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Abstract

Australian rates of campylobacteriosis are among the highest in developed countries, yet

only limited work has been done to characterize Campylobacter spp. in Australian retail

products. We performed whole genome sequencing (WGS) on 331 C. coli and 285 C. jejuni

from retail chicken meat, as well as beef, chicken, lamb and pork offal (organs). Campylo-

bacter isolates were highly diverse, with 113 sequence types (STs) including 38 novel STs,

identified from 616 isolates. Genomic analysis suggests very low levels (2.3–15.3%) of

resistance to aminoglycoside, beta-lactam, fluoroquinolone, macrolide and tetracycline anti-

biotics. A majority (>90%) of isolates (52/56) possessing the fluoroquinolone resistance-

associated T86I mutation in the gyrA gene belonged to ST860, ST2083 or ST7323. The 44

pork offal isolates were highly diverse, representing 33 STs (11 novel STs) and harboured

genes associated with resistance to aminoglycosides, lincosamides and macrolides not

generally found in isolates from other sources. Prevalence of multidrug resistant genotypes

was very low (<5%), but ten-fold higher in C. coli than C. jejuni. This study highlights that

Campylobacter spp. from retail products in Australia are highly genotypically diverse and

important differences in antimicrobial resistance exist between Campylobacter species and

animal sources.
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Introduction

Thermophilic Campylobacter coli and Campylobacter jejuni are the most common causes of

foodborne bacterial infections worldwide. Campylobacteriosis is also the most frequently

notified enteric pathogen under surveillance by OzFoodNet, Australia’s government-estab-

lished foodborne disease surveillance network [1], with 143.5 cases per 100,000 population

reported in 2019 [2]. Although only a small fraction of people who become ill from food

they have consumed seek medical attention [3], the global burden of foodborne disease is

substantial. In Australia, foodborne gastroenteritis is responsible for an estimated 4.1 mil-

lion cases annually [4]. Globally, the incidence and prevalence of campylobacteriosis have

increased dramatically over the past decade [5]. Campylobacteriosis is often self-limiting

and generally does not require medical treatment. However, some cases of Campylobacter

infection are associated with serious clinical manifestations such as bacteraemia, reactive

arthritis, haemolytic uremic syndrome, meningitis, septicaemia and Guillain-Barré syn-

drome [5, 6].

The global overuse and misuse of antimicrobial agents in humans, animals and plants,

has greatly accelerated the development of resistance to antimicrobials by pathogenic

microorganisms. In the United States alone, the CDC estimates that 2 million people

become infected with antimicrobial(s)-resistant bacterial pathogens, resulting in at least

23,000 deaths annually [7]. The development of antimicrobial resistance (AMR) and emer-

gence of multidrug resistant pathogens are global concerns for both public health agencies

and the agri-food industry. Antimicrobial resistant pathogens increase the risk of an

infected individual suffering an adverse health effect, such as reduced treatment efficacy,

and increased disease severity, hospitalization and mortality than individuals infected with

an antimicrobial-susceptible pathogen [8–10].

Traditionally, phenotypic-methods have been widely used to characterize C. coli and C.

jejuni. However, molecular techniques, offering greater accuracy and specificity, have replaced

phenotypic methods. These techniques include pulsed-field gel electrophoresis (PFGE), multi-

locus sequence typing (MLST) [11], and more recently next generation sequencing [12].

Whole genome sequencing (WGS) provides the highest possible microbial subtyping resolu-

tion available to public health authorities [13], enabling faster detection and identification of

resistance determinants/mechanisms in microorganisms [14].

Poultry is Australia’s largest meat commodity, with the average Australian consuming 47.4

kg each year [15]. In 2018–2019, 1.24 million tonnes of chicken meat were produced, repre-

senting a gross production value of $2.8 billion [16]. The majority of commercial meat chick-

ens in Australia are grown intensively in conventional barns or sheds with controlled

environments which provide favourable conditions for the proliferation of pathogenic micro-

organisms, such as Campylobacter spp. Australia has strict regulations regarding antimicrobial

use in livestock. Fluoroquinolones, colistin and 4th generation cephalosporins have never been

registered for use in Australian food-producing animals, gentamycin use is banned and 3rd

generation cephalosporin usage remains restricted [17].

Evaluation of isolates from meat at the retail level using WGS is an effective way to iden-

tify the risk of human exposure to enteric pathogens, particularly microorganisms har-

bouring AMR genes. Despite the size of the animal agriculture industry in Australia, little

is known about the AMR profiles of foodborne pathogens, such as C. coli and C. jejuni in

retail products. The aim of this study was to apply WGS to (i) determine the dominant

sequence types (STs), (ii) identify the AMR genotypes and (iii) characterize the genetic

relatedness of C. coli and C. jejuni from beef, chicken, lamb and pork products at retail in

Australia.
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Materials andmethods

Sample collection and bacterial isolation

Raw meat and offal products were collected from retail outlets in New South Wales (NSW),

Queensland (QLD) and Victoria (VIC), between March 2017 and March 2019, as previously

described [18]. Additional samples were collected from retail outlets in the Australian Capital

Territory (ACT) over a period of five months (May-Sept. 2018). Briefly, fresh and frozen

chicken meat and beef-, chicken-, lamb-, and pork-offal were collected from local supermar-

kets and butcher shops: Canberra in the ACT; Hunter region and metropolitan suburbs

around Sydney in NSW; Brisbane, Toowoomba, Rockhampton, Townsville and Cairns in

QLD; and Bendigo and Melbourne in VIC. Samples of chicken meat included whole bird, and

breast, drumstick, Maryland (thigh and drumstick), thigh, and wing portions. Samples of beef,

chicken, lamb and pork offal included giblets, heart, liver, kidney, neck and tongue. Campylo-

bacter spp. prevalence on beef, lamb and pork meat is generally low. Therefore organs (offal)

were sampled in order to obtain a suitable number of isolates for WGS.

C. coli and C. jejuni were isolated and identified in their respective jurisdiction according to

ISO 10272–1:2017 [19] and AS 5013.06.2015 [20] with minor modifications [18]. Briefly, meat

or offal samples were combined with buffered peptone water or enrichment broth (Bolton or

Preston) and agitated manually. Samples were incubated at 37˚C for 2–4 h followed by micro-

aerobic incubation (85% N2, 5% O2, and 10% CO2) at 41.5˚C for 44 ± 4 h and subsequently

identified to genus and species level as described previously [18].

Genomic DNA extraction and whole genome sequencing

Genomic DNA was extracted from C. coli (n = 331) and C. jejuni (n = 285) isolated from beef,

chicken, lamb and pork using the QiaSymphony1DSP DNAMini kit (Qiagen) according to

the manufacturer’s protocol. The Nextera XT DNA Library Prep kit (Illumina, San Diego, CA,

USA) was used to prepare DNA for sequencing. WGS was performed on the Illumina Next-

Seq500 with 150 base-pair paired-end reads using the NextSeq 500 Mid Output kit (300 cycles)

(Illumina). Table 1 summarizes the number of isolates sequenced from each sample type.

Bioinformatic analysis

Paired-end sequences were analysed using the Nullarbor pipeline v2 (https://github.com/

tseemann/nullarbor). Read quality was evaluated to ensure sufficient depth of coverage (min

50x) and isolate purity using Kraken (lack of contaminating reads) (https://github.com/

DerrickWood/kraken). Sequences were trimmed using Trimmomatic v0.38 to remove Illu-

mina Nextera adapters and low-quality sequences. Isolates with a genome size (total assembled

bases) that differed by>20% from the average genome size in the analysis group were

Table 1. Summary of whole genome sequenced Campylobacter isolates, collected from retail outlets in Australia
over a period of two years (2017–2019), in this study.

Year

Sample type 2017 2018 2019 Total

Beef offal 18 8 3 29

Chicken meat 167 160 19 346

Chicken offal 69 62 7 138

Lamb offal 28 29 2 59

Pork Offal 12 29 3 44

Total 294 288 34 616

https://doi.org/10.1371/journal.pone.0236889.t001
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excluded. Reads were aligned to a reference genome NC_022132 (C. coli) or NC_003912 (C.

jejuni) using Snippy v4.3.6/BWA-MEM v0.7.17-r1188. Sequences were de novo assembled into

contigs using SPAdes v3.13.0 and annotated using Prokka v1.13.3 (https://github.com/

tseemann/prokka), as part of the Nullarbor pipeline.

In silico multilocus sequence typing (MLST) was performed on de novo assembled contigs

using a BLAST-based tool (https://github.com/tseemann/mlst) using the PubMLST “Campylo-

bacter jejuni/coli” allele database (https://pubmlst.org/campylobacter/) sited at the University

of Oxford [21].

Identification of genetic determinants of resistance

Assembled contigs were screened for known AMR genes using the NCBI’s AMRFinderPlus

(https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder/) and Abri-

cate v.0.8.12 (https://github.com/tseemann/abricate). Quality of hits were filtered using a cut-

off set at 95% nucleic acid sequence identity and 50% sequence coverage. Mutations in two

housekeeping genes, gyrA (T!I at amino acid at position 86) and 23S rRNA (nucleotides at

position 2074 and 2075), associated with quinolone [22] and macrolide/lincosamide/ketolide

[23] resistance, respectively, were investigated. A mutation in the promoter region of the

blaOXA-61 gene (G!T at position 57), which inhibits transcription resulting in the isolate

becoming sensitive to ampicillin, despite the presence of the gene [24] was also investigated.

BLAST [25] was used to extract the respective nucleotide sequences associated with the 23S

rRNA and blaOXA-61 genes and multiple sequence alignments were generated using Clustal-

Omega [26]. The GyrA amino acid sequence was used as the query for a tblastn to extract

input sequences for a multiple alignment of the GyrA protein from each isolate.

Temporal analysis of AMR in C. coli and C. jejuni was assessed by classifying isolates as

resistant based on the presence of resistance genes or mutations, which have been shown to

have a high concordance with phenotypic resistance [14, 27, 28]. Isolates were grouped by

quarter and year based on the date the sample was collected from the retail outlet. If an isolate

had one or more of the following (i) resistance genes, aad9, aadE-Cc, ant(6)-la, aph(3’)-llla,

blaOXA-184, blaOXA-185, lnu(C), tet(O) or tet(44) or (ii) mutations, blaOXA-61 G57T, gyrA T86I or

23S rRNA A2075G, they were classified as resistant. The prevalence of resistant isolates was

determined by dividing the number of isolates with at least one resistance marker in each sam-

pling quarter by the total number of isolates collected in that quarter. Ninety-five percent con-

fidence intervals (CI95) for the prevalence of resistant isolates were calculated using the binom

package [29] in R [30] with ggplot2 [31] used to plot associated results.

In order to identify resistance-associated factors, a multivariable logistic regression analysis

was performed using the glm function in R, and the questionr package [32] was used to calcu-

late the odds ratios (ORs) and CI95. Isolates were classified as resistant as described previously.

Isolates that did not possess any resistance genes or mutations were classified as sensitive. Var-

iables in the model included year of sample collection, region (state or territory), food source

and Campylobacter species.

Phylogenetic analysis

Phylogenetic trees were inferred from single nucleotide polymorphisms (SNPs) within the

core genome of 331 C. coli and 285 C. jejuni. FastTree v.2.1.10 [33] with the Jukes-Cantor

model for building approximation of maximum phylogenetic tree based on core genome

(regions of reference genomes to which reads mapped from each of the isolates in the species-

level analysis groups). Interactive tree of life (iTOL) v4 was used for visualization [34]. PHY-

LOViZ Online [35] was used to generate goeBURST minimum spanning trees, based on the
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seven gene MLST allele profiles, in order to examine the population structure of C. coli and C.

jejuni. Clonal complexes were determined by grouping multilocus genotypes that shared four

or more identical alleles among the seven loci (aspA, ginA, gltA, glyA, pgm, tkt and uncA) with

at least one other genotype in the group.

Nucleotide sequence accession numbers

WGS results of the 616 Campylobacter isolates used in this study were submitted to the

National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/). The

GenBank accession numbers of individual isolates are listed in S1 Table and are available on

bioproject PRJNA591966. Note: sequences from 617 isolates are available in this bioproject,

including one Campylobacter hyointestinalis isolate not discussed in this publication.

Results

ST prevalence by source

The 331 C. coli isolates differentiated into 60 STs and of these, 25 were observed for the first

time in this study (Fig 1). The STs of four of the C. coli isolates could not be determined (S1

Fig 1. Distribution of C. coli (n = 327) Sequence Types (STs) in Australian retail products. Chicken meat (dark blue), chicken offal (light blue), lamb offal (yellow),
beef offal (orange) and pork offal (green). Increasing circle size represents a larger number of isolates of the respective ST. Connecting lines infer phylogenetic
relatedness and represent STs with four or more loci in common. Red numbers indicate the number of alleles differing between the two adjoining STs.

https://doi.org/10.1371/journal.pone.0236889.g001
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Table). Among isolates where the ST was determined, 94.5% belonged to a single clonal com-

plex (ST828 complex), which was dominated by chicken isolates at the core and pork isolates

in the periphery. Among C. coli isolates, the most frequently observed STs were ST827 (n = 56;

16.9%), ST1181 (n = 50; 15.1%), ST825 (n = 34; 10.3%) and ST860 (n = 28; 8.4%). The four

most common STs included isolates from at least two animal sources, except ST825 which rep-

resented isolates from chicken meat or offal only (n = 34). C. coli isolates from pork were

widely distributed among STs, with 28 isolates representing 23 STs. A majority of the pork iso-

lates (n = 18; 64.3%) represented 15 STs not found in any other source.

The 285 C. jejuni isolates differentiated into 53 STs and among these, 13 novel STs were

identified (Fig 2). In contrast to the population structure of C. coli, the population structure of

Fig 2. Distribution of C. jejuni (n = 285) Sequence Types (STs) in Australian retail products. Chicken meat (dark blue), chicken offal (light blue), lamb offal (yellow),
beef offal (orange) and pork offal (green). Increasing circle size represents a larger number of isolates of that respective ST. Connecting lines infer phylogenetic
relatedness and represent STs that have four or more loci in common. Red numbers indicate the number of alleles differing between the two adjoining STs.

https://doi.org/10.1371/journal.pone.0236889.g002
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C. jejuni was more fragmented, with the majority of isolates (n = 214; 75.1%) belonging to one

of seven clonal complexes. Among C. jejuni isolates, ST50 (n = 51; 17.9%) and ST61 (n = 22;

7.7%) were the most common. Only ST50, ST21 and ST42 contained C. jejuni isolates from all

four animal sources. ST61 was dominated by isolates from non-chicken sources, namely lamb

(n = 11) and beef (n = 9) offal. Although the C. jejuni isolates were predominantly from

chicken meat or offal (n = 197; 69.1%), 10 STs were dominated (>50%) by isolates from non-

chicken sources.

AMR prevalence over time

The prevalence of resistance genes and point mutations known to confer phenotypic resistance

to aminoglycoside, β-lactam, lincosamide, quinolone and tetracycline antibiotics, in C. coli

and C. jejuni collected over two years is shown in Fig 3. Resistance was not analysed by sam-

pling quarter and animal source due to the small number of isolates obtained from non-

chicken sources (S1 Fig). Genes and mutations associated with antibiotic resistance were

found in all sampling quarters. The prevalence of resistance genes and mutations was lowest in

2017 (6.3–24.3%) and highest in 2018 (27.7–57.6%).

Three variables: year, source and species were associated with either an increased or

decreased prevalence of AMR at a significance level of P< 0.05 (Table 2). Compared to 2017,

isolates collected in 2018 were associated with in an increased risk of resistance (OR 2.41; CI95
1.58–3.68). Campylobacter spp. from pork offal were associated with an increased risk of resis-

tance compared to chicken meat (OR 3.59; CI95 1.79–7.37). Among the two Campylobacter

Fig 3. Temporal analysis of antimicrobial resistance determinants. Prevalence of Campylobacter (n = 616) possessing at least one
genetic marker of antimicrobial resistance from retail beef, chicken, lamb and pork products collected over a period of two years.
Genetic determinants of resistance used to classify isolates as resistant are described in section 2.4. Error bars indicate 95%
confidence intervals.

https://doi.org/10.1371/journal.pone.0236889.g003

PLOS ONE Molecular characterization ofCampylobacter spp. in Australian retail products

PLOSONE | https://doi.org/10.1371/journal.pone.0236889 July 30, 2020 7 / 18

https://doi.org/10.1371/journal.pone.0236889.g003
https://doi.org/10.1371/journal.pone.0236889


species tested in the present study, C. coli isolates were associated with an increased risk of

resistance (OR 1.79; CI95 1.22–2.64) compared to C. jejuni. In a univariable analysis, QLD iso-

lates were associated with a lower prevalence of resistance (OR 0.42; CI95 0.23–0.77), however

the extent of this association was reduced in the multivariable analysis (OR 0.70; CI95 0.35–

1.40). It should be noted that isolates were not collected in all sampling quarters in each region

(S2 Fig).

AMR prevalence by species

Nine genes and two mutations associated with antibiotic resistance were identified in the 331

C. coli isolates (Table 3; S3–S5 Figs). The blaOXA-61 gene encoding resistance to β-lactams was

the most commonly detected resistance gene, present on average in 80.4% of isolates (266/

331). However, of the isolates possessing the blaOXA-61 gene, none are predicted to have an

active promotor, with all isolates having a G at position 57. Among C. coli isolates, only isolates

from pork offal (10/28; 35.7%) contained the lnu(C) gene. The prevalence of several resistance

genes, namely aad9, lnu(C) and tet(O), as well as the 23S rRNA A! Gmutation at position

2075, were highest in isolates recovered from pork offal compared to isolates from other

sources. The T86I mutation in the gyrA gene was present in isolates from all sources, except

beef.

Ten genes and three mutations associated with antibiotic resistance were identified in the

285 C. jejuni isolates (Table 4; S5 Fig). The blaOXA-61 gene was the most commonly detected

antimicrobial resistance gene in C. jejuni, present on average in 79.0% of isolates (225/285).

However, only 8.9% of these isolates (20/225) had an active blaOXA-61 promoter (G! T muta-

tion at position 57). The tet(O) gene was present on average in 13.3% (38/285) of C. jejuni iso-

lates and was detected in isolates from all sources except beef offal. The T86I mutation in the

protein encoded by the gyrA gene was detected infrequently (27/285; 9.5%) in C. jejuni isolates

from beef, chicken and pork products. The A! Gmutation in the 23S rRNA gene at position

2075 was only detected in one isolate from pork offal.

Table 2. Multivariable logistic regression analysis of factors potentially associated with resistance in Campylobacter coli and Campylobacter jejuni isolated from
retail meat and offal products in Australia, 2017–2019.

n = 616 OR CI95 P value

Year (reference = 2017; n = 294)

2018 288 2.41 1.58–3.68 <0.000

2019 34 1.77 0.75–4.02 0.178

Region (reference = Australian Capital Territory; n = 69)

New SouthWales 212 1.04 0.55–2.01 0.896

Queensland 188 0.70 0.35–1.40 0.311

Victoria 147 1.56 0.84–2.94 0.160

Source (reference = Chicken meat; n = 346)

Beef offal 29 0.39 0.09–1.21 0.147

Chicken offal 138 0.94 0.60–1.46 0.778

Lamb offal 59 0.57 0.25–1.19 0.154

Pork offal 44 3.59 1.79–7.37 <0.000

Campylobacter species (reference = C. jejuni; n = 285)

C. coli 331 1.79 1.22–2.64 0.003

OR = odds ratio; CI95 = 95% confidence interval.

https://doi.org/10.1371/journal.pone.0236889.t002
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Phylogeny and AMR

Phylogenetically, C. coli isolates were highly diverse, forming two genetically-distinct clades,

with isolates from pork offal generally more closely related to other pork isolates than those

from other sources (S3–S5 Figs). Half the pork offal C. coli isolates had a multidrug resistance

(MDR) genotype and among these, 57.1% (8 isolates) represented novel STs (S3 Fig). The T86I

mutation in the protein encoded by the gyrA gene was restricted primarily to three STs:

ST2083 (n = 10), ST7323 (n = 14) and ST860 (n = 24) (S3 & S5 Figs). In contrast, the tet(O)

and tet(44) genes were identified in over 35 different STs (S3–S5 Figs). Fourteen isolates pos-

sessed the 23S rRNA A2075G mutation, representing 13 different STs. Multidrug resistance

Table 3. Summary of genetic determinants of antimicrobial resistance (AMR) present in C. coli recovered from beef, chicken, lamb and pork collected at retail out-
lets in the Australian Capital Territory, New SouthWales, Queensland and Victoria, 2017–2019.

No. of AMR genes and mutations (%a)

Aminoglycoside β-lactam Lincosamide Tetracycline Quinolone Macrolide

Source aad9 aadE-Cc ant(6)-
Ia

ant(6)-
Ib

aph(3')-
IIIa

blaOXA-61 blaOXA-61
G57T

lnu(C) tet(O) tet(44) gyrA T86I 23 rRNA
A2075G

Beef (n = 4) 0 (0.0) 1 (25.0) 0 (0.0) 0 (0.0) 0 (0.0) 4 (100.0) 0 (0.0) 0 (0.0) 1 (25.0) 0
(0.0)

0 (0.0) 0 (0.0)

Chicken meat
(n = 190)

0 (0.0) 31 (16.3) 0 (0.0) 0 (0.0) 0 (0.0) 148 (77.9) 0 (0.0) 0 (0.0) 21
(11.1)

0
(0.0)

15 (7.9) 0 (0.0)

Chicken offal
(n = 97)

0 (0.0) 15 (15.5) 0 (0.0) 0 (0.0) 0 (0.0) 86 (88.7) 0 (0.0) 0 (0.0) 16
(16.5)

0
(0.0)

10 (10.2) 1 (1.0)

Lamb (n = 12) 0 (0.0) 6 (50.0) 0 (0.0) 0 (0.0) 0 (0.0) 11 (91.7) 0 (0.0) 0 (0.0) 2 (16.7) 0
(0.0)

3 (25.0) 0 (0.0)

Pork (n = 28) 8
(28.6)

9 (32.1) 1 (3.6) 1 (3.6) 1 (3.6) 17 (60.7) 0 (0.0) 10 (35.7) 15
(53.6)

1
(3.6)

1 (3.6) 12 (42.9)

Total (n = 331) 8 (2.4) 62
(18.7)

1 (0.3) 1 (0.3) 1 (0.3) 266
(80.4)b

0 (0.0) 10 (3.0) 55
(16.6)

1
(0.3)

29 (8.8) 13 (3.9)

aValues represent the percentage of C. coli isolates with the respective AMR gene or point mutation from each source.
b Phenotype is inferred as sensitive to ampicillin based on sequence at base 57 of the promotor.

https://doi.org/10.1371/journal.pone.0236889.t003

Table 4. Summary of genetic determinants of antimicrobial resistance (AMR) in C. jejuni recovered from beef, chicken, lamb and pork collected at retail outlets in
the Australian Capital Territory, New SouthWales, Queensland and Victoria, 2017–2019.

No. of AMR genes and mutations (%a)

β-lactam Tetracycline Quinolone Macrolide

Source blaOXA-
184

blaOXA-
185

blaOXA-
449

blaOXA-
460

blaOXA-
466

blaOXA-61 blaOXA-61
G57T

blaOXA-
624

blaOXA-
625

blaOXA-
631

tet(O) gyrA T86I 23 rRNA
A2075G

Beef (n = 25) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 24 (96.0) 1 (4.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 2 (8.0) 0 (0.0)

Chicken meat
(n = 156)

3 (1.9) 1 (0.6) 1 (0.6) 1 (0.6) 6 (3.9) 110
(70.5)

15 (9.6) 1 (0.6) 1 (0.6) 1 (0.6) 29 (18.6) 18 (11.5) 0 (0.0)

Chicken offal
(n = 41)

1 (2.4) 0 (0.0) 1 (2.4) 0 (0.0) 0 (0.0) 31 (75.6) 1 (2.4) 0 (0.0) 1 (2.4) 0 (0.0) 4 (9.8) 3 (7.3) 0 (0.0)

Lamb
(n = 47)

0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 46 (97.9) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (2.1) 0 (0.0) 0 (0.0)

Pork (n = 16) 1 (6.3) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 14 (87.5) 3 (18.8) 0 (0.0) 0 (0.0) 0 (0.0) 4 (25.0) 4 (25.0) 1 (6.3)

Total
(n = 285)

5 (1.8) 1 (0.4) 2 (0.7) 1 (0.4) 6 (2.1) 225
(79.0)b

20 (7.0) 1 (0.4) 2 (0.7) 1 (0.4) 38 (13.3) 27 (9.5) 1 (0.4)

aValues represent the percentage of C. jejuni isolates with the respective AMR gene or point mutation from each source.
b20/225 have an active promotor, inferring these isolates are phenotypically sensitive to ampicillin.

https://doi.org/10.1371/journal.pone.0236889.t004
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genotypes were found in 26 (7.6%) of C. coli and 2 (0.7%) C. jejuni (S3 & S5 Figs). C. jejuni iso-

lates were highly diverse and generally did not cluster genetically by food source, except ST61

(S5 Fig). Among STs containing more than one isolate, only ST132 (n = 2), ST829 (n = 7),

ST4896 (n = 13) and ST10123 (n = 2) had no resistance genes or mutations detected (S3–S5

Figs).

Discussion

Antimicrobial resistance in enteric pathogens is considered a serious global public health prob-

lem. Among developed countries, several surveillance programs monitoring AMR of Campylo-

bacter to clinically important antimicrobials have been well established, such as the U.S.

National Antimicrobial Resistance Monitoring Systems [36], the Canadian Antimicrobial

Resistance Surveillance System [37], the European Food Safety Authority [38] and the Euro-

pean Centre for Disease Prevention and Control [39]. In Australia, there is no national surveil-

lance program for AMRmonitoring in Campylobacter spp., limiting our knowledge of

resistance in Campylobacter. The present study represents the first longitudinal genomic study

of Campylobacter in meat at the retail level in Australia, providing insights into the prevalence

of AMR genetic markers, as well as the genetic relatedness of isolates from different animal

sources. Here we chose to collect samples at retail as this is the closest point before the product

comes in contact with consumers, likely providing good representation of Campylobacter spp.

that may cause illness in humans.

Although, we did not perform phenotypic antimicrobial susceptibility testing on the isolates

in this study, our previous work [40] and reports by others [14, 28, 41], has shown a high con-

cordance between resistance genotype and resistance phenotype in Campylobacter. Genetic

evidence for resistance to tetracycline and fluoroquinolone antimicrobials was found in over

11 and 7.5% of C. coli isolates from chicken meat, respectively. These findings are comparable

with those in a recent report published by the Australian Chicken Meat Federation (ACMF)

that showed 5.2 and 3.1% of C. coli from chicken cecal samples were phenotypically resistant

to fluoroquinolone and tetracycline, respectively [42]. Among C. jejuni isolates from retail

chicken meat, genetic evidence for resistance to tetracycline and fluoroquinolone was 18.6 and

11.5%, respectively. These findings are slightly lower than those reported by the ACMF where

22.2 and 14.8% of C. jejuni isolates from chicken cecal samples were phenotypically resistant to

tetracycline and ciprofloxacin, respectively [42].

Many of our results are understandable in the context of antibiotic usage patterns in Aus-

tralian food-producing animals and recent literature on the evolution of resistance patterns.

Possible explanations for the finding of mutations suggesting quinolone resistance in Austra-

lian food-producing animals, in the absence of quinolone usage, are a fitness advantage [43] in

the absence of antibiotic selection, or co-selection [44] where found associated with other

resistance patterns. The Australian poultry meat industry has suggested the initial introduction

of fluoroquinolone resistance could have been from reverse zoonosis [42]. The moderate levels

of aminoglycoside resistance could be due to usage of neomycin or spectinomycin rather than

gentamycin, which is banned from use in food-producing animals. The range of mutations

associated with AMR present in isolates from pork is reflective of the therapeutic usage of first-

line antibiotics. Amoxycillin is commonly used to treat endemic respiratory and enteric dis-

eases of pigs, including Actinobacillus pleuroneumonia, colibacillosis, enterotoxic E. coli, diar-

rhoea and Glasser’s disease (Haemophilus parasuis). Tetracyclines are also commonly used to

treat colibacillosis in pigs. Macrolides are commonly used in pigs to treat pneumonia due to

mycoplasmosis, swine dysentery (Brachyspira hyodysenteriae) and proliferative enteropathy
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(Lawsonia intracellularis). It is worth noting that there are no antibiotics used for growth pro-

motion in Australian pigs.

Globally, resistance to clinically important antimicrobials is a serious threat to public

health. A recent report by the European Food Safety Authority (EFSA) showed levels of AMR,

particularly to tetracycline and ciprofloxacin, are very high in human and animal Campylobac-

ter isolates in some European countries [45]. Prevalence of fluoroquinolone resistance in Cam-

pylobacter in Europe from food animals is highly variable, ranging from 1.2% in Norway [46],

44.0% in Belgium [47] and 82.9% in Italy [48] to 90.0% in Spain [49]. In Canada, ciprofloxacin

resistance in Campylobacter isolated from retail chicken meat ranged from 6% in Québec to

35% in British Columbia [50]. In China, a recent report found the tet(O) gene in 98% of Cam-

pylobacter and the GyrA mutation at codon 86 and the 23S rRNA A2075G point mutation in

99 and 37% of isolates, respectively [51]. In China, antibiotic use is more than five times higher

than the international average, primarily due to widespread misuse associated with growth

promotion in feed and veterinary use on farms [52]. In Australia, the very low prevalence of

AMR genetic markers in Campylobacter spp. from retail products is a testament to good anti-

biotic stewardship by the Australian agriculture industry. However, our findings suggest the

prevalence of AMR in Campylobacter isolates from retail products may be increasing,

highlighting the need for routine monitoring of resistance in Campylobacter in the agriculture

industry. Genetic mutations conferring AMRmay arise after continued exposure to antibiot-

ics, but persist due to neutral selection, e.g. mutation in the gyrA gene conferring fluoroquino-

lones resistance. Although mutations in the 23S gene conferring erythromycin resistance are

detrimental and are rapidly lost in the absence of selection. Future studies should examine

resistance in Campylobacter spp. over an extended period of time to determine if the preva-

lence of resistance is increasing or if our findings can be regarded as background levels of resis-

tance in Australian Campylobacter.

Campylobacteriosis is generally self-limiting and does not require medical treatment. How-

ever, people at increased risk of severe complications, such as the immunocompromised or

elderly, will likely be prescribed antibiotics to prevent bacteraemia or sequelae [53]. This high-

lights the importance of monitoring prevalence of antimicrobial resistant Campylobacter in food.

We identified five genes; aad9, aadE-Cc, ant(6)-Ia, ant(6)-Ib and aph(3’)-IIIa, associated with

resistance to aminoglycosides, as well as lnu(c), associated with lincomycin resistance, in C. coli

but not C. jejuni. Additionally, the 23S rRNAmutation associated with resistance to macrolides

was rare in both Campylobacter species, but more prevalent in C. coli than C. jejuni. Similarly,

prevalence of MDR genotypes was ten-fold higher in C. coli than C. jejuni. In cases of campylo-

bacteriosis in at risk individuals, macrolides or fluoroquinolones may be prescribed, with macro-

lides preferred due to their low rate of resistance. Our findings highlight that while a particular

antimicrobial may be effective against C. jejuni, it may not be as effective for C. coli. In Australia,

pathology laboratories do not routinely identify Campylobacter to species level. However, in cases

where antibiotics are required, species identification may improve treatment success.

Australia is a large, geographically diverse, island nation supporting a distinct and diverse

Campylobacter population evident in the findings from this study. Among the 616 Campylo-

bacter isolates, representing 113 STs, 38 STs had not previously been reported anywhere else in

the world. Many of the more common STs found in Australia, such as ST825, ST827 and

ST50, have been isolated from various sources globally. C. jejuni isolates were dominated by

ST50 which has been found in poultry in Israel [54], Poland [55], Denmark [56] and South

Korea [57], among other countries. To date, ST50 has over 3,500 submissions on the

PubMLST database. Unlike ST50 which was found in all animal sources, ST61 was dominated

by isolates from non-poultry sources, namely beef and lamb offal. This finding agrees with

other reports indicating ST61 is commonly recovered from ovine, bovine and human samples,
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but rarely from poultry [58, 59]. There was no general association between different genetic

markers of resistance and ST, with a few exceptions. Most isolates harbouring the GyrA T86I

mutation, which is associated with resistance to ciprofloxacin, belonged to ST860, ST2083 or

ST7323. Future studies should examine the prevalence of these STs in clinical isolates. The

potential for the novel STs identified for the first time in the present study to cause illness in

humans remains to be determined.

Of note, the blaOXA-61 gene, shown to confer resistance to β-lactams [60], was present in

79.7% of Campylobacter isolates. However, rather than the presence of blaOXA-61 alone, a single

nucleotide mutation (G! T transversion) upstream of blaOXA-61 has been shown to up-regu-

late expression of the gene, resulting in a high level of β-lactam resistance in C. jejuni [24]. In a

previous study, we found 100% of Campylobacter isolates possessing the G! T mutation were

resistant to ampicillin, while C. jejuni isolates possessing the blaOXA-61 gene without this muta-

tion, remained susceptible to ampicillin [40]. This information, taken with the other beta-lac-

tamase genes we identified, suggests less than 15% of the C. jejuni isolates in the present study

are likely to be resistant to β-lactam antibiotics. Beta-lactams are not recommended for treat-

ing campylobacteriosis as Campylobacter is intrinsically resistant to this class of antibiotic [48].

However, our findings suggest this intrinsic resistance may be less prevalent in Campylobacter

from retail products in Australia, particularly in C. jejuni.

MDR is defined as resistance to three or more classes of antimicrobials. Among the 616 Cam-

pylobacter isolates examined in this study, 26 C. coli and two C. jejuni possessed MDR genotypes.

However, among C. coli possessing a MDR genotype, more than 75% of these isolates had the

blaOXA-61 gene. Phenotypic testing is necessary to determine if the presence of the blaOXA-61 gene

alone in C. coli is in fact associated with phenotypic β-lactam antibiotic resistance. The majority

of MDR C. coli represented STs observed for the first time in this study, and the role of these

novel STs in human illness is unknown. Overall, our results show that MDR is very rare (< 5%)

in Australia. This is comparable to findings in Poland where noMDR Campylobacterwere found

in poultry [61]. In contrast, resistance to multiple drugs (� 4) was found in 31.6% of C. jejuni iso-

lated from poultry meat and related samples in Northern India [62]. Similarly, 8.6% of C. jejuni

and 67.6% of C. coli isolates from diarrheal patients and poultry meat in Shanghai, China were

identified as MDR [51]. Previous reports have indicatedMDR Campylobacter can spread from

the food supply chain into the human population [51]. In the present study, we noted differences

in the prevalence of genetic determinants of resistance by food source. Generally, genes associated

with resistance to aminoglycosides (except aadE-Cc), lincosamides and macrolides were only

found in isolates from pork offal. Similarly, the majority (61.5%) of isolates harbouring MDR

genotypes were recovered from pork offal. Although the prevalence of AMR is low in Australian

Campylobacter spp., Australia should consider establishing integrated surveillance systems to

monitor resistance and the transmission of Campylobacter from food to humans.

Our study has some limitations. Although we collected more than 700 samples from non-

poultry sources, the majority of isolates that were sequenced (78.6%) were from chicken meat

or chicken offal, due to the relatively low prevalence in beef, lamb and pork offal (14–38%)

[18]. We may have achieved a higher recovery rate if we had sampled prior to slaughter rather

than at retail as chilling significantly reduces the levels of Campylobacter [63]. Although Aus-

tralians consume more muscle meat than offal, we also chose to collect offal samples of non-

poultry products as the prevalence of Campylobacter has been reported to be higher in offal

than muscle meat [64]. We found for the more common STs (> 10 isolates/ST) the Campylo-

bacter isolates recovered from chicken meat or chicken offal products belonged to similar STs.

As a result, the isolates recovered from offal likely provide a good representation of the STs

that may be present on beef, lamb and pork meat.
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Conclusions

Our results indicate Australia’s AMR prevalence in Campylobacter spp. from retail products is

very low. Our results also suggest prevalence of resistance in Campylobacter spp. from foods of

animal origin may be increasing, but ongoing surveillance is needed to confirm such a trend.

Although consumption of contaminated poultry is well established as a key risk factor for cam-

pylobacteriosis, foods derived from other animals can result in Campylobacter infection. We

found that isolates from pork represented a diverse array of STs, many not found among iso-

lates from beef, chicken or lamb. MDR prevalence was also higher in isolates from pork offal,

with many of these isolates representing novel STs. As these novel STs were first reported in

this study, their significance in human health remains to be determined. Routine surveillance

aimed at identifying species and characterizing types and resistance determinants fromWGS

data of Campylobacter spp. from food and humans will enable early detection of emergent

AMR clones and ultimately assist in maintaining the low prevalence of AMR in Australia.
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