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Abstract

Background: Knowledge of germplasm diversity and relationships among elite breeding materials is fundamentally

important in crop improvement. We genotyped 450 maize inbred lines developed and/or widely used by CIMMYT

breeding programs in both Kenya and Zimbabwe using 1065 SNP markers to (i) investigate population structure

and patterns of relationship of the germplasm for better exploitation in breeding programs; (ii) assess the

usefulness of SNPs for identifying heterotic groups commonly used by CIMMYT breeding programs; and (iii)

identify a subset of highly informative SNP markers for routine and low cost genotyping of CIMMYT germplasm in

the region using uniplex assays.

Results: Genetic distance for about 94% of the pairs of lines fell between 0.300 and 0.400. Eighty four percent of

the pairs of lines also showed relative kinship values ≤ 0.500. Model-based population structure analysis, principal

component analysis, neighbor-joining cluster analysis and discriminant analysis revealed the presence of 3 major

groups and generally agree with pedigree information. The SNP markers did not show clear separation of heterotic

groups A and B that were established based on combining ability tests through diallel and line x tester analyses.

Our results demonstrated large differences among the SNP markers in terms of reproducibility, ease of scoring,

polymorphism, minor allele frequency and polymorphic information content. About 40% of the SNPs in the

multiplexed chip-based GoldenGate assays were found to be uninformative in this study and we recommend 644

of the 1065 for low to medium density genotyping in tropical maize germplasm using uniplex assays.

Conclusions: There were high genetic distance and low kinship coefficients among most pairs of lines, clearly

indicating the uniqueness of the majority of the inbred lines in these maize breeding programs. The results from

this study will be useful to breeders in selecting best parental combinations for new breeding crosses, mapping

population development and marker assisted breeding.

Background
Assessment of genetic diversity, relationships, and struc-

ture within a given set of germplasm is useful in plant

breeding for different reasons including: (i) assisting in

the selection of parental combinations for developing

progenies with maximum genetic variability for genetic

mapping or further selection [1]; (ii) describing heterotic

groups [2-7]; (iii) determining the level of genetic varia-

bility when defining core subsets selected for specific

traits [8]; (iv) estimating possible loss of genetic diversity

during conservation or selection programs [9]; and (v)

estimating the relative strengths of evolutionary forces

(mutation, natural selection, migration or gene flow, and

genetic drift) [10,11]. In maize, the two main tasks of

breeders involve the first two points, above, including

developing improved inbred lines and identifying the

best parental combinations for creating hybrids that are

phenotypically superior and with significantly higher
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yield compared to their parents [12]. In species where

heterosis and heterotic groups can be exploited, inbred

lines are primarily developed by crossing elite lines

within heterotic groups followed by inbreeding and

selection, while hybrids are produced by crossing par-

ents that belong to different heterotic groups. A hetero-

tic group is a collection of closely related inbred lines

which tend to result in vigorous hybrids when crossed

with lines from a different heterotic group, but not

when crossed to other lines of the same heterotic group

[13]. Depending on the objectives of the breeding pro-

gram, breeders use different methods in selecting the

best parents for making crosses, and for assigning lines

to a particular heterotic group, including (a) pedigree

relationships, (b) phenotypic performance for specific

traits, (c) adaptability and yield stability, (d) top crosses,

(e) diallel crosses, and (f) genetic distances estimated

from morphological and molecular markers [14].

Genetic distance can be estimated from various types of

molecular markers, including restriction fragment length

polymorphism (RFLP), amplified fragment length poly-

morphism (AFLP), simple sequence repeats (SSRs) and

single nucleotide polymorphisms (SNPs).

Advances in molecular technology, however, have pro-

duced a shift towards SNP markers [15,16]. Because of

their low cost per data point, high genomic abundance,

locus-specificity, codominance, potential for high through-

put analysis, and lower genotyping error rates [17-19],

SNPs have emerged as a powerful tool for many genetic

applications, including genetic diversity studies, linkage

and quantitative trait loci (QTL) mapping, and marker-

assisted breeding [20]. Currently, chip-based technology is

the most high-throughput SNP genotyping platform. The

Illumina chip-based SNP detection technology is useful

for a broad range of applications to genotype samples with

different possible levels of multiplexing, from 48 to 384

(BeadXpress) and 1536 (GoldenGate) to 55,000 SNPs

(Infinium). Such chip-based genotyping platforms are sui-

table for large-scale studies that require genotyping of

individual samples with thousands of SNPs [21]. High

levels of multiplexing, high total cost and lengthy process

of initial assay development are a drawback of chip-based

platforms. They may be unsuitable for studies where only

a small to moderate number of SNPs are needed over a

large number of samples, as is the case in mapping,

marker assisted recurrent selection, marker assisted back-

crossing, and quality control applications. In such cases,

uniplex SNP genotyping platforms are more suitable [21].

Furthermore, a significant percentage of the SNPs in

highly multiplexed chip-based assays generally prove unin-

formative in any given population [22]. It is therefore

necessary to select the best SNPs to provide a good level

of discrimination for uniplex assays of each population

under study.

Maize (Zea mays ssp. mays L.) is the world’s third most

important by acreage and is a multi-purpose crop for

food, animal feed, biofuel, and raw material in the synth-

esis of a broad range of industrial products [23]. Over the

past 4 decades, breeders at the International Maize and

Wheat Improvement Center (CIMMYT), in collaboration

with the National Agricultural Research Systems (NARS)

of many maize-growing countries, have developed

numerous germplasm pools, populations, and open-polli-

nated varieties [6,24,25]. CIMMYT maize germplasm is

widely used by various public and private sector institu-

tions worldwide for the development of open pollinated

varieties, hybrid seed production, pedigree breeding,

development of populations for QTL mapping, molecular

breeding, doubled haploid production, and transgenic

introduction of traits. Lu et al. [4] characterized 770

maize lines, including 394 tropical/subtropical germ-

plasm from CIMMYT; 14 tropical/sub-tropical and 268

temperate germplasm from China; and 1 temperate and

93 tropical/subtropical germplasm from Brazil, using

1034 SNPs. The authors reported the presence of clear

population structure and genetic divergence between

temperate and subtropical/tropical germplasm. Yan et al.

[26] studied 632 inbred lines from temperate, tropical,

and subtropical public breeding programs and reported

the presence of clear structure between temperate and

tropical lines, and also complex familial relationships

among global maize collection. Wen et al. [27] studied an

association mapping panel consisting of 359 maize inbred

lines both from CIMMYT and International Institute for

Tropical Agriculture (IITA) breeding programs that have

resistance to drought, low nitrogen, soil acidity, pest and

disease resistance. The authors reported the presence of

a subgroup that largely consisted of lines developed from

LaPosta Sequía. All the previous three studies, however,

included some of the maize inbred lines that were either

developed by the CIMMYT maize breeding programs in

eastern and southern Africa or widely used CIMMYT

Maize Lines (CMLs) in the region. The main objective of

our study was to investigate the population structure and

patterns of relationships of the maize inbred lines from

CIMMYT maize improvement programs in Zimbabwe

and Kenya for better exploitation in breeding programs.

The other objectives of our study were to assess the uti-

lity of SNPs in classifying maize inbred lines into one of

two heterotic groups commonly used by the CIMMYT

breeders, and identify a subset of highly informative SNP

markers for routine and low cost genotyping of CIM-

MYT germplasm in the region.

Methods
A total of 450 maize lines (382 fixed inbred parental lines

and 68 advanced breeding lines) from CIMMYT breeding

programs in Kenya and Zimbabwe were used in this
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study (Additional file 1: Table S1). The germplasm

included: (a) drought tolerant inbred and advanced

breeding lines developed for sub Saharan Africa (SSA)

and used by breeders; (b) other parental lines used

mainly by breeders in SSA for starting new line pedigree

populations, mapping population development, trait

introgression through transformation, double haploid

production, and marker assisted recurrent selection; (c)

elite breeding lines and released CMLs used to form

hybrids that are evaluated in CIMMYT regional trials

across eastern, southern, and central Africa, and (d) qual-

ity protein maize (QPM) inbred lines. DNA was extracted

from greenhouse grown seedlings at the 3-4 leaf stage at

the Biosciences for eastern and central Africa (BecA) hub

in Nairobi, Kenya, using a modified version of CIMMYT

protocol http://www.generationcp.org/capcorner/chi-

le_wksp_2005/manuals/manual_01.pdf. Normalized

DNA was transferred to 96-well plates and shipped to

the Cornell University Life Sciences Core Laboratories

for genotyping. Samples were genotyped with the 1536

random SNP chip [4] using an Illumina BeadStation

500 G (Illumina, San Diego, CA, USA) as described else-

where [28]. Alleles were called on data from combined

plates with the Illumina BeadStudio version 3.0 genotyp-

ing software and checked manually when errors were

observed in known homozygote and heterozygote geno-

types. For each SNP, number of alleles, allele frequency,

number of genotypes, genotype frequency, observed het-

erogeneity, gene diversity, and polymorphic information

content (PIC) were computed using PowerMarker

version 3.25 [29].

An admixture model-based clustering method was used

to infer population structure of the 450 lines using the

software package STRUCTURE, version 2.3.3 [30].

STRUCTURE was run by varying the number of clusters

(K) from 1 to 10; each K was run 3 times with a burn-in

period of 100,000 and 100,000 MCMC (Markov Chain

Monte Carlo) replications after burn-in. Allele frequencies

were assumed to be correlated and loci were assumed to

be unlinked. Individuals with probability of membership ≥

60% were assigned to the same group while those with <

60% probability memberships in any single group were

assigned to a “mixed” group [4,31]. The most probable

value of K was estimated using the ad hoc statistic ∆K

[32], which is based on the second order rate of change of

P(X|K), the posterior probability of the data with respect

to a given K. A stepwise forward discriminant analysis was

run as described elsewhere [33] using XLSTAT 2010

(Addinsof, New York, USA; http://www.xlstat.com) to

select an optimal set of discriminating SNPs that tended

to separate the groups obtained from population structure

analysis to a maximum degree. Variables (SNPs) were cho-

sen to enter or leave the discrimination model among

groups based on the significance level of an F-to-enter and

F-to-remove value of 0.05 and 0.10, respectively.

Matrices of Roger’s genetic distance [34] and relative

kinship were calculated between each pair of lines in the

study using PowerMarker [29] and TASSEL [35] software,

respectively. Groups of closely related lines tend to bring

redundant values to a breeding program, and a set of

genetically unique lines can be chosen based on marker

information. A dendrogram was constructed from the

genetic distance matrix using the neighbor-joining algo-

rithm with PowerMarker and the resulting trees were

visualized using MEGA version 5.0 [36]. Principal compo-

nent analysis (PCA) was performed using the software

JMP version 7.0 (SAS Institute Inc., Cary, NC, USA). The

first two principal components were plotted for visual

examination of the clustering pattern of lines. Finally, ana-

lysis of molecular variance (AMOVA) was used to parti-

tion the variation among and within group (population)

components [37]. For AMOVA, the individuals were

assigned into populations using the results from popula-

tion structure analysis, cluster analysis and a priori hetero-

tic groups assigned to a subset of 220 lines by CIMMYT

breeders. Significance levels for variance component esti-

mates were computed using 1000 permutations. Both

AMOVA and FST were calculated using the ARLEQUIN

version 3.11 http://cmpg.unibe.ch/software/arlequin3.

Results
SNP characteristics

Of the 1536 SNPs, 471 (30.7%) were not included in data

analyses because they showed weak amplification, ambigu-

ity or irreproducibility in allele calling, high (> 10%) miss-

ing data, or had a minor allele frequency (MAF) of less

than 5%. Figure 1 summarizes the 1065 SNPs, including

number of markers, heterogeneity, gene diversity, minor

allele frequency (MAF) and PIC per chromosome; a more

Figure 1 Summary of the 1065 SNPs used for genotyping the

450 maize inbred lines from CIMMYT breeding programs in

eastern and southern Africa. Minor allele frequency (MAF),

heterogeneity, gene diversity (GD) and polymorphic information

content (PIC) are averages of all SNPs per chromosome.
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detailed table of this data can be found in Additional file 2:

Table S2. Roughly one third of the SNPs (37.7%) showed a

MAF between 0.051 and 0.200 (relatively infrequent), and

32.3% had a PIC value ≤ 0.25.

Population structure

The estimated log probability of the data (LnP(D))

increased continuously with increasing K (number of

groups or populations) and there was no obvious K value

clearly defining the number of populations. However,

LnP(D) sharply increased between K = 1 and K = 3, and

much less so between K = 4 and K = 10 (Figure 2a). The

ad hoc statistic ∆K showed a higher likelihood values at

K = 2, with a sharp decrease when K increased from 3 to

4 (Figure 2a). When the results from different K values

were compared with pedigree and breeding history, the

groups obtained at K = 3 (Figure 2b) seem the best possi-

ble number of populations, and 83.1% of the lines were

assigned into one of the populations at this number of

clusters (Additional file 1: Table S1). The majority of the

lines (291) were assigned to group 1, which included 101

maize streak virus (MSV) resistant lines, 58 QPM lines

(15 of which were extracted from QPM population

POOL15), 16 weevil resistant lines, 22 drought tolerant

lines (most of them from population La Posta Sequia), 24

multiple borer resistant (MBR) lines extracted from

Figure 2 Population structure of 450 maize inbred lines based on 1065 SNP markers: (a) plot of LnP(D) and an ad hoc statistic ∆K

calculated for K ranging from 1 to 10, with each K repeated trice; (b) population structure of the 450 lines between K = 2 to K = 5.

Each individual is represented by a single vertical line that is partitioned into K colored segments (K = 2 to K = 5) in the x-axis, with lengths

proportional to the estimated probability membership (y-axis) to each of the K inferred clusters.
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cycles 3 and 5 of MBR population, and 6 MSV resistant

lines from populations 100 and 300. The second group

consisted of 31 lines of which about 90% had at least one

maize streak resistant parent (either CML202 or OSU23i

from Ohio State University) in their pedigree. Group 3

consisted of 52 lines that are MSV resistant, 14 of which

have CML390 as a common parent. Breeding for maize

streak virus resistance has been one of the major efforts

in the CIMMYT maize breeding program based in Zim-

babwe. The remaining 76 genotypes were classified into a

mixed group as they had membership probabilities < 60%

to be assigned into one of the three groups.

In order to assess the reliability of the different groups

obtained through the model-based population structure

analyses, we ran discriminant analyses using the groups

obtained from population structure as categorical vari-

ables. The discriminant analyses clearly separated the

populations and mixed group obtained both at K = 2 and

K = 3. When the population structure obtained from K =

4 to K = 10 were used as categorical variables in the dis-

criminant analyses, the results remained basically same

as the one obtained at K = 3, and only 3 populations and

a mixed group were clearly visible in the plot. The discri-

mination model with the stepwise procedure identified

237 alleles from 236 SNPs as the best explanatory vari-

ables for the priori group defined at K = 3. When the

priori group at K = 3 were used in plotting the two axes

from discriminant analyses, axis-1 separated group 2

from groups 1, group 3 and the mixed group (Figure 3).

Axis-2 further separated group 1 from group 3, with the

mixed group being intermediate between them. Fisher

and Mahalanobis distance matrices from pairwise com-

parisons of the three groups and mixed group were all

significant, with group 2 being at least 4 to 12 times

more distant from all others. The correct classification of

lines into their respective population, based on the 236

selected SNPs, was 99.8%.

Genetic distance and relationship

Roger’s genetic distance between pairwise comparisons of

all the 450 lines ranged from 0.003 to 0.450, and the over-

all average distance was 0.353; however, the vast majority

(94.2%) fell between 0.300 and 0.400 (Figure 4a). Relative

kinship coefficients between pairs of samples varied from

0 to 1.97 (Figure 4b), with an overall average of 0.370, but

most (79%) values were from 0.050 to 0.500. The neigh-

bor-joining (NJ) tree generated from Roger’s genetic dis-

tance matrix grouped the 450 lines into 3 major groups

and 6 subgroups (Figure 5; Additional file 1: Table S1).

Group 1 consisted of 288 very diverse lines, including

early maturing lines (1A); MSV resistant, extra-early, and

QPM lines (1B); and MSV resistant lines (1 C). Group 2

consisted of 123 lines, including 16 weevil resistant, 24

multiple borer resistant and 18QPM lines (2A). Nearly

half (25 out of 51) of the lines in group 2B were QPM

lines. Group 3 consisted of mainly drought tolerant lines

from La Posta Sequia population, MSV resistant lines

extracted from populations 100 and 300, and some early-

intermediate maturing lines. There was low concordance

between the neighbor-joining clustering and model-based

population partition in assigning lines into the different

groups or populations. The first two principal components

(PCs) from principal component analysis explained 8.7%

of the total SNP variations among samples. A plot of PC1

(5.3%) and PC2 (3.4%) revealed 4 major groups (Figure 6)

and the pattern of groupings was basically the same as

Figure 3 Plot of Axis-1 and Axis-2 from discriminant analyses

using a priori information obtained from population structure

analyses at K = 2 (top), K = 3 (middle) and K = 4 (bottom). The

numbers 1, 2, 3, 4 and 9 refer to population 1, population 2,

population 3, population 4 and mixed group, respectively.
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that of the model-based population partition at K = 3.

Nearly all individuals assigned to a population at K = 3

were in the same group in the principal component analy-

sis, with the mixed group being intermediate between the

3 populations.

Heterotic grouping

In order to assess if the SNP data show clear genetic dif-

ferentiation between CIMMYT heterotic groups A and B

that were established based on combining ability tests

through diallel and line x tester analyses, we ran popula-

tion structure analyses at both K = 2 and K = 3, and NJ-

clustering and principal component analyses by selecting

a subset of 220 out of the 450 lines that belong to hetero-

tic group A (126 lines) and B (94 lines). At both K = 2

and K3, there was very little correspondence between

heterotic grouping based on phenotypic data and the

model-based population partition based on the SNP data

(Additional file 3: Table S3). For example, at K = 3, popu-

lation structure analysis assigned 26.2% of the lines from

heterotic group A and 12.8% of the lines from heterotic

group B into group 1; 4.8% of the lines from heterotic

group A and 7.4% of the lines from heterotic group B

into group 2; 31.7% of the lines from heterotic group A

and 44.7% of the lines from heterotic group B in to group

3, and the remaining 37.3% of the lines from heterotic

group A and 35.1% of the lines from heterotic group B in

to a mixed group. Similar results were obtained with K =

2. Both NJ-clustering and principal component analyses

did not show a clear pattern in separating the 220 lines

into heterotic groups (Figure 7).

Figure 4 Distribution of pairwise (a) Roger’s genetic distance

and (b) relative kinship calculated for 450 maize inbred lines

genotyped with 1065 SNPs. Relative kinship values close to 0

indicate no relationship.

Figure 5 Neighbor-joining tree for 450 inbred lines based on

Roger’s genetic distance calculated from 1065 SNP markers.

The subgroups are indicated with different color and a detail of the

different subgroups is given in additional file 1:Table S1.

Figure 6 Principal component (PC) analysis of 450 maize

germplasm genotyped with 1065 SNPs. PC1 (5.3%) and PC2

(3.4%) separated the lines into 3 major groups. The groups from

PCA supports the presence of population structure at K = 3.

Individuals that were assigned in to a mixed group in the

population structure analysis are indicated in red color.

Semagn et al. BMC Genomics 2012, 13:113

http://www.biomedcentral.com/1471-2164/13/113

Page 6 of 11



AMOVA

Table 1 shows the partitioning of the overall SNP var-

iance into hierarchical levels using AMOVA. When

AMOVA was performed using the 3 and 6 possible

groups predicted from NJ-cluster analyses, the estimated

fixation indices (FST) varied from 3.9% to 6.8%. When the

overall SNP variance was partitioned into hierarchical

levels using the groups predefined from the model-based

Figure 7 Cluster (top) and principal component (bottom) analyses of 220 inbred lines that were assigned in to heterotic groups A and

B based on combining ability tests through diallel and line x tester analyses. A and B refers to heterotic group A and B.
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population partition at K = 2, K = 3, K = 4, K = 5 and K =

6 as categorical variables, FST accounted for 11.7%, 9.8%,

11.1%, 12.6% and 14.0%, respectively. A random permu-

tation test indicated that the proportion of variances

attributable at all groups were highly significant (p <

0.0001). We also computed FST values using the two het-

erotic groups created based on a priori knowledge of

combining ability from field experiments and the groups

predefined based on population structure analyses both

at K = 2 and K = 3. The FST was the lowest (1.2%) for

heterotic groups created based on field experiments and

higher for groups defined based on population structure

analyses of the SNP data (FST = 11.3% at K = 2 and 11.8%

at K = 3).

Discussion
Population structure and genetic relationship

The main challenges in analyzing any genetic dataset are

to (a) explore whether a given population is homoge-

neous or contains genetically distinct subgroups, and (b)

identify quantitative evidence that supports the presence

of these groups [38]. Using SNP markers, we investigated

the extent of genetic differentiation, population structure,

and patterns of relationship among a diverse set of maize

inbred lines using the model-based population structure

analysis, NJ-cluster analysis, principal component analy-

sis, and discriminant analysis. All these different multi-

variate methods revealed the presence of 3 major

possible groups, which was in general agreement with

Table 1 Analysis of molecular variance (AMOVA) for the extraction of SNP variation among groups (populations) and

among individuals within populations

Groups Source of variation d.f. Sum of squares Variance components Percentage of variation

K = 2 (2 pops and mixed) Among populations 2 6788.84 23.91 11.74*

Within populations 897 161224.47 179.74 88.26

Total 899 168013.30

K = 3 (3 pops and mixed) Among populations 3 9812.27 19.27 9.84*

Within populations 896 158201.03 176.56 90.16

Total 899 168013.30

K = 4 (4 pops and mixed) Among populations 4 12807.29 21.69 11.12*

Within populations 895 155206.01 173.41 88.88

Total 899 168013.30 195.10

K = 5 (5 pops and mixed) Among populations 5 15428.74 24.69 12.64*

Within populations 894 152584.56 170.68 87.36

Total 899 168013.30 195.36

K = 6 (6 pops and mixed) Among populations 6 17184.95 27.57 14.03*

Within populations 893 150828.35 168.90 85.97

Total 899 148013.30 196.47

Cluster analyses -3 groups Among populations 2 3729.07 7.35 3.86*

Within populations 897 164284.23 183.15 96.14

Total 899 168013.30 190.50

Cluster analyses-5 groups Among populations 4 7377.54 10.08 5.32*

Within populations 895 160635.77 179.48 94.68

Total 899 168013.30 189.56

Cluster analyses-6 groups Among populations 5 9832.12 12.90 6.80*

Within populations 894 158181.18 176.94 93.20

Total 899 168013.30 189.84

Heterotic groups (K = 2) Among heterotic groups 2 4281.98 22.46 11.29*

Within heterotic groups 437 77179.51 176.61 88.72

Total 439 81461.49

Heterotic groups (K = 3) Between heterotic groups 3 7354.74 22.76 11.81*

Within heterotic groups 436 74106.75 169.97 88.19

Total 439 81461.49 192.73

Heterotic groups-breeders (A, B) Between heterotic groups 1 676.51 2.29 1.22*

Within heterotic groups 438 80784.98 184.44 98.78

Total 439 81461.49 186.73

*p-value < 0.0001
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pedigree information, as most lines with similar pedigree

tended to cluster into the same group. Our results, how-

ever, did not show clear separation by breeding pro-

grams, maturity groups (extra early, early, intermediate

and late), adaptation or mega-environments (lowland tro-

pical zone, wet and dry subtropical zones and highland

zone), and specific traits such as disease resistance (e.g,

resistance to maize streak virus), and drought tolerance.

Our results generally agree with previous studies [39,40]

who reported lack of clear clustering patterns of CIM-

MYT germplasm based on phenotypes, environmental

adaptation, grain color or type, maturity and heterotic

groups.

Comparisons of the different multivariate analyses

revealed high concordance among the PCA, model-based

population partition and discriminant analyses in terms

of the number of groups and members of each group.

However, cluster analysis showed low concordance with

the other methods in terms of assigning genotypes into

their respective groups (Additional file 1: Table S1).

Population structure analysis was used to classify indivi-

duals into groups based on a genetic model, whereas dis-

criminant analysis was used to summarize variation

between priori predefined groups based on population

structure so the agreement between these two methods is

not unexpected. In cluster analysis, different combina-

tions of genetic distance/similarity matrix and clustering

algorithm can give rise to somewhat different groups. A

single distance matrix and a single clustering algorithm

even may produce several alternative clusters that often

create ambiguity in selecting the best one. Because PCA

produces a 2- or 3-dimensional scatter plot of the sam-

ples in which geometrical distances among samples in

the plot reflect the genetic distances among them with a

minimum of distortion and ambiguity compared to clus-

ter analysis [41], we think that the pattern of grouping

from PCA, population structure analysis and discrimi-

nant analysis is more reliable than the NJ-clustering in

the present study.

Among the 101,025 pairwise comparisons of the 450

lines, only 0.1% fell within a genetic distance less than

0.05, indicating a lack of redundant lines among the

germplasm studied. Kinship analyses agree, since kinship

coefficients for 84% of the pairs of lines fell below 0.50.

This suggests that each line in the study is potentially

contributing new alleles to a breeding program. Our

results on kinship are higher than that of Wen et al. [27]

who reported pairwise kinship values close to zero for

about 60% of 359 inbred maize lines. The FST values for

the prior groups defined here based on results from

population structure analysis (0.098 to 0.140) indicated a

moderate level of genetic differentiation. FST values were

the lowest (0.039-0.068) when the prior groups from

cluster analyses were used as categorical variables, sug-

gesting little to moderate levels of differentiation. Similar

FST values have also been reported elsewhere [27].

Heterotic groups

Maize breeders generally develop new parental inbred

lines by selecting the progeny of intercrossed lines from

within the same heterotic group. As heterotic group

assignment is made based on combining ability from dia-

llel experiments, several authors suggested the use of

molecular markers in heterotic grouping [2-7]. However,

the SNP data in the present study (Table 1; Figure 7) did

not reveal clear population structure and genetic differ-

entiation for most inbred lines in heterotic groups A and

B, as defined by CIMMYT breeders. This is in agreement

with previous reports that showed no clear heterotic pat-

terns in subtropical and tropical CIMMYT maize inbred

lines [4,24,27,39,40]. Temperate maize inbred lines are

developed using advanced cycle pedigree breeding by

making crosses within the same pool of elite lines, lead-

ing to clearly defined groups with maximum genetic dis-

tance between groups and minimum distance within

groups. CIMMYT breeders initially used broad based

pools and populations to develop open pollinated vari-

eties (OPV). CIMMYT populations are selected via modi-

fied full or half-sib recurrent selection to have high yield

potential and yield stability under a wide variety of pro-

duction conditions and environments in the developing

world [42]. To exploit hybrid technologies, assignment of

CIMMYT populations and inbred lines into heterotic

groups via crossing to various representative testers has

been intensified since the early 1990s. It is challenging to

divide lines into heterotic groups when many lines were

developed from the same original pool without regard to

racial origin or heterotic pattern. Furthermore, selection

within each heterotic group is not very advanced, and

maximum heterotic response between groups has not yet

been achieved [24]. Therefore, many generations of reci-

procal recurrent selection (RRS) may be necessary before

the lines from each heterotic group begin to be signifi-

cantly diverged [40].

SNP selection

Reproducibility, polymorphism frequencies, and ease of

scoring are important criteria to evaluate the value of

markers for germplasm characterization. Just over 30% of

the 1536 SNPs scored in this study did not meet these

criteria for this set of germplasm, and none of the 1065

SNPs were found to be highly informative based on PIC;

this was not unexpected given the biallelic nature of

SNPs. In order to recommend a useful subset of SNPs for

routine genetic diversity and mapping studies in tropical

and sub-tropical maize germplasm (those related to the
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materials in this study) using uniplex assays, we chose

644 of the most informative and repeatable SNPs (listed

in Additional file 2: Table S2). The correlation between

the Roger’s genetic distance calculated from the 644 and

the 1065 SNPs was very high in this study (r = 0.937; p <

0.0001), indicating that the information gained from

these other 421 SNPs is redundant. Uniplex assays are

suitable for studies where only a small to moderate num-

ber of SNPs are needed, as is the case in mapping, mar-

ker assisted recurrent selection, marker assisted

backcrossing, and quality control applications. Lu et al.

[4] recommended 449 out of 1034 SNPs that were found

to be the best for the detection of genetic diversity in

temperate, subtropical and tropical maize germplasm

with least preferences to temperate lines. Three hundred

fifty eight out of the 644 SNPs (55.6%) that we recom-

mend for routine genetic diversity and mapping studies

in tropical and sub-tropical CIMMYT maize germplasm

using uniplex assays were common between the two stu-

dies. We have found outsourcing SNP genotyping to

commercial service providers an economical and conve-

nient option, with the most commonly used platform for

low to medium marker density being the uniplex assay of

Kbioscience http://www.kbioscience.co.uk. For other

applications that require high density and lower cost gen-

otyping per data point, genotyping-by-sequencing [43] is

likely to take over in the near future with a cost of about

$20 per DNA sample, generating over half a million

SNPs http://www.maizegenetics.net/gbs-overview. CIM-

MYT is collaborating with Cornell University and the

USDA Agricultural Research Service in implementing the

genotyping-by-sequencing pipeline for genomic selection

to reduce the genotyping costs below that of field

phenotyping.

Conclusions
There were high genetic distance and low kinship coeffi-

cients among most pairs of lines, clearly indicating the

uniqueness of the majority of the inbred lines in these

maize breeding programs. In the different multivariate

analyses, several lines with similar pedigree often clus-

tered into the same group, but the groups did not corre-

spond to breeding programs, maturity groups or

adaptation. There was no correlation between heterotic

grouping based on phenotypic and SNP data. About

40% of the SNPs in the multiplexed chip-based Golden-

Gate assays were uninformative in this study and we

recommend 644 of the 1065 for low to medium density

genotyping in tropical maize germplasm using uniplex

assays. The results from this study will be useful to

breeders in selecting best parental combinations for

starting new pedigree populations, mapping population

development and marker assisted breeding.

Additional material

Additional file 1: Table S1 Germplasm summary.

Additional file 2: Table S2 SNP summary.

Additional file 3: Table S3 Population structure summary for

heterotic groups.
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