacizumab arm was

noted (hazard ratio � 0.87, 95% CI: 0.72–1.07), suggesting

that a subset of patients, likely within the basal-like subtype,

might benefit from this drug.

Our findings have very important implications for clinical

trials focusedonTNbreast cancers. For example, clinical trials

focusedonTN tumors couldbepowered todetect differences

in terms of response or survival between basal-like and non-

basal-like disease. However, given the low frequency of TN/

non-basal-like tumors (�25% of TN disease that contains at

least two expression subtypes), it is highly unlikely that any

trial will be powered to see effects within these minor fre-

quencyTNsubtypes.Therefore, trialsmaywish tobepowered

to see treatment effects within all TN tumors and within the

TN/basal-like subset.

Moreover, future studies focusing on TN/basal-like dis-

ease should try to identify new biomarkers within this group

using different data types, such as gene expression, DNAmu-

tations, DNA copy number, methylation profiles, and protein

expression,eitheraloneor incombination.Forexample,Silver

Figure 8. Proposed algorithmof stratification of triple-negative tumors.
Abbreviations: EGFR, epidermal growth factor receptor; PARP, poly (ADP-ribose) polymerase.
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et al. [56] identified a gene signature of the E2F3-related tran-

scription factor thatwasassociatedwith response toneoadju-

vant cisplatin in TN tumors, all of which had a basal-like gene

expression profile. Lastly, it is likely that the immune-cell dif-

ference seen in the Lehman et al. study [11] is important both

clinically and biologically, as others have also shown that the

presence of CD8� T-cells portents a better outcome within

patients with TN disease [57, 58]. With the advancement of

immune-targeted therapies, such as inhibitors of PD-1/PDL-1

[59],andthepresenceof immune infiltrates inmanybasal-like

and claudin-low tumors, it seems like TN disease, and espe-

cially TN/basal-like disease, may be a logical place to first test

these new therapies for patients with breast cancer.

To conclude, TN tumors are a heterogeneous disease

entity and further subclassification is needed. Fortunately,

most classification methods have identified three or four

disease subtypeswithin TNdisease,with the basal-like sub-

type being undoubtedly the most frequently observed

(�75%).Molecular tools, such as gene expression and DNA

sequencing, can help stratify TN tumors, as well as HR� tu-

mors, into more biologically homogenous groups. Future

studies are warranted to determine the potential clinical

utility of the identification of these biological subtypes

found within TN breast cancers.
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