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Abstract. Free tropospheric aerosol was sampled at the

Pico Mountain Observatory located at 2225 m above mean

sea level on Pico Island of the Azores archipelago in the

North Atlantic. The observatory is located ∼ 3900 km east

and downwind of North America, which enables studies

of free tropospheric air transported over long distances.

Aerosol samples collected on filters from June to October

2012 were analyzed to characterize organic carbon, elemen-

tal carbon, and inorganic ions. The average ambient con-

centration of aerosol was 0.9 ± 0.7 µg m−3. On average, or-

ganic aerosol components represent the largest mass frac-

tion of the total measured aerosol (60 ± 51 %), followed by

sulfate (23 ± 28 %), nitrate (13 ± 10 %), chloride (2 ± 3 %),

and elemental carbon (2 ± 2 %). Water-soluble organic mat-

ter (WSOM) extracted from two aerosol samples (9/24 and

9/25) collected consecutively during a pollution event were

analyzed using ultrahigh-resolution electrospray ionization

Fourier transform ion cyclotron resonance mass spectrom-

etry. Approximately 4000 molecular formulas were assigned

to each of the mass spectra in the range of m/z 100–1000.

The majority of the assigned molecular formulas had unsat-

urated structures with CHO and CHNO elemental composi-

tions. FLEXPART retroplume analyses showed the sampled

air masses were very aged (average plume age > 12 days).

These aged aerosol WSOM compounds had an average O / C

ratio of ∼ 0.45, which is relatively low compared to O / C

ratios of other aged aerosol. The increase in aerosol load-

ing during the measurement period of 9/24 was linked to

biomass burning emissions from North America by FLEX-

PART retroplume analysis and Moderate Resolution Imag-

ing Spectroradiometer (MODIS) fire counts. This was con-

firmed with biomass burning markers detected in the WSOM

and with the morphology and mixing state of particles as

determined by scanning electron microscopy. The presence

of markers characteristic of aqueous-phase reactions of phe-

nolic species suggests that the aerosol collected at the Pico
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Mountain Observatory had undergone cloud processing be-

fore reaching the site. Finally, the air masses of 9/25 were

more aged and influenced by marine emissions, as indicated

by the presence of organosulfates and other species charac-

teristic of marine aerosol. The change in the air masses for

the two samples was corroborated by the changes in ethane,

propane, and ozone, morphology of particles, as well as by

the FLEXPART retroplume simulations. This paper presents

the first detailed molecular characterization of free tropo-

spheric aged aerosol intercepted at a lower free troposphere

remote location and provides evidence of low oxygenation

after long-range transport. We hypothesize this is a result of

the selective removal of highly aged and polar species dur-

ing long-range transport, because the aerosol underwent a

combination of atmospheric processes during transport facil-

itating aqueous-phase removal (e.g., clouds processing) and

fragmentation (e.g., photolysis) of components.

1 Introduction

The low scientific understanding of the properties and trans-

formations of atmospheric aerosol is a key source of un-

certainty in determining the anthropogenic climate forcing

through the aerosol direct, semi-direct, and indirect effects

(IPCC, 2013). Organic aerosol (OA) comprises 20–90 % of

the atmospheric aerosol mass (Kanakidou et al., 2005; Zhang

et al., 2007), and are the least understood component. Atmo-

spheric OA include both primary and secondary OA (POA

and SOA, respectively). POA are emitted directly into the

atmosphere, while SOA are produced by homogeneous nu-

cleation, oxidative reactions of gaseous organic precursors

and condensation of their products onto pre-existing parti-

cles, and aqueous phase reactions in cloud, fog, and particu-

late water (Hallquist et al., 2009). The properties of aerosol

in regions downwind of emission sources are impacted by

the outflow of pollutants, their chemical transformation, and

sinks. In particular, remote locations can be dominated by

SOA (Zhang et al., 2007). Highly aged and processed long-

range transported ambient aerosol are of particular inter-

est and have chemical composition characteristic of global

aerosol (Ramanathan et al., 2001). The long-range transport

of aerosol from Asia to North America has received con-

siderable attention (Ramanathan et al., 2001, 2007; Dunlea

et al., 2009), but less attention has been placed on aerosol

transported from North America to Europe. Ambient water-

soluble organic matter (WSOM) is estimated to account for

up to 80 % of the OA mass (Saxena and Hildemann, 1996;

Sun et al., 2011), but these species are still not well char-

acterized on a molecular level (Reemtsma, 2009). A signif-

icant fraction of the WSOM is comprised of higher molec-

ular weight (MW) humic-like substances (HULIS) (Graber

and Rudich, 2006) and biogenic SOA (Schmitt-Kopplin

et al., 2010; Mazzoleni et al., 2012). Identification of the

WSOM composition is challenging. There are thousands of

species present with a wide range of elemental composi-

tions and molecular weights containing multiple functional

groups such as carboxyl, hydroxyl, carbonyl, nitro, nitrate,

and sulfate. Molecular characterization of WSOM is impor-

tant for understanding its role in fundamental processes such

as aerosol light absorption and scattering (Dinar et al., 2006;

Shapiro et al., 2009; Nguyen et al., 2013), chemical reduc-

tion / oxidation mediation (Kundu et al., 2012), and water

uptake and reactivity (Ervens and Volkamer, 2010; Ervens

et al., 2011). Furthermore, aqueous SOA formation in clouds

might explain the under-predictions of OA concentrations,

especially at high altitudes (Carlton et al., 2008). Analytical

methods capable of characterizing OA at the molecular level

are necessary to tackle these problems.

To date, the Fourier transform ion cyclotron resonance

mass spectrometer (FT-ICR MS; Kim et al., 2006) provides

the highest mass resolution and accuracy. Typically, the FT-

ICR MS mass resolving power and accuracy used for am-

bient aerosol analysis are 200 000–400 000 and < 2 ppm, re-

spectively (Mazzoleni et al., 2010). When combined with an

appropriate ionization technique, FT-ICR MS is capable of

resolving thousands of chemically different species in a sin-

gle mass spectrum, and is ideally suited for the analysis of

complex mixtures of ambient OA. Electrospray ionization

(ESI) is a soft ionization technique that leaves the sample

molecules intact and minimizes their fragmentation, and thus

is ideal for coupling with FT-ICR MS for detailed molecular

level OA characterization (Nizkorodov et al., 2011). Nega-

tive mode ESI is especially useful for the ionization of mul-

tifunctional oxidized compounds such as carboxyl groups.

FT-ICR MS was successfully used for the analysis of ambi-

ent OA (Wozniak et al., 2008; Schmitt-Kopplin et al., 2010;

Mazzoleni et al., 2012), dissolved organic matter in rain (Al-

tieri et al., 2009a, b, 2012; Mead et al., 2013; Zhao et al.,

2013), fog water (Mazzoleni et al., 2010), and sea spray

aerosol (Schmitt-Kopplin et al., 2012).

The Pico Mountain Observatory (PMO) is an ideal site for

observations of free tropospheric air masses and pollutants

from North America after transatlantic transport (Val Mar-

tin et al., 2006, 2008a). The observatory is located at 2225 m

above mean sea level (a.m.s.l.) in the summit caldera of a

dormant volcano on Pico Island in the Azores archipelago in

the North Atlantic (38◦28′15′′ N; 28◦24′14′′ W; Fig. S1 in the

Supplement). The observatory is typically above the marine

boundary layer height of 850–1100 m a.m.s.l. during summer

(Kleissl et al., 2007), and is rarely affected by local emis-

sions. Deeper marine boundary conditions with heights up to

1700 m a.m.s.l. have been reported for colder months (Kleissl

et al., 2007) and of about 1500 m a.m.s.l. for other islands

of the Azores archipelago (Remillard et al., 2012), although

these are below the altitude of PMO. Measurements at the

PMO began in July 2001 with a focus on gaseous species,

black carbon, and meteorological parameters. Previous mea-

surements at PMO (e.g., Val Martin et al., 2008a, b) and dis-

persion model simulations (e.g., Owen et al., 2006) indicated
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that North American outflow of tropospheric ozone and its

precursors are frequently encountered at the site. These re-

sults were crucial in explaining the evolution of North Amer-

ican gaseous pollution and identified the significant impact

of CO, O3, NOx , and NOy from boreal biomass burning

pollution on background air composition over the North At-

lantic (Honrath et al., 2004; Lapina et al., 2006; Val Martin

et al., 2006; Owen et al., 2006; Pfister et al., 2006), and en-

hanced the understanding of the oxidation of non-methane

hydrocarbons (NMHCs) (Helmig et al., 2008; Honrath et al.,

2008). Previous research at PMO has shown several-fold in-

creases of NMHCs in anthropogenic and biomass burning

plumes. Furthermore, it has been demonstrated that isoprene

and ratios of selected NMHC pairs have characteristic signa-

tures that were used for identification of upslope flow con-

ditions (Kleissl et al., 2006) and pollution plume charac-

terization (Helmig et al., 2008). A recent analysis of per-

oxyacetic nitric anhydride (PAN) showed that higher levels

are transported to the PMO during colder, spring months,

but not in warmer summer months due to thermal instability

(K. Dzepina, J. Roberts, and the Pico Mountain Observatory

team, personal communication, 2014; Fischer et al., 2014),

consistent with previous estimates (Val Martin et al., 2008b).

Until 2010, the only type of aerosol measured at the PMO

was black carbon (BC). Fialho et al. (2005, 2006) developed

a method to determine the contribution of BC and dust from

multiwavelength aethalometer measurements. Although typ-

ically average free tropospheric aerosol concentrations are

low, the long-range transport events bring elevated levels of

BC and dust mass concentrations to PMO. To study these

events, new on- and off-line aerosol instrumentation was in-

stalled in 2012, as described below.

This paper reports the first detailed chemical character-

ization of free tropospheric aged aerosol sampled at the

PMO during the summer of 2012. Detailed analysis of the

WSOM molecular composition using ultrahigh resolution

FT-ICR MS was performed for two aerosol samples collected

during 24–26 September when a pollution event was ob-

served. Molecular composition of the WSOM, on-line mea-

surements, and laboratory analysis of aerosol are used to-

gether with the simulations of a particle dispersion model and

satellite data to deduce the emission sources and transforma-

tional processes of the fine particles sampled at the PMO.

2 Measurements and methods

2.1 Aerosol measurements at the Pico Mountain

Observatory

New aerosol instrumentation was installed at PMO in 2012,

including an optical particle counter (MetOne GT-521,

Grants Pass, OR, USA) for sizes in the range between 0.3

and 5 µm, a nephelometer (EcoTech Aurora 3000, Warren,

RI, USA) to measure aerosol light scattering and backscat-

tering fraction at three wavelengths (450, 525 and 635 nm),

an aerosol sample collector (custom-made at Michigan Tech)

for scanning and transmission electron microscopy analysis,

and four high-volume air samplers (Hi-Vols; EcoTech HiVol

3000, Warren, RI, USA). The four Hi-Vols were installed

at ∼ 50 m from the PMO, and they collected samples from

June through October 2012. They were operated at an aver-

age volumetric flow rate of 84 m3 h−1 for 24 h. Cascade im-

pactors (Tisch Environmental, TE-231 single stage High Vol-

ume Cascade Impactor, Cleves, OH, USA) were used for size

selection. PM2.5 (particulate matter with aerodynamic di-

ameters ≤ 2.5 µm) was collected on quartz filters (Whatman,

20.3×25.4 cm Quartz Microfibre Filters, CAT No. 1851-865,

Cleves, OH, USA), and particles > PM2.5 were captured on

a separate filter (Tisch Environmental, 14.3×13.7 cm Quartz

Filters, part no. TE-230 QZ, Cleves, OH, USA); the results

reported here refer only to the PM2.5 samples. Quartz filters

were wrapped in aluminum foil, baked for 12 h at 550 ◦C,

then inserted into antistatic bags (Uline 22.9 × 30.5 cm Re-

closable Static Shielding Bags, Pleasant Prairie, WI, USA),

and stored at room temperature until use. Typically, filters

were inserted in all four Hi-Vols during one visit to the site,

and the Hi-Vols were programmed to sample consecutively

for 24 h each. This was done because the site is reachable

only via a strenuous hike on rugged terrain (Honrath et al.,

2004). Sampled filters were refrigerated locally, transported

cold to the US, and kept in a freezer until analysis. A total of

18 filters collected during the 2012 field campaign were se-

lected for further laboratory analysis (Table 1). In 2012, we

were unable to collect suitable field blanks due to seasonally

above average wet conditions. Thus, a laboratory blank was

used to evaluate artifacts. All measurement times reported in

this paper are given in local time, which is the same as UTC.

A seven wavelength aethalometer (Magee Scientific,

model AE31, λ = 370, 470, 520, 590, 660, 880 and 950 nm)

equipped with a “high sensitivity” circular spot size chamber

was used to measure the aerosol attenuation coefficient at a

flow rate of 7.7 dm3 min−1 without size cut-off. Particulate

matter was accumulated on a quartz fibre filter tape (Q250F

from Pallflex©). The instrument was set up to automatically

advance the tape every 24 h with a measurement interval of

5 min.

2.2 Laboratory aerosol measurements

2.2.1 Measurements of OC, EC, and inorganic ions

Aerosol quartz filter samples were analyzed for organic and

elemental carbon (OC and EC) with an OC-EC analyzer

(Sunset Laboratory Inc., Model 4, Tigard, OR, USA), which

uses the thermo-optical transmittance method (Birch and

Cary, 1996). The reported results are an average of at least

three measurements. OC and EC measurements were also

performed for the blanks and subtracted from the aerosol

samples. The blank OC values were 13 % (SD = 8 %) of the
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Table 1. Filters collected during the 2012 field campaign at the Pico Mountain Observatory. Collection times for all filter samples are 24 h,

except 6/29 (142 h) and 7/26 (52 h). Sampling times are given in local time (UTC). Average ambient concentrations of filter-collected PM2.5

species are given, as well as BC mass concentrations measured with the aethalometer at seven wavelengths averaged to the filters collection

periods. All measurements are given with their respective standard deviations (1σ). Note BC is not included in the calculated total.

Filter Sampling Sampling Avg flow Measured ambient mass Total

name start end (m3 h−1) concentration (ng m−3) (µg m−3)

Date Time Date Time Org ± SD EC ± SD BC ± SD SO2−
4

± SD NO−
3

± SD Cl− ± SD

(mm/dd/yy) (mm/dd/yy)

6/29 06/29/12 18:50 07/05/12 16:00 50 996 ± 5 58 ± 1 74 ± 8 1130 ± 8 24 ± 1 < DL 2.2 ± 0.6

7/26 07/26/12 14:00 07/28/12 18:00 67 1038 ± 16 24 ± 5 33 ± 2 184 ± 30 50 ± 1 2 ± 9 1.3 ± 0.4

9/1 09/01/12 18:00 09/02/12 17:55 84 195 ± 24 32 ± 13 32 ± 9 225 ± 16 270 ± 14 < DL 0.7 ± 0.1

9/2 09/02/12 18:00 09/03/12 17:55 84 258 ± 10 34 ± 7 14 ± 1 134 ± 50 209 ± 15 < DL 0.6 ± 0.1

9/3 09/03/12 18:00 09/04/12 17:55 81 124 ± 7 30 ± 4 8 ± 1 99 ± 39 210 ± 9 < DL 0.5 ± 0.1

9/14 09/14/12 15:00 09/15/12 15:00 83 390 ± 29 0.7 ± 0.1 6 ± 1 29 ± 0 20 ± 0 18 ± 0 0.5 ± 0.2

9/15 09/15/12 15:00 09/16/12 15:00 83 322 ± 29 1 ± 1 4 ± 1 40 ± 10 24 ± 12 30 ± 8 0.4 ± 0.1

9/16 09/16/12 15:00 09/17/12 15:00 83 365 ± 17 1 ± 1 4 ± 1 47 ± 20 21 ± 1 18 ± 5 0.5 ± 0.2

9/17 09/17/12 15:00 09/18/12 15:00 83 547 ± 15 1 ± 1 4 ± 1 42 ± 14 42 ± 34 8 ± 4 0.6 ± 0.2

9/24 09/24/12 15:00 09/25/12 15:00 84 2049 ± 16 52 ± 1 62 ± 2 470 ± 14 248 ± 26 < DL 2.8 ± 0.9

9/25 09/25/12 15:00 09/26/12 15:00 81 735 ± 46 20 ± 1 31 ± 5 75 ± 8 207 ± 11 17 ± 5 1.1 ± 0.3

9/26 09/26/12 15:00 09/27/12 14:55 83 707 ± 86 18 ± 1 25 ± 2 289 ± 41 111 ± 13 105 ± 7 1.2 ± 0.3

9/27 09/27/12 15:00 09/28/12 14:55 84 778 ± 1 18 ± 1 24 ± 1 266 ± 23 141 ± 2 < DL 1.2 ± 0.3

9/28 09/28/12 15:00 09/29/12 14:55 81 293 ± 3 21 ± 2 13 ± 2 283 ± 5 192 ± 13 < DL 0.8 ± 0.1

9/29 09/29/12 15:00 09/30/12 14:55 83 444 ± 1 16 ± 1 14 ± 1 208 ± 25 204 ± 19 < DL 0.9 ± 0.2

9/30 09/30/12 15:00 10/01/12 14:55 83 160 ± 9 14 ± 1 5.0 ± 0.4 145 ± 15 167 ± 9 < DL 0.5 ± 0.1

10/1 10/01/12 15:00 10/02/12 14:55 83 366 ± 6 0.3 ± 0.1 0.8 ± 0.1 36 ± 2 29 ± 18 39 ± 1 0.5 ± 0.2

10/2 10/02/12 15:00 10/03/12 14:55 83 192 ± 1 1 ± 1 5 ± 1 46 ± 9 52 ± 2 42 ± 7 0.3 ± 0.1

average ambient OC mass. The blank EC values were be-

low the detection limit and thus no EC blank subtraction was

done.

Samples were analyzed for NO−

3 , SO2−

4 , and Cl− with ion

chromatography (ICS–2000 ion chromatograph with an Ion-

Pac AS11 separator column (Dionex Corporation, Bannock-

burn, IL, USA)). Samples were prepared for anion analysis

by placing seven punches of 1.7 cm diameter into 12 mL of

nanopure water and sonicating them twice for 30 min at room

temperature. We report averages of the two measurements,

blank subtracted for Cl− only; the Cl− in the blank was 48 %

(SD = 21 %) of the Cl− in aerosol samples. The blank NO−

3

and SO2−

4 values were below the detection limit.

2.2.2 Ultrahigh resolution ESI FT-ICR MS analysis of

WSOM

We selected two samples named 9/24 and 9/25 (filter-

collection periods were 24 September at 15:00 to 25 Septem-

ber at 15:00 and 25 September at 15:00 to 26 September

at 15:00) for detailed chemical characterization by ultrahigh

resolution mass spectrometry (Table 2). In this paper, unless

noted otherwise, “9/24” and “9/25” always refer to the filter

samples collected during these time periods.

A detailed description of the sample preparation, ESI FT-

ICR MS measurements, and data processing is given in the

Supplement. Briefly, WSOM samples for FT-ICR MS anal-

ysis were prepared using reversed-phase solid-phase extrac-

tion (Mazzoleni et al., 2010, 2012; Zhao et al., 2013). The

analysis was performed at the Woods Hole Oceanographic

Institution (Woods Hole, MA) Fourier Transform Mass Spec-

trometry facility with the ultrahigh-resolution hybrid linear

ion trap and FT-ICR (7 tesla) mass spectrometer (LTQ FT

Ultra, Thermo Scientific, San Jose, CA) with an ESI source.

Three replicate measurements were done for each sample in

the negative ion mode. The mass resolving power was set at

400 000 and the mass accuracy was < 2 ppm. Transient co-

addition and molecular formula assignment were performed

with Composer software (Sierra Analytics, Modesto, CA ver-

sion 1.0.5) (Mazzoleni et al., 2012). The molecular formula

calculator, which uses a Kendrick mass defect (KMD) analy-

sis (Hughey et al., 2001) to sort ions into user-defined homol-

ogous series, was set to allow up to 100 carbon, 400 hydro-

gen, 100 oxygen, 3 nitrogen, and 1 sulfur atom per molecular

formula. All molecular formula assignments presented in this

paper were assigned using CH2 homologous series consistent

with the PREDATOR algorithm (Blakney et al., 2011). The

final data set for all samples is composed of the results of two

methods for formula assignments: method A, with a de novo

cutoff of m/z 500 and C, H, N, O, S elemental composition;

and method B, with a de novo cutoff of m/z 1000 and C, H, O

elemental composition (details are given in the Supplement).

2.2.3 Single particle morphology using scanning

electron microscopy

Quartz filter samples from 9/24 and 9/25 were further ana-

lyzed with scanning electron microscopy (SEM) to investi-

gate the morphology of particles and their possible sources.

Four portions (5 mm × 5 mm) were used from different areas

of each quartz filter, to obtain representative sample statistics.

The samples were coated with a 1.8 nm thick platinum layer

Atmos. Chem. Phys., 15, 5047–5068, 2015 www.atmos-chem-phys.net/15/5047/2015/
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Table 2. Chemical characterization of the molecular assignments detected in WSOM for 9/24 and 9/25. Averages of three replicate analyses

(O / C, H / C, OM / OC, DBE and DBE / C) with calculated standard deviation (1σ) of each data subset are given. Subscript “w” denotes

values weighted by relative abundance, which have propagated standard error computed using the standard deviations for each subset (as

described in Mazzoleni et al., 2012; Zhao et al., 2013).

All CHO CHNO CHOS

9/24 Number 3960 2822 1124 14

O / C 0.46 ± 0.13 0.47 ± 0.14 0.45 ± 0.10 0.50 ± 0.11

O / Cw 0.47 ± 0.01 0.47 ± 0.01 0.46 ± 0.01 0.43 ± 0.27

H / C 1.17 ± 0.26 1.19 ± 0.27 1.14 ± 0.22 1.75 ± 0.31

H / Cw 1.17 ± 0.03 1.17 ± 0.03 1.14 ± 0.03 1.88 ± 1.01

OM / OC 1.73 ± 0.18 1.72 ± 0.18 1.76 ± 0.15 1.99 ± 0.15

OM / OCw 1.73 ± 0.03 1.72 ± 0.03 1.77 ± 0.03 1.91 ± 0.70

DBE 10.7 ± 4.0 10.8 ± 4.3 10.3 ± 2.9 3.5 ± 2.6

DBEw 10.2 ± 0.2 10.1 ± 0.2 10.6 ± 0.2 1.8 ± 1.5

DBE / C 0.47 ± 0.14 0.46 ± 0.14 0.51 ± 0.12 0.20 ± 0.14

DBE / Cw 0.47 ± 0.01 0.46 ± 0.01 0.50 ± 0.01 0.13 ± 0.12

Number (structure inferred by AI): Aliphatic (AI = 0) 2194 1686 494 14

Olefinic (0.5 > AI > 0) 1563 1005 558 0

Aromatic (AI > = 0.5) 203 131 72 0

9/25 Number 4770 3272 1209 289

O / C 0.42 ± 0.14 0.42 ± 0.15 0.42 ± 0.11 0.41 ± 0.15

O / Cw 0.43 ± 0.01 0.43 ± 0.01 0.43 ± 0.01 0.35 ± 0.06

H / C 1.28 ± 0.30 1.28 ± 0.30 1.18 ± 0.23 1.70 ± 0.27

H / Cw 1.26 ± 0.04 1.26 ± 0.04 1.19 ± 0.03 1.73 ± 0.26

OM / OC 1.67 ± 0.20 1.67 ± 0.20 1.72 ± 0.15 1.85 ± 0.21

OM / OCw 1.68 ± 0.03 1.66 ± 0.04 1.74 ± 0.03 1.79 ± 0.19

DBE 9.4 ± 4.23 9.8 ± 4.4 9.8 ± 2.9 3.6 ± 2.3

DBEw 9.1 ± 0.2 9.2 ± 0.2 10.1 ± 0.2 3.2 ± 0.4

DBE / C 0.42 ± 0.16 0.41 ± 0.15 0.49 ± 0.12 0.21 ± 0.14

DBE / Cw 0.42 ± 0.01 0.42 ± 0.01 0.48 ± 0.01 0.19 ± 0.03

Number (structure inferred by AI): Aliphatic (AI = 0) 2740 1956 506 278

Olefinic (0.5 > AI > 0) 1801 1169 622 10

Aromatic (AI > = 0.5) 229 147 81 1

using a sputter coater (Hummer 6.2) and then imaged using

a Hitachi S-4700 field emission SEM (FE-SEM). Over 2000

individual particles from each sample were classified to in-

vestigate the relative abundance of spherical, near spherical,

soot, and other irregularly shaped particles. Furthermore, we

visually classified the soot particles (N = 433 and 550 for

9/24 and 9/25, respectively) into four classes: (1) heavily

coated (embedded soot), (2) partly coated, (3) bare or thinly

coated, and (4) attached with other material (partially en-

capsulated) to investigate the degree of internal mixing after

long-range transport (China et al., 2013, 2015). Elemental

compositions of individual particles were investigated using

energy-dispersive X-Ray spectroscopy (EDS).

2.3 Gas-phase measurements at the Pico Mountain

Observatory

Nonmethane hydrocarbons were measured at PMO with a

cryogen-free, custom-built inlet system interfaced to a gas

chromatograph with flame ionization detection (Tanner et al.,

2006; Helmig et al., 2008, 2015).

Continuous surface ozone measurements were made by

a Thermo-Scientific 49I UV absorption ozone analyzer us-

ing ultraviolet absorption of ozone at 254 nm and the Beer-

Lambert Law to relate the attenuation of light in sample cells

to ozone concentration; an inlet was located 4 m above the

ground level. This instrument has been calibrated to a US

National Institute of Standards and Technology (NIST) trace-

able standard, maintained at NOAA Global Monitoring Di-

vision in Boulder, Colorado (McClure-Begley et al., 2014).

2.4 FLEXPART particle dispersion model

Air mass history was determined using the Lagrangian par-

ticle dispersion model FLEXPART (version 8.2; Stohl et al.,

1998). FLEXPART simulates the release of thousands of pas-

sive tracer air parcels at the PMO location, advecting them

backwards in time, providing a representation of the spatial

distribution of the air mass at an upwind time referred to as

www.atmos-chem-phys.net/15/5047/2015/ Atmos. Chem. Phys., 15, 5047–5068, 2015
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Figure 1. Time series of filter-collected aerosol species during the 2012 field campaign (a). The name of each filter measurement labeled

on the x axis is defined as the start date of measurement. Also shown are the time series of the collocated black carbon (b), aerosol light

scattering (c), and particle number concentration measurements (d) for the periods overlapping with filter collection. On-line measurements

are shown for all overlapping periods and each filter-collection period in (a) matches the continuous measurements in (b–d). Black dashed

lines denote the start and end times of filter sampling. The on-line aerosol measurements were averaged for the filter-sampling periods and

are represented by symbols in (a); these averages represent a simultaneous comparison with filter-collected species.

a “retroplume”. The meteorology data set was a combination

of 6 h meteorological Final Analysis data at 00:00, 06:00,

12:00, and 18:00 UTC, and 6 h Global Forecast System data

at 03:00, 09:00, 15:00, and 21:00 UTC. All other model set-

tings matched those used in Owen et al. (2006). For each up-

wind period, the portion of each retroplume in the 0–300 m

layer was multiplied with anthropogenic and fire CO emis-

sion inventories to predict plume sources and ages (Owen

and Honrath, 2009).

3 Results and discussion

3.1 Chemical characterization of the Pico Mountain

Observatory samples

The analysis of the bulk chemical composition showed that

organic compounds often comprised the largest mass fraction

of total aerosol (Table 1). Measured OC was converted to or-

ganic matter (OM) using the OM / OC ratio of 1.8 adopted

from Pitchford et al. (2007), representing the literature con-

sensus for remote areas. The average ambient mass concen-

tration (± standard deviation, 1σ) of OM + EC + SO2−

4 +

NO−

3 + Cl− at the PMO was 0.9 ± 0.7 µg m−3. On average,

OM represents the largest mass fraction (60 ± 51 %), fol-

lowed by sulfate (23 ± 28 %), nitrate (13 ± 10 %), chloride

(2 ± 3 %), and EC (2 ± 2 %). An overview of the aerosol

chemical composition is provided in Fig. 1a. The OM / OC

ratio of 1.8 adopted in our analysis is slightly higher than the

OM / OC ratio of ∼ 1.7 (Table 2) calculated from FT-ICR

MS analysis of WSOM elemental compositions (Mazzoleni

et al., 2010). The measured value of 1.7 is expected to be

lower than the total, because of the low sample recovery of

highly oxygenated, low molecular weight species (Hallar et

al., 2013).

Figure 1b–d show the continuous measurements of BC

mass concentration, aerosol light scattering coefficient, and

number concentration for time periods overlapping with the

filter-collection. The average BC mass concentration over

the filter-collection sampling periods (Fig. 1a) varied be-

tween 0.82 and 74 ng m−3 (Table 1), the light scattering

coefficient between 0.2 and 16.3 Mm−1, and the particle

number between 0.3 and 21 particles m−3. Correlations be-

tween total filter-collected aerosol mass and on-line aerosol

measurements were very good, as shown in Fig. S2 (with

an r2 of 0.80, 0.90, and 0.93 for BC mass concentration,

the scattering coefficient, and the number concentration, re-

spectively). This indicates that the measurements of filter-

collected aerosol captured the major trends observed by the

continuous aerosol measurements (Fig. 1).

3.2 Characterization of the air masses during

24–26 September 2012

This section describes the two sampling periods selected

for this case study and provides evidences that the aerosol

is representative of the described sources. An increase in

the measured aerosol mass concentration and light scatter-

ing was observed during September. The highest loading of

filter-collected aerosol was observed on 9/24, followed by
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a b

Figure 2. Examples of representative FLEXPART retroplumes for the 9/24 (a) and 9/25 (b) with the upwind time labeled by white numbers

in days at each location of the plume. In (a) the retroplume simulation is for 25 September at 06:00 (peak aerosol values (Fig. 1)). In (b) the

retroplume simulation is for 26 September at 06:00 (low aerosol values (Fig. 1)). Times are in UTC (local time). FLEXPART retroplumes

for the entire periods are given in Figs. S4 and S5. Residence times of retroplumes are normalized by each vertical interval in the lower plots

to better visualize the distribution along an irregular height scale.

decreased mass concentrations on 9/25 (Fig. 1a). Similar

trends were also observed in the continuous measurements

(Fig. 1b–d). The event of interest started on 25 September

at approximately 04:00 and lasted until the 26 at approx-

imately 02:00 (Fig. 1b–d). The observed elevated aerosol

concentrations are explained by the arrival of biomass burn-

ing smoke from North America. September was a dry

month and several US states were experiencing an intense

drought (NOAA National Climatic Data Center, 2012). Con-

sequently, widespread wildfires were observed in the US

northwest and northern Rockies. The wildfire activity is cor-

roborated by the Moderate Resolution Imaging Spectrora-

diometer (MODIS) satellite daily fire counts (NASA and

University of Maryland, 2002), showing the most intense

wildfire activity in the northwestern US (Fig. S3 in the Sup-

plement). Additionally, the Level 3 aerosol optical depth

(AOD) dark target (Levy et al., 2007) product (1◦ × 1◦) re-

trieved by MODIS Terra/Aqua at 550 nm (http://disc.sci.gsfc.

nasa.gov/giovanni, accessed on 22 July 2014) indicated a

large increase from mid to late September over the north-

western US (data not shown).

The FLEXPART retroplumes show that the transport pat-

terns changed significantly within 48 h, resulting in the ar-

rival of air masses with different chemical signatures to the

PMO (retroplumes for 9/24 and 9/25 are given in Figs. 2,

S4 and S5). During the 9/24 period, the average modeled

CO age was 12.4 days. A large portion of the retroplumes

intersected the northwestern US regions of intense wildfires

activity during 13–15 September (Figs. 2 and S3). A few

retroplumes (Fig. S4e–g) were lifted to the free troposphere

within the next day and encountered a high pressure system

before arriving at PMO. Retroplumes during the 9/25 pe-

riod had a CO tracer age of 14.7 days and were character-

ized by gradual shift of the transport heights from the mid-

dle free troposphere to the marine boundary layer with re-

duced influence from the US. Retroplumes subsided and en-

tered the marine boundary for 2 days before arriving at PMO

(Fig. S5e–h). Therefore, the air masses arriving at PMO dur-

ing 24–26 September were influenced by the US biomass

burning, while those that arrived during 9/25 were also influ-

enced by the marine boundary layer. Simulated contributions

of FLEXPART CO from various sources for September are

given in Fig. S6.

We also examined the occurrence of upslope flow due to

mechanical lifting (Zhang et al., 2014). No occurrence of up-

slope flow was observed for the period of 24–26 September.

This suggests that measurements during those dates were not

affected by local emissions.

3.2.1 Non-methane hydrocarbon measurements

NMHCs have been widely used as tracers for anthro-

pogenic and biomass burning emissions (Helmig et al.,
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Figure 3. Comparison of aerosol measurements (a–d) during the 24–26 September case study with gas-phase measurements of ethane,

propane (e) and ozone (f). On-line measurements are also averaged during the filter-sampling periods (a). Marked within the figure are the

times of filter-collection periods (black rectangular shapes, as given in Table 1) and FLEXPART retroplume simulations (dashed lines, as

shown in Figs. 2, S4 and S5). Times and dates are shown in the x axis of (d) and (f).

2008). Due to their different oxidation rates, mole frac-

tions of different NMHCs exponentially decline at differ-

ent rates during atmospheric transport allowing the natural

log of NMHC1/ NMHC2 (e.g., ln([propane]/[ethane])) to be

used as a linear measure of photooxidation and transport

time. ln([propane]/[ethane]) has been demonstrated to be a

sensitive indicator for identifying pollution signatures and

transport time to PMO (Helmig et al., 2008, 2015). Mea-

sured ethane and propane are shown together with the filter-

measured species and continuous aerosol measurements for

comparison in Fig. 3a–e. The mixing ratios of ethane and

propane increased from 0.78 and 0.09 ppbv at 19:20 in

the evening of 24 September to a maximum of 1.25 and

0.22 ppbv at 09:30 in the morning of 25 September. This

was followed by a clear decrease in ethane and propane

to average mixing ratios of 0.76 and 0.06. Decreases in

NMHC mixing ratios were also evident from the decrease

of ln([propane]/[ethane]) (Fig. 3e). The same trend was ob-

served in the ozone mixing ratios during the case study pe-

riod (Fig. 3f). The decreases in ethane, propane and ozone

mixing ratios, as well as in ln([propane]/[ethane]), suggest

a significant change in the air masses transport and history,

from less aged and more polluted air masses during measure-

ment period of 9/24 to more aged and cleaner during mea-

surement period of 9/25, in agreement with the FLEXPART

findings. The full record of gas-phase species measured dur-

ing periods overlapping with Hi-Vols sampling is shown in

Fig. S7.

3.2.2 Scanning electron microscopy single particle

analysis

Representative SEM images for 9/24 and 9/25 are shown

in Fig. 4a and b, respectively. A higher fraction of spheri-

cal particles was observed on 9/24 (43 %) compared to 9/25

(18 %). However, the fraction of near spherical particles was

lower on 9/24 (23 %) compared to 9/25 (29 %). Spherical

particles observed on 9/24 and 9/25 were likely tar balls

(TBs) with diameters in the range of 70–1800 nm (Fig. 4c-

d). TBs are spherical, organic amorphous particles composed

of carbon and oxygen abundant in biomass burning aerosol

(Adachi and Buseck, 2011; China et al., 2013; Pósfai et al.,

2003, 2004; Tivanski et al., 2007). The EDS analysis of

spherical and near spherical particles shows that they were

mostly composed of C and O, consistent with the hypoth-

esized identification. As described by China et al. (2013),

soot particles emitted from biomass burning are often heav-

ily coated (embedded) with other material. Thus, we visually

classified the soot particles and found that for the 9/24 event,

46 % of the soot particles (with respect to the total number

of classified soot particles) were heavily coated (Fig. 4e–

h), compared to only 17 % on 9/25. The higher fraction of

heavily coated soot particles observed for 9/24 is consistent

with the air mass being most likely influenced by biomass

burning. Finally, 34 and 58 % of soot was partly coated, 11

and 17 % thinly coated, and 7 and 8 % partially encapsulated,

for 9/24 and 9/25, respectively. Note that tar balls are likely

not water-soluble and therefore, the ultrahigh resolution mass

Atmos. Chem. Phys., 15, 5047–5068, 2015 www.atmos-chem-phys.net/15/5047/2015/



K. Dzepina et al.: Molecular characterization of free tropospheric aerosol 5055

spectrometry analysis of WSOM presented below probably

does not probe them.

3.3 Molecular characterization of the 9/24 and 9/25

samples

3.3.1 Mass spectra and molecular formula assignments

The exact mass measurements of the ultrahigh resolution FT-

ICR MS allow for unequivocal molecular formula assign-

ments of WSOM in the form of CcHhNnOoSs , where c, h,

n, o, and s are integer numbers of C, H, N, O, and S atoms.

Molecular formulas were assigned to 68–78 % of the total ion

current depending on the sample and whether the assignment

of molecular formulas was performed by method A or B. The

three replicate measurements of 9/24 and 9/25 analyzed by

method A with C, H, N, O, and S resulted in 72 and 78 % as-

signments of total ion current. Additional molecular formu-

las at the higher m/z values were assigned with method B for

species containing C, H, and O only. When methods A and B

were combined, the assignments yielded a total of 3960 and

4770 monoisotopic molecular formulas for 9/24 and 9/25

(Table 2). Polyisotopic formula assignments containing nat-

urally occurring 13C and 34S were also detected in aerosol

samples. The vast majority of all assigned monoisotopic for-

mulas contained corresponding 13C assignments (91–95 %),

while 69–100 % of 32S-containing monoisotopic ions also

contained formula assignments with 34S, consistent with pre-

vious findings (e.g., Mazzoleni et al., 2012).

The reconstructed mass spectra of molecular formulas as-

signed to 9/24 and 9/25 (Fig. 5) indicate a high isobaric

complexity due to the large number of monoisotopic anions

(Table 2). Examples of the isobaric complexity are illustrated

for the range of m/z 409.0–409.3 (Fig. 5c and g) with 12 and

21 molecular assignments for 9/24 and 9/25. Mass spectra

of both samples are characterized by high m/z values with

a maximum relative abundance of the detected ions in the

range of m/z 400–500. Approximately 2/3 of the molecular

assignments are for anions with m/z > 400. This is a unique

feature of the WSOM compounds at PMO that has not been

observed in other samples analyzed using similar FT-ICR

MS methods. Previously, the maximum relative abundance

of molecular assignments detected in aerosol (Wozniak et al.,

2008; Schmitt-Kopplin et al., 2010; Mazzoleni et al., 2012)

and cloud water (Zhao et al., 2013) was observed between

m/z 200 and 400. Moreover, aerosol collected at various lo-

cations typically does not have a significant number of com-

pounds detected > m/z 400 (e.g., Wozniak et al., 2008; Maz-

zoleni et al., 2010). The higher molecular weight ranges ob-

served in the PMO WSOM are likely a consequence of the

combined oxidative aging and aqueous-phase oligomers for-

mation during the long-range transport.

The assigned molecular formulas were divided into four

groups based on their elemental composition and named af-

ter the atoms included: CHO, CHNO, CHOS, and CHNOS.

The highest number of molecular assignments were CHO

group species, which account for ∼ 70 % of the total num-

ber (Table 2). CHO species had the highest observed rela-

tive abundances with a maximum in the range of m/z 400–

500 (Fig. 5). The second most abundant group of species

was CHNO, representing ∼ 26 % of the molecular assign-

ments (Table 2). The maximum relative abundance of the

CHNO group was at slightly higher m/z values compared to

the CHO compounds. We observed a surprisingly small num-

ber of S-containing species. There were 14 and 289 CHOS

molecular formulas in 9/24 and 9/25, representing 0.4 and

6 % of the assignments. The CHOS species detected in 9/24

had low relative abundances; only two ions had relative abun-

dances > 1.5 % (C12H26SO4 and C14H30SO4). Most of the

CHOS assignments in 9/25 also had low relative abundances

(< 2 %), but 12 have relative abundances > 5 %. Finally, a

very small number of low relative abundance CHNOS com-

pounds was detected in 9/24 and 9/25 (N = 7 and 28). Due

to their high water solubility, it is not likely that nitrooxy

organosulfates will be observed after long-range transport

because they are likely removed by cloud processing. This

observation is also consistent with the low number of sulfur-

containing species. Thus, the CHNOS molecular formula as-

signments are not presented here.

Overall, the Kendrick plots of the molecular assignments

for the two samples (Fig. 6a and d) have higher KMD and

nominal Kendrick mass (NKM) values with a narrow range

and an overall more uniform distribution compared to pre-

vious measurements with similar ESI FT-ICR MS measure-

ment parameters. For example, in comparison with the cloud

water WSOM reported by Zhao et al. (2013), the free tropo-

spheric aerosol WSOM studied here had a narrower spread

in the NKM over the observed mass ranges. This narrow and

uniform distribution has not been observed in other Kendrick

plots of aerosol WSOM (e.g., Kourtchev et al., 2013) and

may indicate highly processed aerosol. Ultrahigh-resolution

FT-ICR MS measurements of a Suwannee River Fulvic Acid

standard, a model for HULIS, yield very similar distribution

in the Kendrick plot (Stenson et al., 2003).

The van Krevelen diagrams for the 9/24 and 9/25 in

Fig. 6b and e show a narrow and homogeneous distribution

with aliphatic and olefinic species (Table 2). For example, the

range of values of O / C ratio for aerosol WSOM collected at

the PMO vs. the Storm Peak Laboratory (Mazzoleni et al.,

2012) is 0.13–1.48 vs. 0.07–1.80 (Table 3). Mass resolved

H / C diagrams are given in Fig. S8 to indicate the quality

of the molecular assignments of the ultrahigh-resolution FT-

ICR mass spectra. The similarity in the distribution of species

in the mass resolved H / C diagram to those reported previ-

ously (Schmitt-Kopplin et al., 2010) is further discussed in

the sections below.

Structural information for the assigned molecular formu-

las is inferred from the double bond equivalent (DBE) val-

ues; the calculation of DBE is given in the Supplement. A

wide range of DBE values were observed for 9/24 and 9/25
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Figure 4. Representative SEM images of particles collected on 9/24 (a) and 9/25 (b). Also shown are examples of spherical (43 and 18 %

in 9/24 and 9/25, respectively) (c), near spherical particles (23 and 29 % in 9/24 and 9/25, respectively) (d), and embedded soot particles

(46 and 17 % in 9/24 and 9/25, respectively) (e–h).

10
1

0.1

09/24:
1) C17H14O12 7) C18H22N2O9
2) C21H14O9 8) C23H22O7
3) C18H18O11 9) C20H26O9
4) C22H18O8 10) C24H26O6
5) C19H22O10 11) C21H30O8
6) C16H26O10S 12) C22H34O7

09/25:
1) C21H14O9 12) C18H34O8S
2) C18H18O11 13) C25H30O5 
3) C17H18N2O1014) C22H34O5S
4) C22H18O8 15) C22H34O7
5) C19H22O10 16) C19H38O7S
6) C16H26O10S 17) C23H38O4S
7) C23H22O7 18) C23H38O6
8) C20H26O9 19) C20H42O6S
9) C17H30O9S 20) C24H42O3S
10) C24H26O6 21) C24H42O5
11) C21H30O8

Figure 5. Reconstructed mass spectra of the assigned monoisotopic ions for PMO WSOM on 9/24 (a–d) and 9/25 (e–h) with CHO, CHNO

and CHOS groups of compounds. Number fractions of detected monoisotopic formula assignments in all groups are given as the pie charts

in (d) and (h). An illustration of the isobaric complexity is shown as an excerpt of mass spectra in the ranges of m/z 406—410 (b and f) and

m/z 409.0–409.3 (c and g). All identified molecular formulas between m/z 409.0 and 409.3 are listed in the order of appearance.

(Fig. 6c and f) consistent with the molecular complexity of

the samples described above. Aromaticity index (AI) analy-

sis of PMO WSOM supports the observations from the el-

emental ratios and DBE values (AI calculation is described

in the Supplement). In both samples, most of the species had

aliphatic (∼ 55 %) and olefinic (∼ 40 %) character with only

a small contribution from aromatic species (∼ 5 %) (Table 2).

This finding is in agreement with previous studies of ambient

aerosol (Schmitt-Kopplin et al., 2010; Mazzoleni et al., 2010,

2012; LeClair et al., 2012), which also found that the major-

ity of species has aliphatic and olefinic character. Examples

which illustrate the chemical composition complexity avail-

able with FT-ICR MS analysis are given in the Supplement

(Fig. S9).

3.3.2 Characteristics of the CHO molecular formulas

The CHO species presented in the isoabundance van Kreve-

len diagram (Fig. 7a–b) for 9/24 and 9/25 had average O / C

ratios of 0.47 and 0.42 and average H / C ratios of 1.19 and

1.28 (Table 2). Isoabundance is defined as the total relative
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Figure 6. Characterization of all monoisotopic molecular assignments detected in WSOM of 9/24 (top panels) and 9/25 (bottom panels).

Kendrick mass defect vs. nominal Kendrick mass for 9/24 (a) and 9/25 (d). van Krevelen diagrams for 9/24 (b) and 9/25 (e). Double bond

equivalents vs. number of carbon atoms for 9/24 (c) and 9/25 (f). The size of markers in (c) and (f) denotes relative abundance. Examples

of details in all three types of graphical representations are given in the Supplement (Fig. S9).

Table 3. Chemical characterization of the molecular assignments detected in selected studies. All values are average (arithmetic mean).

Sample name Sample type Measurement site O / C H / C OM / OC DBE DBE / C MW Reference

Pico 9/24 Aerosol Free troposphere 0.46 1.17 1.73 10.7 0.47 478 This study

Pico 9/25 Aerosol Free troposphere 0.42 1.28 1.67 9.4 0.42 462

Storm Peak Lab S4SXA Aerosol Remote 0.53 1.48 1.91 6.2 0.34 414 Mazzoleni et al. (2012)

Millbrook, NY1 Aerosol Rural 0.32 1.46 1.60 6.30 0.33 366 Wozniak et al. (2008)

Harcum, VA1 Aerosol Rural 0.28 1.37 1.54 7.45 0.38 360

K-Puszta 2004

(KP2004)2
Aerosol Rural 0.48 1.40 1.84 7.36 0.37 408 Schmitt-Kopplin et

al. (2010)

K-Puszta 2005

(KP2005)2
Aerosol Rural 0.39 1.22 1.69 10.1 0.46 430

Pearl River Delta, China Aerosol Urban, Suburban, Ru-

ral, Regional

0.46 1.34 1.85 5.3 0.45 265 Lin et al. (2012a)

Atlantic Ocean3 Aerosol Marine boundary

layer

0.35 1.59 1.67 4.37 0.28 317 Schmitt-Kopplin et

al. (2012)

North Atlantic Ocean –

All4
Aerosol Marine boundary

layer

0.42 1.49 1.74 6.76 0.32 445 Wozniak et al. (2014)

North Atlantic Ocean –

Aged Marine4
Aerosol Marine boundary

layer

0.36 1.56 1.70 5.88 0.28 423

Storm Peak Lab CW1 Cloud water Remote 0.62 1.46 2.08 6.3 0.38 402 Zhao et al. (2013)

Storm Peak Lab CW2 Cloud water Remote 0.61 1.46 2.06 6.3 0.38 400

Fresno fog Fog water Rural 0.43 1.39 1.77 5.6 0.40 289 Mazzoleni et al. (2010)

Camden and Pinelands,

NJ5
Rainwater Urban impacted 1.02 1.49 2.73 3.24 0.44 220 Altieri et al. (2009a, b)

Values were calculated: 1 For each sample presented in Wozniak et al. (2008). 2 For only two samples (KP2004 and KP2005) presented in Schmitt-Kopplin et al. (2010). 3 For only one, marine aerosol,

sample presented in Schmitt-Kopplin et al. (2012). 4 For all samples (and only one PCA group) presented in Wozniak et al. (2014). 5 By combining the negative mode FT-ICR MS data available in

Altieri et al. (2009a) (CHO, CHOS and CHNOS) and Altieri et al. (2009b) (CHON).

www.atmos-chem-phys.net/15/5047/2015/ Atmos. Chem. Phys., 15, 5047–5068, 2015



5058 K. Dzepina et al.: Molecular characterization of free tropospheric aerosol

Relative Abundance

≥ 10

0

2

4

8

6

Figure 7. CHO isoabundance van Krevelen diagrams of 9/24 (a) and 9/25 (b) with all detected individual ions shown as dots to facilitate

visualization of CH2 homologous series. Also shown are the double bond equivalents vs. the number of carbon atoms of the 9/24 (c) and

9/25 (d) for the CHO group with symbol colour representing the relative abundance.

abundance of the overlapped species in the van Krevelen di-

agram depicted with a color scale. Overall, the range of ob-

served O / C ratios is 0.1–1.5 and the range for H / C ratios

was 0.4–2.2. The highest relative abundance species in 9/24

were near O / C ∼ 0.5 and H / C ∼ 1.1 and those in 9/25

were near O / C ∼ 0.4 and H / C ∼ 1.2. There were eight low

relative abundance (< 3 %) molecular assignments with an

O / C ≥ 1 in each sample. Both samples had a wide distri-

bution of elemental ratios around the maximum in the van

Krevelen diagrams (Table 3). The distribution of elemental

ratios for the CHO molecular assignments in this study was

similar to the aerosol reported by Mazzoleni et al. (2012) and

narrower than the cloud water values reported by Zhao et

al. (2013), both of which were measured at the Storm Peak

Laboratory. This is consistent with the observed lower aver-

age values of O / C and H / C in this study (∼ 0.44 and 1.22)

compared to that of Mazzoleni et al. (2012) (0.47 and 1.42)

and Zhao et al. (2013) (0.54 and ∼ 1.42).

The DBE of the CHO molecular assignments for PMO

samples (Fig. 7c–d) spanned a wide range of values (0–19)

and increased with the carbon number. The average DBE val-

ues for 9/24 and 9/25 were 10.8 and 9.8 and much higher

than values of ∼ 6 observed in WSOM studies of continen-

tal samples (Mazzoleni et al., 2012; Lin et al., 2012a; Zhao

et al., 2013), which indicates they were less saturated (Ta-

ble 3). Another indicator of molecular saturation for high

molecular weight species, such as those found in the Pico

aerosol, is the carbon-normalized DBE (DBE / C) (Hocka-

day et al., 2006; detailed explanation is in the Supplement).

The average DBE / C values of the CHO group for 9/24 and

9/25 were 0.46 and 0.41 (Table 2), confirming the lower de-

gree of saturation compared to Mazzoleni et al. (2012) and

Zhao et al. (2013) (DBE / C values for CHO group assign-

ments were 0.37 and 0.35). However, nearly all of the CHO

molecular assignments were below the aromaticity criteria

of DBE / C ≥ 0.7 (95 and 97 % for 9/24 and 9/25), indi-

cating an overall lack of aromaticity. The CHO species were

equally distributed among the entire range of DBE values,

with the highest relative abundance species in 9/24 and 9/25

found in the ranges of DBE 5–14 and 3–14. The high relative

abundance compounds (relative abundance ≥ 10 %) of 9/24

had 7–30 carbon atoms and the highest relative abundance

compounds (relative abundance ≥ 20 %) had molecular as-

signments with 17–24 carbon atoms (Fig. 7c). DBE values

of 9/25 follow a similar pattern (Fig. 7d) and its high relative

abundance CHO compounds had 8–31 carbon atoms (rela-

tive abundance ≥ 5 %), with the highest relative abundance

compounds (relative abundance ≥ 10 %) among molecular

assignments having 12–26 carbon atoms. Clearly, the high-

est relative abundance CHO species of 9/25 had a wider dis-

tribution of DBE values than those on 9/24. The weighted

O / C ratios of 0.47 and 0.43 for the CHO groups (Table 2) of

9/24 and 9/25 were similar to those observed for other sam-

ples collected at the Storm Peak Laboratory, a high-altitude

observatory near Steamboat Springs, CO, USA. Mazzoleni

et al. (2012) reported a value of 0.48 for aerosol and Zhao

et al. (2013) reported a value of 0.47 for cloud water, both

collected at the Storm Peak Laboratory. The weighted H / C
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Figure 8. CHNO isoabundance van Krevelen diagrams of 9/24 (a) and 9/25 (b) with all detected individual ions shown as dots to facilitate

visualization of CH2 homologous series. Also shown are the double bond equivalents vs. the number of carbon atoms of the 9/24 (c) and

9/25 (d) for the CHNO group with symbol colour representing the relative abundance.

ratios for 9/24 and 9/25 observed in this study were 1.17 and

1.26, which is lower than values of ∼ 1.5 previously reported

for WSOM samples of aerosol (Wozniak et al., 2008; Maz-

zoleni et al., 2012), cloud water (Zhao et al., 2013), fog water

(Mazzoleni et al., 2010), and rainwater (Altieri et al., 2009a)

(Table 3). The O / C ratios of PMO aerosol are consistent

with those reported for aged biomass burning aerosol mea-

sured by an Aerodyne Aerosol Mass Spectrometer (AMS)

(Aiken et al., 2008). Ultrahigh resolution MS elemental ra-

tios have been found to both agree (Bateman et al., 2012)

and disagree (O’Brien et al., 2013) with the ones measured

by AMS, although a direct comparison of elemental ratios

measured by FT-ICR MS and AMS has not yet been reported.

Numerous molecular formulas matching biomass burn-

ing markers (Simoneit, 2002) were observed in PMO sam-

ples. Burning products of biopolymers such as cellulose,

lignin, and lignans can represent major amounts of OA

originating from biomass burning. Levoglucosan is one of

the main particle-phase markers of cellulose decomposi-

tion and its molecular formula (C6H10O5) was observed

in 9/24 and 9/25 with relative abundances of 3.4 and

0.6 %. Note this formula could come from other com-

pounds with the same molecular formula such as galac-

tosan and mannosan (Simoneit et al., 2001). In both sam-

ples, we also observed formulas that could be lignin pyrol-

ysis products such as vanillic acid (C8H8O4; relative abun-

dance = 11.1 and 2.0 %), syringaldehyde (C9H10O4; relative

abundance = 9.2 and 2.0 %) and syringic acid (C9H10O5;

relative abundance = 7.3 and 1.4 %). In all of the cases,

higher relative abundances were observed in the mass spec-

tra of 9/24. Burning of lignin produces phenol (C6H6O),

guaiacol (2-methoxyphenol; C7H8O2) and syringol (1,3-

dimethoxyphenol; C8H10O3) (Simoneit, 2002). Phenols can

also be formed in the atmosphere by oxidation of aromat-

ics and HULIS (Graber and Rudich, 2006). These molecu-

lar formulas were found in 9/24 and 9/25 with higher rel-

ative abundance on 9/24, including phenol (relative abun-

dance = 3.5 and 0.6 %), guaiacol (relative abundance = 2.8

and 0.7 %), and syringol (relative abundance = 7.0 and

1.5 %). Sun et al. (2010) observed that aqueous-phase oxida-

tion of guaiacol and syringol yields a substantial fraction of

dimers and higher oligomers, with key dimer markers iden-

tified as C16H18O6 and C14H14O4. Their results indicated

that fog and cloud processing of phenolic species could be

an important mechanism for the production of low-volatility

SOA. The dimer markers C16H18O6 and C14H14O4 were also

present in PMO WSOM with high relative abundance (for

9/24: relative abundance = 14.1 and 8.1 %; for 9/25: relative

abundance = 4.4 and 2.4 %).

3.3.3 Characteristics of the CHNO molecular formulas

CHNO species had a narrow distribution of elemental ra-

tios in the isoabundance van Krevelen diagram (Fig. 8a–b).

For 9/24, O / C and H / C ratios spanned the range of 0.2–

0.75 and 0.6–1.6 with higher relative abundance molecular

formulas (relative abundance ≥ 4 %) in the range of 0.3–0.6

and 0.8–1.4. Similar values were observed for 9/25. Aver-

age O / C ratios for 9/24 and 9/25 were 0.45 and 0.42 and
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average H / C ratios were 1.14 and 1.18. A comparison of the

distribution of the CHO and CHNO molecular assignments

in the van Krevelen diagrams (Figs. 7 and 8, respectively)

shows that they were found in similar ranges. The average

elemental ratios for CHO and CHNO species were similar

for both samples, which is a possible indication of the same

emission sources and transformational processes. The O / C

ratios of the CHNO compounds were lower than those pre-

viously observed for continental aerosol (0.57; Mazzoleni et

al., 2012) and cloud water (0.72; Zhao et al., 2013). Similarly,

CHNO molecular species detected in continental rainwater

(Altieri et al., 2009a, b) were more oxygenated (O / C = 1.6)

and saturated (H / C = 1.9) than PMO aerosol WSOM. Rural

aerosol collected at a ground site had elemental ratios sim-

ilar to those reported here and might have been influenced

by biomass burning as indicated by the detection of marker

species such as lignin and nitro-aromatics (Wozniak et al.,

2008). Likewise, Schmitt-Kopplin et al. (2010) reported sim-

ilar elemental ratios for an aerosol sample collected during

a biomass burning event (Table 3). They observed a high

abundance of CHNO species attributed to aromatic acids,

lignins, and SOA formation. The same work reports mass re-

solved H / C diagrams for biomass burning aerosol (Schmitt-

Kopplin et al., 2010), which had a strong resemblance to

those reported here for both PMO samples (Fig. S8a–b). A

significant contribution of CHNO compounds was observed

in aerosol collected in the Pearl River Delta region in China

and was attributed to biomass burning HULIS and photo-

chemically produced SOA (Lin et al., 2012a). The CHNO

molecular assignments in their study had similar elemental

ratios (O / C = 0.41 and H / C = 1.15) and an OM / OC ra-

tio (1.80) as those described here, and their composition was

explained by the presence of nitro or nitrate groups. Similar

to the findings of Lin et al. (2012a), we observed high O / N

ratios (∼ 8 on average) and nearly all CHNO compounds had

O / N ≥ 3, indicating that nitrogen was in the form of organic

nitrate (-ONO2) or nitro (-NO2) groups with excess oxygen

forming additional oxygenated groups.

The DBE values for the CHNO molecular assignments

covered a wide range from 4 to 17 for both samples (Fig. 8c–

d). This range of DBE values represented CHNO species

with carbon numbers up to 35. As expected, the DBE in-

creased with the increase in the number of carbon atoms.

CHNO molecular assignments with high relative abundance

in 9/24 had 16–30 carbon atoms with DBE values in the

range of 8–16. The most abundant CHNO species were those

with 19–25 carbon atoms and DBE in the range of 10–

12. Similar characteristics were observed in 9/25. Finally,

CHNO molecular assignments in 9/24 and 9/25 had average

DBE of 10.3 and 9.8, and DBE / C ones of 0.51 and 0.49 (Ta-

ble 2), with nearly all molecular formula with DBE / C below

the aromaticity criteria of 0.7 (92 and 94 %). Similar to the

CHO compounds, the DBE values of CHNO compounds in

this study were much higher than those observed for conti-

nental WSOM samples in other studies.

In both PMO aerosol WSOM samples, we observed 1

or 2 nitrogen atoms (N1 or N2 molecular formulas, respec-

tively) per CHNO molecular formula, although we allowed

up to 3 nitrogen atoms per formula assignment. In both sam-

ples, N1 molecular formulas make up the majority of CHNO

species (91 %), while N2 molecular formulas represent only

9 %. In order to better understand this, we divided molecu-

lar formulas according to their nitrogen and oxygen content.

In this way, a distribution of the subclasses is observed. This

distribution was very similar for the two samples (Fig. S10):

N1 and N2 CHNO molecular assignments had up to 14 and

13, respectively, O atoms. For the N1 species, the trend of

the sum of relative abundance vs. oxygen number (Fig. S10)

uniformly increased to its maximum of ∼ N1O11 after which

it dropped off sharply. Nearly all molecular formulas in the

N1 and N2 classes were enriched in oxygen (high O / N ra-

tio), indicating the likely presence of organic nitrate or nitro

groups.

3.3.4 Characteristics of the CHOS molecular formulas

A small number of CHOS molecular assignments (N = 14

and 289 for 9/24 and 9/25) was observed and the major-

ity of them had low relative abundance. For 9/24, CHOS

molecular assignments had average O / C and H / C ra-

tios of 0.5 and 1.75, respectively (Fig. 9a). The H / C ra-

tio was significantly higher than those observed for CHO

and CHNO compounds, indicating a higher degree of sat-

uration. Relatively high saturation of 9/24 CHOS species

was confirmed by their significantly lower average DBE

(Fig. 9c) and DBE / C value of 0.20 (Table 2). Furthermore,

no molecular assignments in 9/24 (as well as in 9/25) were

found above the DBE / C aromaticity threshold of 0.7. The

range of DBE values for 9/24 is 0–7, with only three dis-

crete DBE values (0, 4 and 7). Except for three molecular

assignments (C23H34O9S, C19H26O10S, and C19H26O11S),

most of the CHOS compounds in 9/24 can be grouped

into three CH2 homologous series in the van Krevelen di-

agram (C7H16(CH2)1−2,5,7O4S, C14H22(CH2)1−4O10S, and

C14H22(CH2)1−2,5O8S). We note the presence of a very low

number of CHOS assignments in 9/24.

The 9/25 species had a substantially higher number of

CHOS assignments (N = 289). The isoabundance van Krev-

elen diagram (Fig. 9b) shows that CHOS species had a

similar average O / C ratio and higher H / C ratio than the

CHO and CHNO species. The range of O / C ratios for the

CHOS species in 9/24 was 0.1–1.2 and the H / C ratio range

was 0.9–2.2. The average elemental ratios were O / C = 0.41

and H / C = 1.7. The elemental ratios did not show a nar-

row distribution in the van Krevelen diagram (Fig. 9b).

Rather, we observed several groups of compounds follow-

ing straight lines of CH2 homologous series. The highest rel-

ative abundance corresponded to a fully saturated formula

(C12H26O4S), which is likely an organosulfate species. The

higher relative abundance molecular formulas were found
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Figure 9. CHOS group species isoabundance van Krevelen diagram for 9/24 (a) and 9/25 (b) with all detected individual ions shown as

dots to facilitate visualization of CH2 homologous series. Also shown are the double bond equivalents vs. the number of carbon atoms of the

9/24 (c) and 9/25 (d) for the CHOS group with symbol colour representing the relative abundance.

around the elemental ratios of O / C = 0.25 and H / C = 1.6,

indicating a low degree of oxygenation and a high degree of

saturation. Much lower DBE and DBE / C values than those

observed for CHO and CHNO compounds were consistent

with the higher saturation of CHOS species (Fig. 9d and Ta-

ble 2). Molecular assignments with the highest relative abun-

dance had a DBE of 0 and several species with high relative

abundance were clustered around DBE values of 4 and 5.

Figure S11 shows that the highest relative abundance species

had four oxygen atoms and the relative abundance gradu-

ally decreased towards the maximum oxygen content of 13

oxygen atoms. The frequency distribution of the number of

CHOS molecular assignments was similar to the oxygen con-

tent with a slight shift where the majority of species were

found in O5S and O6S subclasses (N = 48 and 52).

Low DBE values and high O / S ratios indicate the pres-

ence of organosulfates similar to previous findings in samples

of aerosol (Mazzoleni et al., 2012) and cloud water (Zhao et

al., 2013). Consistent with Zhao et al. (2013), CHOS species

were not narrowly distributed in the van Krevelen diagram

(Fig. 9a–b) as observed for CHO (Fig. 7a–b) and CHNO

(Fig. 8a–b). Similar to the previous study of Schmitt-Kopplin

et al. (2010), we noted the presence of several groups of

CHOS species in the regions of the van Krevelen diagram

attributed to fatty acids, oxidized terpenoids, and aromatic

acids from lignins. Those studies also found a group of

CHOS species with low saturation and O / C ratio that was

attributed to aromatic moieties, which we did not observe

here. The presence of organosulfates in fog water was con-

firmed by tandem mass spectrometry (MS / MS) analysis

(LeClair et al., 2012). Lin et al. (2012a) identified CHOS

species in biomass burning aerosol with similar DBE values

and higher O / C ratios compared to this study and attributed

them to HULIS. Another study detected HULIS organosul-

fates (Lin et al., 2012b) and noted very few CHOS species

in regional background aerosol collected at a mountaintop

site. The lack of CHOS species was attributed to biomass

burning and anthropogenic aerosol that were not sufficiently

acidic to catalyze formation of organosulfates. We found a

similar low number of CHOS species in WSOM collected

at PMO. Similarly, Schmitt-Kopplin et al. (2010) observed

a lower number frequency of CHOS compounds than CHO

and CHNO in biomass burning aerosol. Conversely, our find-

ing of a low number of sulfur-containing species in long-

range transported aerosol is in contrast to a recent study of

urban aerosol in Los Angeles and Shanghai, which was dom-

inated by organosulfates (Tao et al., 2014).

Oceanic marine algae produce dimethylsulfoniopropi-

onate (DMSP), which is degraded by marine bacteria to

dimethylsulfide (DMS). Once DMS is in the atmosphere, it is

rapidly oxidized to aerosol sulfate via methanesulfonic acid

and sulfur dioxide (Yoch, 2002). It is well documented that

organosulfates can originate from the oxidation of marine

biomass (O’Dowd et al., 1997; Rinaldi et al., 2010; Fu et al.,

2011; Schmale et al., 2013). Non-sea-salt sulfate species in

marine aerosol have previously been found and attributed to

the degradation of marine primary emissions (e.g., Cavalli et

al., 2004). Furthermore, the degradation products of marine
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Figure 10. Mass spectra of 9/24 (a) and 9/25 (c) with common ions detected in both samples and ions unique for each sample. Pie charts

indicate number fraction of common and unique molecular assignments detected in 9/24 (b) and 9/25 (d); the exact numbers of common

and unique assignment are given. Bottom panels: Comparison of common and unique ions detected in PMO samples in Kendrick plot (e),

van Krevelen diagram (f), and double bond equivalents vs. the number of carbon atoms (g).

flora such as methanesulfonic acid have been shown to peak

in summer months and produce aliphatic organic species

with low oxygenation (Cavalli et al., 2004; Ovadnevaite et

al., 2014). Nevertheless, reports of molecular-level specia-

tion of organosulfates in marine aerosol are sparse. Recently,

Claeys et al. (2010) determined that the members of the

C8H16(CH2)1−5O6S homologous series are the organosul-

fate markers of marine SOA formed from the oxidation and

sulfation of algal and bacterial fatty acids residue. We iden-

tified in 9/25 all of those molecular species except one

(C9H18O6S). Moreover, the O6S class was the most abundant

class in the 9/25 CHOS group and had the longest CHOS

homologous series (C7H14(CH2)1,3−17O6S), consistent with

Claeys et al. (2010). Many other CHOS group homologous

series were observed in 9/25 with long carbon chains (up to

C32) and high oxygen content (up to O13), consistent with

the oxidation and sulfonation of primary marine biomass

and subsequent additional processing during oxidative ag-

ing. Recent study of aerosol collected on a research vessel

in the North Atlantic Ocean detected 246 CHOS species in

aged marine aerosol, a number of CHOS species compara-

ble to our study (Wozniak et al., 2014; “Aged marine” PCA

group from their study is given in Table 3). Consistent with

Claeys et al. (2010), Wozniak et al. (2014) attributed the ob-

served CHOS species to organosulfate markers of marine

aerosol degradation albeit with longer carbon chains. The

CHOS species reported in Wozniak et al. (2014) have similar

chemical characteristics to those reported here (magnitude-

weighted average O / C = 0.36 and H / C = 1.57).

3.3.5 Comparison of the Pico Mountain Observatory

aerosol samples

Overall, the molecular formulas assigned to 9/24 and 9/25

were quite similar. A total of 3426 molecular formulas were

common to both of the samples (“common” molecular for-

mulas), and they spanned the entire m/z range (Fig. 10a–d).

Molecular formulas detected in only one sample (“unique”

molecular formulas) were fewer in number (N = 541 and

1372 for 9/24 and 9/25). Most of the unique molecular

formulas had low relative abundances. The highest rela-

tive abundance species in 9/24 were found in the range of

m/z 450–700, while for 9/25 this range was 250–400. Sim-

ilarly, the Kendrick plot analysis showed the unique assign-

ments in 9/24 had homologous series preferentially extend-

ing to lower masses and those in 9/25 tended to form homol-

ogous series extending to higher masses (Fig. 10e).

The two WSOM samples were characterized by similar

but not identical bulk properties. The average O / C ratio of

9/24 was slightly higher than 9/25 (0.46 vs. 0.42), indicat-

ing more oxygenation. In our previous study of a case similar

to 9/24 that included substantial plume lofting to the mid-

dle free troposphere (Zhang et al., 2014), coupled GEOS-

Chem and FLEXPART simulations suggested that similar

transport patterns are capable of carrying more PAN in pol-

luted plumes than non-lifted transport. The additional PAN

is thus able to thermally decompose, resulting in a signifi-

cant NOx release and subsequent ozone production during

plume subsidence. This mechanism may have provided a sec-

ond opportunity for efficient oxidation of the 9/24 aerosol. In
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contrast, NOx and ozone production potential would quickly

diminish in the marine boundary layer as shown by Zhang et

al. (2014). In addition, air masses that transported the aerosol

collected in 9/25 underwent longer transport times at sub-

stantially lower altitudes in cleaner marine atmosphere (the

averaged residence time spent over the North Atlantic Ocean

for the retroplumes of 9/25 was 9.5 days vs. 7 days for 9/24).

Processing of compounds found in primary marine emissions

which did not influence 9/24 air masses would also explain

the higher number of unique molecular assignments found in

9/25.

The average H / C ratio of 9/24 was slightly lower than

that of 9/25 (1.17 vs. 1.28), indicating a lower saturation.

The van Krevelen diagram in Fig. 10f that compares the two

samples shows that 9/24 molecular assignments had higher

oxygenation (i.e., higher O / C) and lower saturation (i.e.,

lower H / C). A lower degree of saturation in 9/24 is also

supported by the higher DBE and DBE / C values (Tables 2

and 3). The same trend in elemental ratios was observed for

the CHO, CHNO, and CHOS group species. The exception

to this was the higher H / C ratio of the CHOS group on

9/24, which might be due to the very low number of CHOS

assignments. Approximately 70 % of the molecular assign-

ments in both samples were CHO species, and nearly all of

the remaining compounds were CHNO species. Thus, the

overall elemental ratio characteristics will be strongly driven

by species belonging to these two groups. Note molecular

formulas unique to 9/25 were located in the regions of

the van Krevelen diagram (Fig. 10f) assigned to fatty acids

(Schmitt-Kopplin et al., 2010) consistent with more abundant

marine aerosol. An enhancement of several common ions in

the range of m/z 200–300 was observed in 9/25 (Fig. 10c).

These strong CHO and one CHOS ions have the follow-

ing molecular formulas: C11H10O4, C10H10(CH2)1−2O4,

C12H20(CH2)1−2O2, C12H20O3, C11H18(CH2)1−2O4,

C12H18(CH2)1−3O4, C12H18(CH2)1−2O4, and C12H26O4S.

With lower oxygenation and higher saturation than other

CHO compounds detected in this study (their average

values ± standard deviation were O / C = 0.30 ± 0.08,

H / C = 1.49 ± 0.26, DBE = 4.15 ± 1.34, and DBE / C =

0.33 ± 0.14), the enhancement of these species in 9/25 over

9/24 might be an additional indication of species such as

fatty acids and thus marine aerosol contribution to 9/25.

The average DBE values (and DBE / C in the parenthesis)

of 9/24 and 9/25 were 10.7 (0.47) and 9.4 (0.42) (Fig. 10g),

and these values were similar to the average DBE found in

the CHO and CHNO groups (Tables 2 and 3). Much lower

values were found for the CHOS group, consistent with a

higher saturation of these species as noted previously. Fig-

ure 10g clearly showed that the unique molecular assign-

ments detected in 9/24 had higher DBE values, while those

detected during 9/25 had a uniform distribution among all of

the observed DBE values.

4 Conclusions

Our findings confirm the dominance of OA in the total

aerosol mass fraction of remote atmospheres, followed by

sulfate and nitrate aerosol. The molecular characterization of

long-range transported aerosol provides novel insights on the

aerosol properties in remote regions and at high-altitude ob-

servatories. The subtle differences in the composition of the

two samples were attributed to the sampling of somewhat

different air masses. The FLEXPART simulations indicated

that air masses intercepted during the measurements of 9/24

and 9/25 had average plume ages of 12.4 and 14.7 days and

were influenced by wildfires in North America. Specifically,

the 9/24 air masses were influenced by an intense biomass

burning plume, while 9/25 air masses were less polluted with

some influence from the North Atlantic Ocean marine bound-

ary layer. The air masses of 9/24 had higher transport heights

than those of 9/25, which for 9/24 might have allowed for

increased production of oxidants such as ozone during their

subsidence. The differences in the air masses were confirmed

by changes in collocated on-line measurements of ozone,

non-methane hydrocarbons (ethane and propane), black car-

bon mass concentration, aerosol number concentration and

aerosol scattering coefficient.

Ultrahigh resolution FT-ICR MS analysis of WSOM de-

tected approximately 4000 and 5000 monoisotopic molec-

ular formulas in 9/24 and 9/25. The majority of identified

compounds in both samples belong to CHO (∼ 70 %) and

CHNO (∼ 25 %) elemental groups, while CHOS group com-

pounds represented only a small number fraction. The low

average O / C (∼ 0.45) and H / C (∼ 1.20) ratios indicate

low oxygenation and saturation. The observed unsaturation

of species may be a result of the biomass burning emissions,

which include aerosol species more unsaturated than terpene

SOA products. Similar low saturation of aged and photo-

chemically processed aerosol, as reflected in high DBE and

DBE / C values, was previously observed for biomass burn-

ing influenced samples collected in Hungary during 2005

(Schmitt-Kopplin et al., 2010, as shown in Table 3). The pres-

ence of biomass burning markers was observed with higher

relative abundance for 9/24, while organosulfate markers of

marine aerosol were present only in the 9/25. Similarly, the

presence of a higher fraction of spherical particles (possibly

tar balls) and a higher fraction of heavily coated soot suggests

that 9/24 was more highly influenced by biomass burning.

The compounds in 9/25 attributed to fatty acids and prod-

ucts of DMS oxidation support the marine origin of these

WSOM.

The molecular distributions of the Pico WSOM species

yield a remarkable visual uniformity in all of the graphi-

cal representations, suggesting a highly aged and processed

aerosol. High molecular weight species unique for this study

are likely oligomers produced by mechanisms involving

aqueous-phase oxidation of biomass burning species, as pre-

viously observed in laboratory studies (Holmes and Petrucci,
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2006; Sun et al., 2010). The presence of markers charac-

teristic for aqueous-phase processing of biomass burning

aerosol suggests the biomass burning aerosol was processed

by clouds and remained in the particle-phase after the evap-

oration of water. Similar observations of aqueous-phase pro-

cessing of biomass burning aerosol leading to oligomer prod-

ucts were previously reported for cloud (Zhao et al., 2013)

and fog water (Mazzoleni et al., 2010).

Low O / C ratios of the PMO WSOM likely resulted

from aqueous-phase oxidative reactions during the long-

range transport which led to chemical transformations such

as selective molecular fragmentation (Kroll et al., 2009) and

an increased solubility of the species. This would create more

polar molecules, which are likely preferentially removed by

cloud processes yielding aerosol with a lower O / C. An-

other mechanism that may selectively remove highly oxi-

dized species in very aged aerosol is photolysis, possibly

leading to the fragmentation of oxidized functional groups.

Both photolysis and aqueous-phase reactions eliminate small

gas-phase molecules, e.g., CO, CO2, formaldehyde (CH2O),

and formic acid (HCOOH) as shown in laboratory experi-

ments (Pan et al., 2009; Sareen et al., 2013). Finally, the low

H / C and higher DBE and DBE / C values than previously

observed for continental WSOM suggest a lower degree of

saturation in agreement with very aged and processed aerosol

after long-range transport (Ng et al., 2011). Thus, we hypoth-

esize the observed characteristics of the Pico aerosol resulted

from the combination of formation and subsequent removal

of highly aged and polar species as a cumulative result of

oxidation, aqueous-phase processing, evaporation, and pho-

tolysis during long-range transport.

Finally, observations of very aged ambient samples ana-

lyzed by ultrahigh resolution mass spectrometry methods are

sparse, which limits comparison of observations. Future re-

search is needed to systematically characterize WSOM of

different ages, sources, and transformational processes.

The Supplement related to this article is available online

at doi:10.5194/acp-15-5047-2015-supplement.
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