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A B S T R A C T

Profiling breast cancer with expression arrays has become common, and it has been sug-
gested that the results from early studies will lead to understanding of the molecular differ-
ences between clinical cases and allow individualization of care. We critically review two main 
applications of expression profiling; studies unraveling novel breast cancer classifications and 
those that aim to identify novel markers for prediction of clinical outcome. Breast cancer may 
now be subclassified into luminal, basal, and HER2 subtypes with distinct differences in prog-
nosis and response to therapy. However, profiling studies to identify predictive markers have 
suffered from methodologic problems that prevent general application of their results. Future 
work will need to reanalyze existing microarray data sets to identify more representative sets 
of candidate genes for use as prognostic signatures and will need to take into account the 
new knowledge of molecular subtypes of breast cancer when assessing predictive effects.

J Clin Oncol 23:7350-7360. 

INTRODUCTION

The management of breast cancer has been
dramatically changed with the advent of
widespread screening programs and the sys-
tematic use of adjuvant hormonal therapy
and chemotherapy. Recent data have shown
that these changes are having a major impact
in outcome, and despite increasing incidence,
breast cancer mortality is decreasing in most
of the Western world.1 The recent overview
of randomized adjuvant therapy trials has
confirmed that systemic therapies (hormone
therapy and chemotherapy) are producing
cures; survival curves at 15 years show
a greater separation, despite recurrence
curves’ remaining almost flat after 5 years.2

Moreover the overview also confirms that
tamoxifen is of benefit in only patients with
estrogen receptor (ER) –positive disease,
effectively representing a form of targeted
therapy. Great excitement has also come
from recent preliminary reports that appear
to show the great benefit of trastuzumab
therapy either concurrent or sequential
with adjuvant chemotherapy for patients

with HER2-positive tumors. These exam-
ples give further credence to the old idea
that breast cancers are an heterogeneous
group of diseases. This has been further
confirmed by molecular profiling of breast
cancers using array technology showing the
biologic and clinical heterogeneity of breast
cancer is explained by differences in the ge-
netic composition of the primary tumors.

The questions that face clinicians treat-
ing breast cancer patients have remained
despite all this progress: how to identify
patients with node-negative disease at very
low risk of relapse, and hence for whom
the risk-benefit ratio might be in favor of
withholding chemotherapy; how to predict
the response to currently available treat-
ments, in particular cytotoxic chemotherapy;
and finally, the identification of tumor tar-
gets for directed therapies. The promise is
that expression profiling of tumor RNA
(or other profiling technologies, eg, array-
based comparative genomic hybridization
for tumor DNA copy number profiling) will
have practical application by helping make
these difficult decisions more precise.3



Here we will critically review two types of molecular
profiling studies using expression array technology, those
that have unraveled a novel molecular taxonomy of breast
cancers and those that have attempted to use gene expres-
sion analysis to predict clinical outcomes.

MOLECULAR CLASSIFICATION OF BREAST CANCER

The explosion of genomics technology has resulted in
a wave of efforts to use these advances to improve patient
care. This is nowhere more obvious than in breast cancer,
where our inability to accurately predict relapse or
response to therapy has resulted in a long history of
single-marker prognostic and predictive studies. Those
studies were hampered by the usual problems in marker
trials such as too-small sample size, heterogeneous pa-
tients, tumors, and treatments, and lack of independent
validation. Added to these problems in translational trial
design was the fact that clinician-researchers had little
understanding of how these markers related to one an-
other and little means to decide which of several prom-
ising markers might be the most relevant. Expression
profiling and other ‘‘-omic’’ technologies may help us be-
gin to leap this hurdle. Since multiple genes are examined
simultaneously without the requirement for a priori
definition of relevant patterns, profiling studies can be
performed even when we are somewhat ignorant of the
relationships or the function of the genes examined.
The results of these studies can inform both the clinician
and the scientist. In this way, the usual sequence of
scientific discovery followed by clinical application is
streamlined, producing both clinical and scientific
knowledge in parallel. In breast cancer, this is giving us
a rapidly evolving understanding of the pathways respon-
sible for outcome and response to therapy, and has also
provided a wealth of new knowledge of targetable differ-
ences in breast cancer that will be the means to better
therapy in the future.

As mentioned above, the clinical impression of breast
cancer heterogeneity has been proven at the gene expres-
sion level.4 Using cDNA microarrays and unsupervised
(without knowledge of clinical end points) analysis, inves-
tigators determined that there were breast cancer subtypes
with distinct gene expression patterns (Fig 1) and different
prognoses5-6 (Fig 2) that persisted in primary breast
cancers as well as their metastases.7 These groups of
tumors confirmed long-recognized clinical differences in
phenotype, but added new knowledge regarding breast
cancer biology. For example, the gene expression profiling
revealed that within the ER-related tumors at least two
subtypes, luminal A and luminal B, could be distinguished
that vary markedly in gene expression and prognosis.5

Conversely, hormone receptor–negative breast cancer
comprised two distinct subtypes, the HER2 subtype and
the basal-like subtype.5,8 These subtypes differ in biology

and behavior, and both show a poor outcome. Impor-
tantly a very similar classification of breast cancers has
now been characterized using immunohistochemistry to
analyze patterns of protein expression in tumor sections
and suggesting that a few protein biomarkers (eg, ER,
progesterone receptor [PR], HER2, HER1, basal cyto-
keratins) can be used to stratify breast cancers into different
groups that can be mapped to the subtypes outlined in the
following sections.9-11,32

LUMINAL SUBTYPES

Expression Patterns

The luminal subtypes make up the hormone receptor–
expressing breast cancers, and have expression patterns
reminiscent of the luminal epithelial component of the
breast.4 These patterns include expression of luminal cyto-
keratins 8/18, ER and genes associated with ER activation
such as LIV1 and CCND1 (also known as cyclin D1).4,6

Fewer than 20% of luminal tumors have mutations in
TP53, and these tumors are often grade I.5,6 Within the lu-
minal cluster there are at least two subtypes, luminal A and
luminal B. Although both are hormone receptor express-
ing, these two luminal subtypes have distinguishing char-
acteristics. Luminal A has, in general, higher expression of
ER-related genes and lower expression of proliferative
genes than luminal B.5,8

Clinical Features

Luminal breast cancers are the most common subtype
of breast cancer. In a population-based case-control study,
the Carolina Breast Cancer Study, luminal breast cancers
represented 67% of the tumors.12 The incidence of the
best-prognosis luminal A subtype differed by race and
age in that premenopausal African American women
who developed breast cancer were significantly less likely
to develop luminal A tumors (36%) than any other group
of patients (51% to 59%). As discussed in the next section,
this decreased incidence of the good-prognosis luminal A
tumors among young African Americans was associated
with an increase in the poor-prognosis basal-like breast
cancer subtype. In addition, the luminal B tumors tend
to be higher grade than luminal A tumors.

Treatment Response and Outcome

In general, the luminal subtypes carry a good progno-
sis; however there is clearly a difference in outcome, with
luminal B having a significantly worse prognosis than
luminal A in multiple data sets.8 Part of this different out-
come may be due to variations in response to treatment.
Luminal breast cancers are treated with hormone therapy.
Several studies have demonstrated that ER-positive tu-
mors respond poorly to conventional chemotherapy.13,14

It is likely however, that response may differ between lu-
minal subtypes. A recent evaluation and validation of a

www.jco.org
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Fig 1. Gene expression patterns of 85 samples (78 carcinomas, three benign tumors, four normal tissues) analyzed by hierarchical clustering using the 476 cDNA
intrinsic clone set. (A) The tumor specimens were divided into subtypes based on differences in gene expression. The cluster dendrogram showing the subtypes
of tumors are colored as: luminal subtype A, dark blue; luminal subtype B, yellow; luminal subtype C, light blue; normal breast-like, green; basal-like, red; and
ERBB2�, pink. (B) The full cluster diagram scaled down. The colored bars on the right represent the inserts presented in C-G. (C) ERBB2 amplicon cluster. (D)
Novel unknown cluster. (E) Basal epithelial cell–enriched cluster. (F) Healthy breast-like cluster. (G) Luminal epithelial gene cluster containing ER. Reprinted with
permission from Sorlie et al.5



reverse transcriptase polymerase chain reaction–based
16-gene predictor of distant relapse among hormone
receptor–positive node-negative patients treated with
tamoxifen resulted in the Recurrence Score.15 The Recur-
rence Score has been shown to be prognostic in untreated
patients,16 predictive of lack of efficacy of tamoxifen16 and
predictive of response to chemotherapy.17,18 Eight of the
16 genes included in the Recurrence Score, including
ER-related genes and proliferative genes, are included in
the gene sets distinguishing luminal A from B (D. Oh,
manuscript submitted for publication), and the data sug-
gest that tumors with low Recurrence Scores are luminal A
whereas those with high Recurrence Scores are luminal B.
Thus, it appears that luminal A tumors may be quite ad-
equately treated with endocrine therapy alone, whereas the
more proliferative luminal B tumors may be those that
benefit from chemotherapy added to endocrine therapy.
Another pressing question is the response to tamoxifen
therapy in luminal B patients since the scant data so far
suggest that in the presence of tamoxifen, luminal B pa-
tients do significantly worse than luminal A5,8; it may be
that luminal B patients will do better if they receive an
aromatase inhibitor, or it may be that they are entirely
endocrine therapy refractory. Future studies will be re-
quired to address this question.

There is a suggestion that other targeted approaches
beyond endocrine therapy may work in luminal subtypes.
The anti–vascular endothelial growth factor antibody
bevacizumab was recently shown to improve survival in
metastatic breast cancer when combined with paclitaxel.19

Intriguingly, more than 60% of the patients in that trial
were hormone receptor–positive and virtually none were
HER2-positive, suggesting that antiangiogenic strategies
may be effective in the luminal subtypes.

HER2 SUBTYPE

Expression Patterns

The identification of a HER2-array subtype within
unsupervised cluster analysis of breast cancers was re-
assuring to clinicians because it confirmed the clinical
impression that tumors with HER2 overexpression were
systematically different from other breast cancers. The
array designation of HER2 (hereafter designated HER2-
array) should not be confused with HER2-positive tumors
identified by immunohistochemistry or fluorescence in
situ hybridization (FISH), because not all clinically
HER2-positive tumors show the RNA expression changes
that define the cluster. The HER2-array subtype refers to
the larger group of hormone receptor–negative (low ex-
pression of ER and related genes by array) tumors identi-
fied by gene expression array. HER2-positive tumors
clinically refer to those identified by immunostaining
for HER2 overexpression or FISH for excess gene copy
number. Most tumors that are clinically HER2-positive
will fall within the HER2-array subtype. However, other
tumors that are HER2 positive by immunohistochemistry
or FISH will also overexpress hormone receptors, and
most of these tumors fall within the luminal subtypes
rather than the HER2-array subtype.5,6,8 In this section,
we are referring only to the HER2-array subtype, which
does not express hormone receptors. The HER2-array
tumors are characterized by overexpression of other genes
in the ERBB2 amplicon such as GRB7.4 Like basal-like
tumors, the HER2-array subtype tumors have a high
proportion, 40% to 80%, of TP53 mutations,5,12 and are
significantly more likely to be grade 3 (P Z .0002) than
luminal A tumors.

Clinical Features

There is no association of the HER2-array subtype
with either age or race,12 and no association with known
risk factors. An intriguing recent analysis from the Nurses’
Health Study suggests that hormonal risk factors do
not predict ER-negative breast cancer,20 suggesting that
investigators in large epidemiologic studies may do well
to revisit the analyses of traditional risk factors in a
subtype-specific manner. Since both HER2-array and
basal-like breast cancers fit in the ER-negative category,
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it remains to be seen whether these risk factors also differ
between the two main categories of ER-negative tumors.
In addition to being more likely to be high grade and
poorly differentiated, HER2-array subtype tumors were
more than two-fold more likely to involve axillary lymph
nodes than luminal A tumors.12

Treatment Response and Outcome

HER2-array subtype breast cancers carry a poor prog-
nosis,5,6,8 another finding not surprising to those working
with these patients and previously demonstrated in mul-
tiple single-marker studies. Despite its poor prognosis,
the HER2-array subtype has also demonstrated sensitivity
to anthracycline and taxane–based neoadjuvant chemo-
therapy, with significantly higher pathologic complete re-
sponse than luminal breast tumors (46% v 7%; P � .001)
in an M.D. Anderson Cancer Center (Houston, TX)
study.13 Like the other ER-negative subtype, the basal-
like, the HER2-array subtype’s poor prognosis seems to
derive from a higher risk of early relapse among those
without complete eradication of tumor cells.14 This find-
ing is in keeping with a recent retrospective examination of
Cancer and Leukemia Group B (CALGB) –led chemother-
apy trials. In that study, the benefits of each generation
of increasing chemotherapy aggressiveness—increased
anthracycline dose and intensity (CALGB 8541), taxane
added to anthracycline (CALGB 9344), and increased
dose density (CALGB 9741)—were largely confined to
the ER-negative subset of patients.21 This suggests that
the HER2 and basal-like subtypes that make up the major-
ity of ER-negative tumors are the tumors that derive the
most benefit from improvements in chemotherapy. Unlike
the basal-like, however, the HER2-array subtype has
molecularly targeted agents, including the anti-HER2
monoclonal antibody trastuzumab. The effectiveness of
trastuzumab in metastatic breast cancer as well as the re-
markable reduction in relapse among HER2-positive
breast cancers treated with trastuzumab combined with
chemotherapy supports the idea that effective tumor con-
trol can be achieved with isolated targeting of this path-
way22-24 but not all HER2-positive tumors respond to
trastuzumab. PTEN loss or abrogation,25 and CXCR4
upregulation26 have been implicated in trastuzumab
resistance and may provide targets for combination
strategies for even better approaches in the future.

BASAL-LIKE BREAST CANCER

Expression Patterns

The basal-like subtype of breast cancer was so named
because the expression pattern of this subtype mimicked
that of the basal epithelial cells of other parts of the
body and normal breast myoepithelial cells.4 These simi-
larities include lack of expression of ER and related
gene; low expression of HER2; strong expression of basal

cytokeratins 5, 6, and 17; and expression of proliferation-
related genes.4,6 Immunohistochemical profiling using
tissue microarray has identified that a group of tumors
characterized by basal cytokeratin expression are also
characterized by low expression of BRCA1.27 Indeed a basal
phenotype is one of the hallmark features of ‘‘BRCA-ness’’
(sporadic cancers that look like those from BRCA1
or BRCA2 mutation carriers) and might have important
implications for management.28 Basal-like tumors are
more likely to have aggressive features such as TP53 mu-
tations and a markedly higher likelihood of being grade III
(P� .0001) than luminal A breast cancers (P� .0001).5,12

Clinical Features

Some risk factors for developing basal-like breast can-
cers have been identified. As predicted by the hormone
receptor and HER2-negative nature of these tumors,
most women with BRCA1 mutations generally develop
basal-like breast cancer.8,28 In the Carolina Breast Cancer
Study, 20% of the tumors were basal-like. However the
basal-like subtype was most common among premeno-
pausal African American women (39%) compared with
postmenopausal African American (14%) or non–African
American women of any age (16%) (P Z .0001).12 Inter-
estingly, a recent study of risk among different racial and
ethnic subtypes in the Women’s Health Initiative sug-
gested that among African American women, traditional
risk factors such as menstrual and pregnancy history,
body mass index, and activity failed to explain differences
in incidence from white women.29 With the racial differ-
ence seen in the prevalence of cancer subtypes, this may
mean that we need to re-evaluate the way we assess risk
among different types of cancer.

Treatment Response and Outcome

Multiple independent data sets have revealed that the
basal-like subtype carries a poor prognosis.5,6,8 Because
premenopausal African American women have twice the
risk of developing basal-like breast cancer as any other
group of women, part of the poor prognosis experienced
by these young African American women may be due to
the subtype of breast cancer they develop. It is not clear
if the poor prognosis of basal-like breast cancer is due
to poor therapy options or inherent aggressiveness. Given
its triple-negative receptor status (ER, PR, and HER2),
basal-like breast cancer is not amenable to conventional
targeted therapies for breast cancer such as endocrine
therapy or trastuzumab, leaving only chemotherapy in
the therapeutic armamentarium. Despite their poor prog-
nosis, basal-like breast cancers are sensitive to conven-
tional chemotherapy. Investigators at M.D. Anderson and
at the University of North Carolina independently ex-
amined chemosensitivity in basal-like breast cancers.13,14

In both studies, response to anthracycline-based or com-
bination anthracycline and taxane–based neoadjuvant



chemotherapy was higher among basal-like breast cancer
than non–basal like. These studies suggest that the poor
prognosis experienced by patients with basal-like tumors
is not from initial chemoresistance, but rather reflects
the fewer treatment options available for ER-, PR-, and
HER2-negative tumors and/or the intrinsic biology of
this subtype.

This sensitivity to drugs may not be true of all agents.
As mentioned, BRCA1 pathway activity may be impaired
in many basal-like breast cancers. BRCA1 functions in
DNA repair and cell cycle checkpoint responses may result
in sensitivity to DNA damaging agents, and resistance
to spindle poisons.30 Regarding targeted options in this
subtype, although none have yet been clinically proven,
some preclinical studies suggest that this subtype may
be epidermal growth factor receptor–driven.31,32 This hy-
pothesis is being tested in several clinical trials. A recent
publication examining the ‘‘wound response’’ signature,
which includes genes involved in matrix remodeling
and angiogenesis, found an association of this signature
with basal-like subtype, suggesting other potential
avenues of targeting.33

MOLECULAR FORECASTING: PREDICTING OUTCOMES
WITH EXPRESSION PROFILING

Prognostic studies analyze variables that may predict fu-
ture events and in most clinical studies these are related
to time to death or recurrence. The main application of
the new marker is to stratify patients by outcome and
therefore allow better counseling and treatment decisions.
The study of univariate prognostic factors in clinical co-
horts is difficult and prone to multiple sources of bias.34

In contrast to prospective randomized trials, most prog-
nostic studies are poorly designed and carried out in the
absence of a predetermined written protocol, eligibility
criteria, a primary end point or predefined statistical anal-
ysis.35 Prognostic variables should be tested in a represen-
tative sample of the population at risk at a common point
in the course of their disease.36 The use of ‘‘available’’ sam-
ples does not satisfy this requirement and often results in
inadequate clinical information for important clinical
covariates, such as performance status and treatment.
Consequently many studies provide data-driven analyses
and report uncertain effects particularly in patient sub-
groups. Testing multiple variables from microarray or
other high-throughput experiments adds further meth-
odologic and statistical challenges to the conduct of prog-
nostic studies.

Unsupervised methods such as cluster analysis (as de-
scribed in the previous section) identify new partitions in
data sets by comparing pair-wise similarity measures of
gene expression. However these methods are subjective
because different partitions can be identified with different
mathematical methods of measuring similarities. Because

these methods do not derive statistically valid informa-
tion regarding which genes are differentially expressed
between classes, they are poorly suited for identifying
prognostic variables.37

The aim of supervised classification of data is to detect
genes that may predict defined outcomes. The identifica-
tion of a predictive multivariate marker from microarray
expression data involves three main steps.35 First, invari-
ant genes must be filtered from the data set to prevent
noise obscuring true biologic associations. Then the
remaining genes of interest are ranked by their strength
of association with the outcome. Second, a model is iden-
tified which can predict outcome using the gene expres-
sion values as input to a mathematical formula. Third,
a prediction rule is defined that categorizes the output
from the model into clinically defined classes using
cut-off points.

Internal validation is used as part of the model-building
process to estimate the accuracy of the predictor in an
unbiased manner. This requires a training set and a sepa-
rate test set that should not be used to develop the model.
Ideally, the test set should resemble the population from
which future samples will be tested. Split-sample internal
validation simply divides the samples into two sets. How-
ever, more efficient methods such as cross validation are
commonly used. These methods test the model-building
process, not the list of genes identified. Testing is per-
formed as an iterative process by selecting different train-
ing and test sets from the series. In leave-one-out cross
validation, test sets of one sample are chosen and the ac-
curacy of the model derived from the remaining (n – 1)
samples is scored. This is repeated for all n samples so
that every sample acts as a test set. The cross-validated pre-
dictive error for the model is obtained and can be used to
compare different models or optimize the number of genes
included in the model. All samples are then used to derive
the final model. Although internal validation is an essential
part of model development and refinement, it is not a
replacement for formal external validation.

Several important problems arise using these methods.
First, it is inevitable that for many hypothesis-generating
microarray studies, the huge disproportion between the
number of variables tested (gene expression values) and
the number of samples leads to a high false-discovery
rate for genes that appear to be associated with outcome.
This can be controlled by using additional statistical tests
(eg, the q value38), and the likelihood of selecting a partic-
ular list of genes by chance can be quantified using permu-
tation tests (Fig 3). The predictive model generated is
likely to reflect much of the biases in the training set rather
than being a true representation of gene expression in the
population of interest. The prediction model is therefore
‘‘overfitted’’ to the cohort under study, and a high predic-
tive accuracy in the training set will not be reproducible in
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real samples. Incorrect internal validation, for example by
performing resubstitution, not cross validation, dramati-
cally underestimates the error rate by increasing over fit-
ting.35,39 Other obvious biases, such as using external
validation sets that are not independent of the training
sets, make results very hard to interpret. Finally, the per-
formance of the model is highly dependent upon the cutoff
point used to classify outcomes. Arbitrarily defined cutoff
values do not allow true estimation of the predictive power
of the classifier and may be highly biased by the character-
istics of the training set. Receiver operating characteristic
(ROC) curves plot the sensitivity and specificity obtained
for multiple cutoff points and allow objective assessment
of the optimum value. Classifiers that have the largest area
under the curve (AUC; shift of the curve to the left) have
the best performance and AUC may be used to compare
performance between different predictor models.

Many expression microarray studies have addressed
broad prognostic questions in breast cancer5,6,40-45 but
none satisfy previously defined criteria for good prognos-
tic studies or provide a sufficient level of evidence for can-
didate markers (Table 1). The two largest studies have
sought to identify markers for recurrence or survival after
surgical treatment of node-negative disease. Van’t Veer
et al40 identified a cohort of 98 node-negative breast can-

cers with onset before the age of 55 years. They compared
expression patterns between those who relapsed within 5
years to those who were disease free at 5 years or more.
Supervised methods identified a 70-gene signature, which
was then applied to an additional set of 197 unique breast
cancers.41 Combining both the original cancers and the
follow-up set provided incomplete validation of the
poor-prognosis signature and Cox proportional hazards
analysis showed the signature to have a hazard ratio of
4.6 (95% CI, 2.3 to 9.2) which outperformed other stan-
dard univariate clinical parameters. In a similar sized
study, Wang et al45 derived a 76-gene prognostic signa-
ture from 115 node-negative cancers and validated their
signature on a wholly independent series of 171 samples.
The Wang signature had a hazard ratio of 5.55 (95%
CI, 2.46 to 12.5) and again appeared to outperform uni-
variate tests.

Strikingly, despite similar clinical and statistical de-
signs, the two independent signatures share only three
genes. This may be partly caused by the use of different
microarray platforms, which can lead to differences in
data repeatability and gene discovery.46-48 In addition,
the training sets for both studies differed in mean age
(44 years v 54 years) but there were no other major clinical
differences. However, a more important effect may have

A

B

C

D

E

Gene 1
Gene 2
Gene 3
Gene 4
Gene 5
Gene 6

High correlation

1)

2)

3)

4)

5)

6)

Steps

Gene 1
Gene 1 + Gene 2

Gene 1 + Gene 2 + Gene 3

Random
split

Use parameters to
classify the

validation set

= Poor prognosis

= Good prognosis

Samples

Repeat 999
times

Gene 1 + Gene 2 + Gene 3 + Gene 4
Gene 1 + Gene 2 + Gene 3 + Gene 4 + Gene 5

Gene 1 + Gene 2 + Gene 3 + Gene 4 + Gene 5 + Gene 6

Repeat the same process in a step-wise manner (steps 2-6) and stop if the mean
 error does not improve with addition of more genes

Rank the
genes

according
to their

correlation
with

outcome

Build
models

by adding
one gene
at a time
from the

top

Low correlation

Test the
accuracy

of the first
model
(step 1)

Estimate %
error of

classification

Compute
parameters

Training set (n = 12)

Validation set (n = 8)
with UNKNOWN class

Mean error = the mean of the % error over the 1,000 repeats

95% Cl = the 50th lowest % error to the 950th % error over the 1,000 repeats

Estimate
the mean
and 95%
Cl of the
errors

Fig 3. Cross-validation procedures
in model building and estimation of
the prediction error by permutation.



been caused by marked variability in the derived prognos-
tic signatures. Reanalysis of the original van’t Veer data has
shown that the predictive signature is not unique and in-
deed the data set contains multiple signatures that all cor-
relate well with survival.49 This paradox arises because the
difference between gene-outcome correlations is small,
making it difficult to identify the most predictive genes,
and the process of choosing the genes is highly depen-
dent upon the subset of patients used to develop the pre-
diction model. Independent reanalysis of other microarray
data sets has revealed very similar findings.50 This has
led others to propose a different algorithm for outcome
prediction that treats survival as a continuous variable
and then considers for subsequent unsupervised clus-
tering only the genes with a Cox score that exceed a de-
fined threshold.51

It is clear that more data are needed to identify key
determinants of clinical outcome in node-negative breast
cancer. Further refinement will require analysis of larger
independent series of patients, but this is time consuming
and expensive. There may be benefits from studying
mouse models of breast cancer metastasis. Kang et al52

used in vivo selection in mice to identify subclones of
the breast cancer cell line MDA-MB-231, with greatly en-
hanced metastatic specificity to bone. By passaging clonal
lines through several generations and using microarray
profiling, they identified 102 genes most strongly corre-
lated with bone metastasis. Many of the overexpressed
genes encoded proteins with osteolytic and angiogenic
functions, including interleukin 11 and connective tissue
growth factor. Downregulated genes included extracellular
matrix and adhesion molecules. In an independent study
of 19 primary breast cancers grouped by their ability to
metastasize to bone or lymph nodes, Woelfle et al53 also
identified a bone metastasis signature with repression of
extracellular matrix and adhesion proteins that was dis-
tinct from that of lymph node metastasis alone. The ex-

pression patterns seen in highly metastatic variants of
MDA-MB-231 were similar to the van’t Veer 70-gene sig-
nature, suggesting that the mouse may be a powerful
model to refine meaningful gene selection.54

To identify a prognostic marker for early breast cancer
treated with tamoxifen, Ma et al55 profiled 60 patients and
identified nine genes that were significantly correlated
with outcome from laser capture–dissected tumors. This
was used to develop a cutoff for classification based on
the ratio of two of the genes. When tested in an indepen-
dent series of 20 patients, the two-gene expression ratio
correctly predicted outcome in 16 of 20 patients. External
validation of the marker performed by another group us-
ing quantitative polymerase chain reaction in an indepen-
dent series of 58 patients with ER-positive breast cancer
failed to show any significant predictive value.56 Although
there were differences in the two breast cancer cohorts,
both were small, and an accompanying editorial highlights
how a high false-positive rate for gene discovery and lack
of adequate model development may have contributed to
the differences.58

Taken together, these results underscore the difficul-
ties of using limited numbers of samples together with
a sensitive technology that may be poorly reproducible.
An alternative to using fresh-frozen material is to perform
expression profiling on paraffin-embedded tissue, which is
possible using multiplex real-time reverse transcriptase
polymerase chain reaction. Using paraffin material for ex-
pression profiling is of particular importance because the
success of screening programs have decreased tumor size
at diagnosis and material is available from randomized tri-
als, allowing well-controlled hypothesis-testing studies to
be carried out.

Paik et al16 identified 250 candidate genes as potential
prognostic factors in breast cancer from several gene
expression studies and published literature. Expression
of these candidates was tested in 233 samples from two

Table 1. Minimal Requirements for Reporting Expression-Based Prognostic/Predictive Studies

Microarray technology Reporting of methods of RNA extraction, probe preparation, probe labeling and hybridization
Reporting of microarray platform used, method of image analysis and segmentation methods

Clinical design issues Clearly defined research question
Clear definitions for inclusion criteria and sample selection
All patients recruited at the same point in the course of the disease
The use of clinically relevant outcome measures
Use of clear definitions to characterize established prognostic factors (confounding variables) including details of

measurement methods
Full description of treatment subsequent to inclusion in the cohort

Statistical analysis Quality measures reported including assessment of feature quality, array background, spatial defects, results of
positive and negative control features on an array and repeatability across technical replicates

Clear description of the normalization process including an assessment of the degree of normalization needed before
downstream analysis

Clear description of the filtering process used before downstream analysis
Cross validation of classifiers should be performed on subsets that were not included in developing such a classifier
Use of receiver operating characteristic curves to estimate the performance of a classifier
External validation on independent data sets derived from prospective trials

Raw data reporting Reporting of raw microarray images and raw intensity files
Reporting of detailed statistical analysis
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National Surgical Adjuvant Bowel and Breast (NSABP) tri-
als in which subjects with ER-positive, node-negative
breast cancer received tamoxifen. Successful polymerase
chain reaction could be carried out in paraffin blocks
that were more than a decade old. A Recurrence Score al-
gorithm was derived that predicted low (recurrence rates
of 10% or less), intermediate (10% to 30%) and high
(more than 30%) risk which combined the expression
of 21 genes including five controls. The genes included
those induced by estrogen and involved in proliferation
and cell cycle control. Having generated the gene model,
the authors used 668 samples from NSABP B-14 to vali-
date these results. Further information from NSABP sug-
gests that the 21-gene signature is prognostic in untreated
women in B-14 and may also be predictive of benefit from
adjuvant chemotherapy in B-20.15 In contrast to current
data from expression microarray experiments, these
results appear compelling. However several key issues re-
main. Although large, the validation set from B-14 was
based on available samples, so unexpected biases are still
possible. Validation of the recurrence score will require
a randomized phase III study, which is currently being
planned (US Intergroup Program for the Assessment of
Clinical Cancer Tests [PACCT] study). External validation
also requires use of the test in different laboratories to
show that the methods are reproducible and widely appli-
cable. The use of RNA presents a continuing challenge and
differences in quantitation of ERBB2 were seen between
B-14 and B-20 samples. Translation of these findings into
an immunohistochemical test would make it easier to di-
rectly assess scores in tumor tissue in routine clinical practice.

New prognostic markers are often compared with ex-
isting markers (such as grade or stage) by showing differ-
ential effects on survival using Kaplan-Meier plots. Most
often these comparisons do not integrate all that is known
about the patient and in particular do not exclude whether
the new marker can perform better than combinations of
existing markers. A more definitive assessment can be de-
rived from multivariable analysis in which a hazard ratio
(HR) indicates the individual contribution in comparison
with other established markers. Some caution is needed in
interpretation of these values as the significance tests for
the HR indicates the probability that the HR is not zero,
not how significant is the contribution of the marker to
prognosis. Eden et al58 compared the van’t Veer 70-gene
marker with a combination of conventional multivariable
prognostic indices and the Nottingham Prognostic Index
on the original van’t Veer data set. Comparison of the two
markers was made using ROC curves and Kaplan-Meier
plots, but no difference in performance was distinguish-
able. Both methods could predict more accurately for
ER-positive as compared with ER-negative breast cancer.
A realistic aim for new prognostic markers perhaps
should be to improve performance, not replace existing

markers. More sophisticated tests that can quantify the
additional utility of a marker are urgently required.59

Predictive studies are a specialized form of prognostic
studies where the outcome of interest is response to treat-
ment and the application of the test is to inform which pa-
tients are suitable for specific therapy. These constraints
make the identification of predictive signatures more dif-
ficult than prognostic factors and require prospectively
controlled clinical trials. Chang et al44 used a sequential
cohort of 24 locally advanced breast cancers to identify
resistant and sensitive tumors to neoadjuvant docetaxel.
Supervised classification identified a 92-gene predictor that
correlated with docetaxel response. However, response
was defined retrospectively using median residual volume,
not standard clinical criteria, and the usefulness of the
predictor is yet to be validated. Similar studies have used
pathologic complete response and magnetic resonance im-
aging to define response from taxane-based treatment.60,61

In a follow-up expression study of 13 surgical specimens
from the Chang cohort, the authors found strikingly little
differences in gene expression between residual tumor
from resistant and sensitive cases.62 The authors suggest
that this may indicate selection for a resistant sub-
population of cells, but other confounding factors includ-
ing over-representation of normal tissue expression have
not yet been excluded.

CONCLUSION

So what are we clinicians to make of the two types of stud-
ies reviewed in the previous sections? On one hand we
have molecular classifications that appear to be robust
and reproducible and relatively trivial to apply in the
clinic. For example, with just three markers (ER, PR,
HER2) it is possible to define four major breast cancer
subclasses with major therapeutic implications: ER�/
PR�/HER2–, ER�/HER2�, ER–/HER2� and ER–/
PR–/HER2–. On the other hand we have the predictive sig-
natures that so far have ignored most of this information
and lumped all patients together. Would predictive signa-
tures perform equally well in all these subclasses? The an-
swer is unknown because the studies performed to date
have included all patients irrespective of HER2 status,
and so the potential impact on HER2-positive patients
is not quantifiable. The situation is similar for triple-
negative (ER–/PR–/HER2–) patients. A recent editorial
in the Journal of Clinical Oncology63 suggests that retro-
spective analyses, such as the recent overview by the Early
Breast Cancer Trialists Collaborative Group,2 that were
derived from unselected patient populations, have ques-
tionable value for patient cohorts defined by, for example,
HER2 status. We suggest that a similar maxim should be
applied to predictive classifiers, and, hence, that candidate
predictive signatures will need to be re-derived from well-
characterized patient cohorts defined by virtue of clinical



and biologic variables. We therefore question the feasibil-
ity of using existing signatures for prospective randomiza-
tion of patients in clinical trials. If the early results from
adjuvant trials confirm the strong benefit for HER2-positive
patients using adjuvant chemotherapy plus trastuzumab,
would there be clinicians prepared to withhold adjuvant
chemotherapy in a young patient with a node-negative,
HER2-positive breast cancer and a ‘‘good-prognosis’’ signa-
ture? And likewise for a similar patient with a triple-negative
cancer, but for whom chemotherapy might be the only sys-
temic therapy available to reduce risk of relapse?

We propose a way forward: (1) data from existing
predictive gene expression signatures should be mined us-
ing different algorithms (eg, the recently proposed semi-
supervised analysis shown to outperform the classifiers
derived using totally supervised approaches51) to try to
identify an overlapping consensus set of candidate predic-
tive genes that could then be validated externally using
polymerase chain reaction–based assays; (2) larger retro-
spective studies that include hundreds of samples from
each of the major subtypes defined by nodal status and
a small number of markers (ER/PR/HER2, and possibly
basal cytokeratins and EGFR) should be conducted using
legacy tumor banks to generate both a more definitive
breast cancer taxonomy and also a further set of predictive
signatures to be validated both prospectively or in samples

from completed clinical trials; and (3) prospective systemic-
therapy clinical trials should be designed with predictive
marker validation in mind, following rigorous design
(Sargent et al64).

The most difficult issue to tackle is going to be vali-
dation of predictive markers for node-negative disease,
where a randomization decision of receiving systemic
therapy on the basis of assigning a patient to a good-
prognosis group might mean that such therapy is denied
for someone who could benefit from it. The statistical
modeling that will help make such decisions easier will
require rigorous evaluation of the predictive power of sig-
natures, including truly independent external validation,
and their independence from tried, tested, trusted, and
validated methodology (eg, the Adjuvant! software pack-
age).65 We remain skeptical that the predictive expression
signatures have passed these litmus tests. The adherence to
guidelines for evaluating new prognostic (and predictive)
factors proposed long ago66 should ensure that the field
progresses along a smoother path. The promise of ge-
nomics deserves no less.
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