# Molecular cloning and different expression of a vacuolar Na<sup>+</sup>/H<sup>+</sup> antiporter gene in *Suaeda salsa* under salt stress

X.-L. MA\*, Q. ZHANG\*, H.-Z. SHI\*\*, J.-K. ZHU\*\*, Y.-X. ZHAO\*, C.-L. MA\* and H. ZHANG\*<sup>1</sup>

Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China\* Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA\*\*

# Abstract

A Na<sup>+</sup>/H<sup>+</sup> antiporter catalyzes the transport of Na<sup>+</sup> and H<sup>+</sup> across the tonoplast membrane. We isolated a vacuolar Na<sup>+</sup>/H<sup>+</sup> antiporter cDNA (*SsNHX1*) clone from a euhalophyte, *Suaeda salsa*. The nuclear sequence contains 2262 bp with an open reading frame of 1665 bp. The deduced amino acid sequence is similar to that of *AtNHX1* and *OsNHX1* in rice, with the highest similarities within the predicted transmembrane segments and an amiloride-binding domain. Northern blot analysis shows that the expression of the *S. salsa* gene was increased by salt stress. The results suggest that the *SsNHX1* product is likely a Na<sup>+</sup>/H<sup>+</sup> antiporter and may play important roles in the salt tolerance of *S. salsa*.

Additional key words: halophyte, salt tolerance, SsNHX1

### Introduction

Sodium ions in saline soil are toxic to plants due to induction of osmotic stress and effect of excess sodium ions on cytosolic enzyme activities, photosynthesis and metabolism (Niu et al. 1995). Plants combat the excessive sodium in two principal ways: either by excluding Na<sup>+</sup> ions at the plasma membrane or by sequestering them in the large intracellular vacuole (Frommer et al. 1999). Sodium is compartmentalized into the vacuole through the operation of a vacuolar  $Na^+/H^+$ antiporter, down an electrochemical proton gradient generated by the vacuolar H<sup>+</sup>-translocating enzymes, H<sup>+</sup>-adenosine triphosphatase (ATPase) (EC 3.6.1.35) and H<sup>+</sup>-inorganic pyrophosphatase (PPase) (EC 3.6.1.1) (Blumwald 1987). Thus, the  $Na^+/H^+$  antiporter can regulate the internal pH, cell volume and sodium content in the cytoplasm (Padan and Schuldiner 1996).

 $Na^+/H^+$  antiporters are widespread in bacteria, yeast, animals and plants. In yeast, the  $Na^+/H^+$  antiporter SOD2 is localized in the plasma membrane (Jia *et al.* 1992, Hahnenberger *et al.* 1996), while *NHX1* is found in the prevacuole membrane (Nass *et al.* 1997, 1998). In *Escherichia coli, NhaA, NhaB* and *ChaA* have been well described (Padan and Schuldiner 1996). In animals, six kinds of isoforms (*NHE1-6*) have been reported

(Orlowski and Grinstein 1997). In plants, Blumwald and Poole (1985) first reported the existence of a  $Na^+/H^+$ antiporter in tonoplast vesicles from red beet tap roots. Then in various halophytic and salt-tolerant glycophytic species, the existence of a Na<sup>+</sup> uptake system in the tonoplast was predicted (Barkla and Pantoja 1996, Blumwald and Gelli 1997). Recently facilitated by the Arabidopsis thaliana genome-sequencing project, a plant gene (AtNHX1) homologous to the Saccharomyces cerevisiae NHX1 gene has been identified and characterized (Gaxiola et al. 1999). Overexpression of AtNHX1 enhanced the salt tolerance of A. thaliana. Cell fractionation studies showed that the antiporter protein was expressed mainly in the membrane of large intracellular vacuoles (Apse et al. 1999). The SOS1 (salt overly sensitive 1) gene has been identified from A. thaliana through positional cloning, and predicted to encode a transmembrane protein with significant similarity to plasma membrane Na<sup>+</sup>/H<sup>+</sup> antiporters from bacteria and fungi (Shi et al. 2000).

Halophytes have NaCl tolerance mechanism different from glycophytes. Under treatment of 100 to 200 mM NaCl, their growth is accelerated with increasing Na<sup>+</sup> concentration (Flowers *et al.* 1977). Dicotyledonous

Received 17 January 2003, accepted 22 August 2003.

Acknowledgements: This work was supported by the National Natural Science Foundation of China (project 39980072), the National High Technology Research Development Project (2002AA629080) and the Development plan of the State Key Fundamental Research Project (G1999011700).

<sup>&</sup>lt;sup>1</sup> Corresponding author present address: Life Science College of Shandong Normal University, Wenhua East Road 88, Jinan, 250014, Shandong Province, PR China; fax: (+86) 531 6180764, e-mail: zhangh@sdnu.edu.cn

halophytes accumulate NaCl in their leaves to a considerable extent to achieve an osmotic balance against the low osmotic potential of the rooting medium (Flowers *et al.* 1977, Munns *et al.* 1983). These findings suggest that the halophytes can sequester Na<sup>+</sup> into vacuole via a Na<sup>+</sup>/H<sup>+</sup> antiporter. We isolated a Na<sup>+</sup>/H<sup>+</sup> antiporter gene from a typical euhalophyte, *Suaeda salsa. S. salsa* is a leaf succulent euhalophyte that may have gained unique salt-tolerance mechanisms. The plant can remove sodium

# Materials and methods

**Plants:** *Suaeda salsa* (L) Pall. seeds were placed in sand, irrigated with Hoagland solution whose composition was: 5 mM KNO<sub>3</sub>, 2 mM MgSO<sub>4</sub>, 5 mM Ca(NO<sub>3</sub>)<sub>2</sub>, 1 mM KH<sub>2</sub>PO<sub>4</sub>, 1 mM Fe-EDTA and micronutrients. *S. salsa* was grown under 14-h photoperiod with a photon flux density of 40 µmol m<sup>-2</sup>s<sup>-1</sup>, under 25 °C. Leaves of 6-week-old plants were used for RNA isolation. Total RNA for Northern blot was extracted from plants treated with 0, 400, and 500 mM NaCl separately for 48 h.

**RNA isolation and reverse transcription - polymerase chain reaction (RT-PCR):** Total RNA was isolated from *S. salsa* fleshy leaves and stems. In brief, 500 mg plant materials were ground in liquid nitrogen and extracted using *TRIZOL (Sargon,* Shanghai, China) reagent. With addition of 0.2 volume chloroform, after centrifugation (1 200 g), the supernatant was mixed with 0.5 volume isopropyl alcohol, incubated at 25 °C for 10 min, centrifuged at 4 °C. Then the RNA pellet was washed with 75 % ethanol, briefly dried and dissolved in RNase-free water. Total RNA was quantified spectrophoto-metrically. Dilutions of the RNA were electrophoresed on an RNA formaldehyde gel, the intensity of the rRNA bands was compared to confirm that equal quantities of RNA were taken for first-strand cDNA syntheses.

First-strand cDNA was synthesized from 10  $\mu$ g RNA with the RNA PCR kit (*AMV*) (*TaKaRa*, Tokyo, Japan). Reverse transcription proceeded for 45 min at 45 °C.

According to the conservation domain of the transmembrane region of *NHX1* in other organisms, we designed a pair of primers, N-F: 5'-CCNCCNATHAT-HTTYAAYGCNGG-3'; N-R: 5'-YTANGCCATNAGC-ATCAT-3' (N = A+C+T+G, H = A+T+C, Y = C+T). Using those primers, the PCR cycling was as follows: 3 min at 94 °C (one cycle), 30 s at 94 °C, 1 min at 56 °C, 2 min at 72 °C (30 cycles), 10 min at 72 °C (one cycle). PCR products were analyzed by agarose gel electrophoresis.

**5'- RACE and 3'- RACE:** The 5' RACE was performed by 5' RACE system for rapid amplification of cDNA ends (*Version 2.0, Life Technologies/Gibco-BRL*, Maryland, USA). The first strand cDNA is synthesized from total RNA using *SsNHX1*-specific reverse primer, from the root zone and deposit it in the foliage, thus decreasing the sodium concentration in the root media by 50 % or greater (Zhang *et al.* 2001). *S. salsa* has efficient mechanisms to sequester Na<sup>+</sup> into the vacuoles in leaves.

Here we report the molecular cloning and characterization of a *S. salsa* gene whose product is homologous to *AtNHX1*. We show that its expression is substantially increased under NaCl stress.

N-R-1: 5'-GAATGATACCAATGTAC-CAACG-3'. After a homopolymeric tail was added to the 3' end of the cDNA using TdT and dCTP, abridged anchor primer (5'-GGCCAACGCGTCGACTAGTA-CGGGGGGGGGG-3') and N-R-2: (5'-ATGTACCAAC-GGCTCCAAAC-3') was used for PCR of dC-tailed cDNA. N-R-3: (5'-TCACCTGAAACCCCGCATTG-3') and AUAP (5'-GGCCACGCGTCGA-CTAGTAC-3') for nested amplification.

The 3' RACE was also performed by 3'RACE system of *Gibco-BRL*. The three *SsNHX1*-specific forward primers were as follows: C-F-1: 5'-TGCAAGCACTCT-GCTTGGAG-3', C-F-2: 5'-TTGGAAGCAGTGACTGG-CTTG-3', C-F-3: 5'-TGGAAGGCATTCAACTGACC-3'. According to the manual, amplifications were performed.

**RT-PCR of** *SsNHX1* **cDNA fragment:** The cDNA fragment was amplified by two primers corresponding to the 5' and the 3' ends of the sequence, the forward and reverse primers are SN-F: 5'-TATCTG-AGAGCAGTCACTTGCG-3', SN-R: 5'-TAGTTTCTG-CACCAACTGCCTC-3'.

**DNA sequencing and sequence analysis:** Double-strand sequencing of plasmid was performed on an automated sequencer (*PE*, *Applied Biosystems*, Massachusetts, USA). Sequences were analyzed using *DNASIS* software, and databank searches were conducted through the *BLAST* program.

**Northern blot analysis:** Total RNA was isolated by guanidinium thioisocyanate extraction (Chomczynski and Sacci 1987). RNA amount was determined by absorbance (A<sub>260</sub>), and the concentration was confirmed by electrophoresis on an RNA formaldehyde gel (Sambrook *et al.* 1989). 20 µg of total RNA was loaded per lane. The gel was then blotted onto a nylon membrane. In order to affirm uniformity in loading for RNA blots, the loaded RNAs were stained with ethidium bromide. A <sup>32</sup>P-labeled DNA probe, 400 bp fragment (3'-untranslated cDNA region) was prepared using a random primer labeling kit (*Random Primers System, TaKaRa*). Hybridization was performed at 50 °C, washing the membrane at room temperature.

| 1           | TTT      | CAC         | AAA      | GAT      | TAT      | TGG      | ACT   | TCA   | GAA      | GTT      | TGA      | TTT | TGT       | GGA      | GCT        | AGA | AAG | GGT      | TTC      | ACA        |         | 60   |
|-------------|----------|-------------|----------|----------|----------|----------|-------|-------|----------|----------|----------|-----|-----------|----------|------------|-----|-----|----------|----------|------------|---------|------|
| 61          | TAC      | ATT         | GGA      | CAT      | TAA      | TTT      | ACT   | TGA   | ATA      | TAT      | ATA      | TAT | TTG       | TTG      | TGG        | GTC | TTG | GAT      | TCG      | GGT        |         | 120  |
| 121         | GCA      | CAA         | AGA      | AAT      | AGG      | TGA      | ACA   | ATG   | TTG      | TCA      | CAG      | TTG | AGC       | TCT      | TTT        | TTT | GCA | AGT      | AAG      | ATG        |         | 180  |
| 121         | 0011     | OIIII       | 11011    | 11111    | 100      | 10/1     | non   | M     | I        | S I OI   | 0/10     | I   | S S       | S        | F          | E   | Δ   | C NOT    | K        | M          |         | 13   |
| 101         | CAC      | ATC         | СТТ      | TCC      | ACC      | тст      | САТ   | CAT   | CCT      | тсс      | Q<br>CTT | СТТ | тсс       | ATC      |            | ттс | TTT | СТС      |          | CTC        |         | 240  |
| 101         | DAU      | M           | V        | rcu<br>c | T        | C ICI    | D     | UAI   | UCI<br>A | c        | V        | V   | rcu<br>c  | M        | MAI        | IIU |     | V        | UCA<br>A | UIG        | TM1     | 240  |
| 14          |          | M           | 000      | J<br>TCC | 1        | CTA      |       | П     | A        | CTT      | OTO      |     | 010       | M        | N<br>CCC   | L   |     | V        | A<br>CAA |            | INII    | 20   |
| 241         | IIA      | CGI         | GGC      | IGC      | AII      | GIA      | AII   | 661   | CAI      | UII      | CIC      | GAA | GAG       | AAI      | UGU        | IGG | AIG | AAI      | GAA      | ICC        |         | 300  |
| 34          | L        | K           | G        | U        |          | V        | 1     | G     | H        | L        | L        | E   | E         | N        | K          | W   | M   | N        | E        | 5          |         | 53   |
| 301         | ATT      | ACA         | GCT      | TIG      | CTA      | ATA      | GGT   | TIA   | ICI      | ACT      | GGG      | ATT | ATA       | AIC      | CIG        | CTA | ATT | AGT      | GGA      | GGA        | -       | 360  |
| 54          | 1        | T           | A        | L        | L        | <u> </u> | G     |       | S        | T        | G        | 1   | 1         | 1        | L          | L   | 1   | S        | G        | G          | TM2     | 73   |
| 361         | AAG      | AGT         | TCG      | CAT      | TTG      | TTG      | GTC   | TTC   | AGT      | GAA      | GAT      | CTT | TTC       | TTT      | ATA        | TAC | CTC | CTT      | CCA      | CCG        |         | 420  |
| 74          | K        | S           | S        | Н        | L        | L        | V     | F     | S        | E        | D        | L   | F         | F        | Ι          | Y   | L   | L        | Р        | P          | TM3     | 93   |
| 421         | ATT      | ATA         | TTC      | AAT      | GCG      | GGG      | TTT   | CAG   | GTG      | AAA      | AAG      | AAG | CAA       | TTT      | TTC        | CGC | AAC | TTC      | ATT      | ACT        |         | 480  |
| 94          | Ι        | Ι           | F        | Ν        | А        | G        | F     | Q     | V        | Κ        | Κ        | Κ   | Q         | F        | F          | R   | Ν   | F        | Ι        | Т          | TM4     | 113  |
| 481         | ATT      | ATT         | TTG      | TTT      | GGA      | GCC      | GTT   | GGT   | ACA      | TTG      | GTA      | TCA | TTC       | ATA      | ATC        | ATA | TCT | CTT      | GGT      | TCA        |         | 540  |
| 114         | Ι        | Ι           | L        | F        | G        | А        | V     | G     | Т        | L        | V        | S   | F         | Ι        | Ι          | Ι   | S   | L        | G        | S          |         | 133  |
| 541         | ATA      | GCT         | ATA      | TTT      | CAA      | AAG      | ATG   | GAT   | ATT      | GGT      | TCG      | CTG | GAG       | TTA      | GGG        | GAT | CTT | CTT      | GCA      | ATT        |         | 600  |
| 134         | Ι        | А           | Ι        | F        | Q        | Κ        | М     | D     | Ι        | G        | S        | L   | Е         | L        | G          | D   | L   | L        | А        | Ι          | TM5     | 153  |
| 601         | GGT      | GCA         | ATA      | TTC      | GĊT      | GCA      | ACT   | GAT   | TCA      | GTT      | TGC      | ACA | TTG       | CAA      | GTG        | CTT | AAT | CAA      | GAT      | GAG        |         | 660  |
| 154         | G        | A           | T        | F        | A        | A        | Т     | D     | S        | V        | C        | Т   | L         | Q        | V          | L   | N   | Q        | D        | E          |         | 173  |
| 661         | ACT      | CCA         | CTT      | CTT      | TAT      | AGT      | CTC   | GTG   | TTT      | GGT      | GAA      | GGT | GTC       | GTC      | AAT        | GAT | GCT | AĈA      | TĈA      | GTG        |         | 720  |
| 174         | T        | P           | Ĩ.       | Ĩ.       | Ŷ        | S        | Ĩ.    | V     | F        | G        | E        | G   | V         | V        | N          | D   | A   | Т        | S        | V          | TM6     | 193  |
| 721         | GTG      | TTG         | TTC      | AAT      | GĈA      | ATT      | CÃA   | AAC   | TTT      | GAC      | CTC      | ACG | CAC       | ATT      | GAC        | CAC | AGA | ATT      | GCC      | TTC        | 1 110   | 780  |
| 194         | v        | I           | F        | N        | A        | T        | 0     | N     | F        | D        | I        | Т   | Н         | T        | D          | Н   | R   | T        | A        | F          |         | 213  |
| 781         |          | TTT         | CCT      | 000      |          | TTT      | CTA   | TAT   | TTA      | ТТТ      | ттт      | CCA | ACC       | ACT      | СТС        | СТТ | CCA | CCA      | CTC.     | ACT        |         | 8/0  |
| 214         | 0        | E E         | 001      | 000      | M        | L L L    | I     | V     | IIA      | L L L    | L L L    | N N | C         | Т        | I          | T   | C   | N N      | V        | Т          | TM7     | 040  |
| 214<br>9/1  | CCC      | TTC         | CTA      |          | CCT      | TAT      |       |       |          |          | TTC      |     | TTT       |          |            |     | TCA |          |          |            | 1 1/1 / | 200  |
| 041         | C        | 110         | UIA      | RGC      | UCI<br>A | V        | V     | T     | V        | NAG<br>V | IIG      | V   |           | C        | D          | UAI | C   | T        | DAU      | D          |         | 900  |
| 234         | GAC      |             |          | <u>ں</u> | A        |          | CTT   |       |          |          |          | I   |           | U<br>ATC |            | П   | CAA |          |          |            |         | 203  |
| 901         | GAG      | GIA         | GUU      | IIA      | AIG      | AIG      | UII   | AIG   | GCI      | IAI      | UIA      | ICG | IAU       | AIG      | UII        | GUI | GAA | UIU      | IIU      | IAI        | TMO     | 900  |
| 254         | E        | V           | A        | L        | M        | M        | L     | M     | A        | ľ<br>TOT | L        | 5   | Y<br>OTTO | M        | L          | A   | E   |          | F        | <u> </u>   | IM8     | 273  |
| 961         | CIG      | AGC         | GGA      | ATT      | CIT      | ACA      | GIA   | TIC   | TIC      | IGI      | GGG      | ATT | GIU       | AIG      | TCC        | CAT | IAI | ACA      | TGG      | CAC        | 1       | .020 |
| 274         | L        | S           | G        | 1        | L        | T        | V     | F     | F        | <u> </u> | G        | 1   | V         | M        | S          | H   | Y   | T        | W        | H          |         | 293  |
| 1021        | AAT      | GTG         | ACG      | GAG      | AGC      | TCC      | AGA   | GTA   | ACC      | ACC      | AAG      | CAT | GCT       | TTT      | GCA        | ACA | CTC | TCT      | TTT      | GTA        | ]       | .080 |
| 294         | Ν        | V           | Т        | E        | S        | S        | R     | _ V_  | T        | T        | K        | H   | A         | F        | A          | T   | L   | S        | F        | <u>V</u>   | TM9     | 313  |
| 1081        | GCT      | GAG         | ATC      | TTC      | ATC      | TTT      | CTA   | TAT   | GTT      | GGT      | ATG      | GAT | GCA       | CTG      | GAT        | ATT | GAG | AAG      | TGG      | AGA        | 1       | .140 |
| 314         | A        | E           | Ι        | F        | Ι        | F        | L     | Y     | V        | G        | M        | D   | A         | L        | D          | Ι   | E   | K        | W        | R          |         | 333  |
| 1141        | TTT      | GTG         | AGC      | GAT      | AGT      | CCT      | GGA   | ACA   | TCT      | GTT      | GCT      | GTG | AGT       | TCC      | ATA        | CTG | CTT | GGT      | CTT      | CAC        | 1       | 200  |
| 334         | F        | V           | S        | D        | S        | Р        | G     | Т     | S        | V        | A        | V   | S         | S        | Ι          | L   | L   | G        | L        | <u>H</u> 1 | CM10    | 353  |
| 1201        | ATG      | GTT         | GGG      | CGA      | GCT      | GCT      | TTT   | GTT   | TTT      | CCC      | TTC      | GCC | TTT       | TTA      | ATG        | AAC | TTG | TCC      | AAG      | AAA        | 1       | 260  |
| 354         | М        | V           | G        | R        | А        | А        | F     | V     | F        | Р        | F        | А   | F         | L        | М          | Ν   | L   | S        | Κ        | Κ          |         | 373  |
| 1261        | TCA      | AAT         | AGT      | GAG      | AAG      | GTC      | ACC   | TTC   | AAT      | CAG      | CAG      | ATA | GTC       | ATT      | TGG        | TGG | GCT | GGT      | CTC      | ATG        | 1       | 320  |
| 374         | S        | Ν           | S        | Е        | Κ        | V        | Т     | F     | Ν        | Q        | Q        | Ι   | V         | Ι        | W          | W   | А   | G        | L        | MI         | CM11    | 393  |
| 1321        | AAA      | AGT         | GCT      | GTC      | TCC      | GTG      | GCA   | CTT   | GCT      | TAT      | AAT      | CAG | TTT       | TCA      | AGG        | TCA | GGA | CAC      | ACA      | CAG        | 1       | 380  |
| 394         | Κ        | S           | А        | V        | S        | V        | А     | L     | А        | Y        | Ν        | Q   | F         | S        | R          | S   | G   | Н        | Т        | Q          |         | 413  |
| 1381        | CTG      | AGG         | GGA      | AAT      | GCA      | ATC      | ATG   | ATT   | ACA      | AGC      | ACC      | ATA | ACC       | GTT      | GTC        | CTT | TTC | AGT      | ACG      | ATG        | 1       | 440  |
| 414         | L        | R           | G        | Ν        | А        | Ι        | М     | Ι     | Т        | S        | Т        | Ι   | Т         | V        | V          | L   | F   | S        | Т        | MI         | CM12    | 433  |
| 1441        | GTA      | TTT         | GGG      | TTG      | CTG      | ACA      | AAG   | CCT   | CTT      | ATA      | CTC      | TTT | ATG       | TTG      | CCT        | CAA | CCG | AAA      | CAT      | TTC        | 1       | 500  |
| 434         | V        | F           | G        | L        | L        | Т        | K     | Р     | L        | Ι        | L        | F   | М         | L        | Р          | Q   | Р   | Κ        | Н        | F          |         | 453  |
| 1501        | ACT      | AGT         | GCA      | AGC      | ACC      | GTG      | TCA   | GAT   | TTG      | GGG      | AGT      | CCA | AAG       | TCA      | TTC        | TĈC | TTG | CCT      | CTT      | CTT        | 1       | 560  |
| 454         | T        | S           | A        | S        | T        | V        | S     | D     | L        | G        | S        | P   | K         | S        | F          | S   | Ĺ   | P        | Ĺ        | Ĺ          | -       | 473  |
| 1561        | GÂA      | GĂT         | AGA      | CĂĂ      | GÂT      | TCT.     | GĂA   | GCT   | GĂT      | TTG      | GGC      | AAC | GAT       | GĂT      | GĂA        | GĂA | GČC | TÂC      | ccc      | CGT        | 1       | 620  |
| 474         | F        | D           | R        | 0        | D        | S        | F     | A     | D        | I        | G        | N   | D         | D        | F          | F   | A   | V        | P        | R          |         | 493  |
| 1621        | ລວັວ     | ACT         | ΑΤΑ      | GCT      | CGA      | ССТ      | ACT   | AGT   | СТТ      | CGT      | ATG      | CTA | CTA       | AAT      | GCA        | CCA | ACT | CAC      | ACT      | GTC        | 1       | 680  |
| 494         | 6        | T           | T        | Δ        | R        | P        | T     | S     | Ĩ        | R        | M        | I   | I         | N        | A          | P   | T   | Н        | T        | V          |         | 513  |
| 1681        | CAT      | CAT         | тат      | тас      | ດດີດ     | ΔGΔ      | TTC   | CAT   | GAT      | ТАТ      | TTC      | ATG | ລວັງ      | ССТ      | CTA        | ттт | сст | 222      | ລວ້າ     | сст        | 1       | 740  |
| 514         | Ц        | Ц           | V        | W        | P        | P        | F     | D     | D        | V        | F        | M   | P         | D        | V          | E   | C   | 000<br>C | P        | 6          | 1       | 522  |
| 1741        |          |             | ССТ      | TTT      | CTC      |          | ССТ   | тсл   |          |          |          |     |           |          | ACT        |     | TTC | TCA      |          |            | 1       | 200  |
| 524         | 111      | UIA         | P        | 111<br>E | W        | D        | 001   | C ICA | P        | T        | UAA<br>F | CAG | RUU       | т        | T          | M   | 110 | C C      | 0HJ      | P          | 1       | 550  |
| 004<br>1001 |          | V<br>TAA    | Г<br>СТТ |          | C AT     | Г        |       | 000   | Г        |          | E<br>TCC |     | 3         |          | 1<br>T / / |     |     | с<br>ССС | Q<br>CTA |            | 1       | 000  |
| 1001        | AUA<br>T | I AA        | 911      | AGU      | GAI      | AAI      | IGA   | GGC   | AGI      | 100      | 190      | AGA | AAU       | IAA      | IAA        | UII | ACA | UUU      | UIA      | CAG        | 1       | .000 |
| 004<br>1061 |          | *<br>\ T () | TAC      |          | 010      | A A A    | A A A | TCC   | CCT      | TAC      | CCA      | 101 | 100       | 110      | 100        | 000 | CTC | TTT      | COT      | CTC        | -       | 000  |
| 1001        | GUA      | AIU         | TAU      | AAA      | GAU      | AAA      | AAA   | TGC   | UUI      | IAC      | UUA      | AGA | ACG       | AAC      | AGU        | CUG | 616 |          | GGI      | UIU        | 1       | .920 |
| 1921        | GIG      | GGC         | IIG      | AIG      | ITA      | AGA      | UIG   | IGC   | IGI      | AUT      | IUT      | GIT | AAT       | AGA      | GAG        | IAA | GIT | ACA      | GAA      | ACC        | ļ       | .980 |
| 1981        | ACC      | GAT         | ITA      | AAC      | ATA      | IUT      | GTA   | ATT   | III      | TAC      | AGC      | AIG | GAT       | ATT      | UGA        | IGC | AIT | UIT      | IAA      | IUT        | 2       | 2040 |
| 2041        | GGC      | IGL         | AGC      | TAG      | AAT      | ACT      | UTA   | GCA   | TGT      | TTT      | GIA      | GIT | ICA       | GIC      | IIA        | UCA | ITT | AGG      | III      | ICT        | 2       | :100 |
| 2101        | CCT      | ACA         | IAA      | CUT      | CAA      | IAA      | GCT   | GIT   | TAG      | IGT      | GUT      | TAC | TGC       | ITA      | UTT        | TAG | AGC | AAA      | CIG      | CAA        | 2       | 160  |
| 2161        | CTG      | TGA         | AAA      | TTG      | CIT      | ACG      | TCA   | GCG   | GCA      | CCT      | GTG      | TAA | TTT       | ATC      | ATT        | TTT | ATA | ATG      | ATG      | GAG        | 2       | 2220 |
| 2221        | CAT      | GAT         | CAT      | TTG      | CAA      | TCA      | AAT   | TTA   | CAA      | TAC      | TGT      | GAT | TAA       | AAA      |            |     |     |          |          |            | 2       | 2262 |

GENE EXPRESSION UNDER SALT STRESS

Fig. 1. Nucleotide sequence of *SsNHX1* cDNA and deduced amino acid sequence of *SsNHX1*, the accession number is AF370358. Nucleotide sequences and deduced sequence of amino acid residues of the insert in the *S. salsa*  $Na^+/H^+$  antiporter (*SsNHX1*) cDNA clone. The amino acid residues are indicated by a single letter code. Three potential glycosylation sites are in the boxes. The 12 putative transmembrane domains (TM) are underlined.

# Results

**Isolation of** *SsNHX1*: Using the primers N-F and N-R for RT-PCR a 0.5-kb band was observed. Sequencing of this fragment showed that it contains the conserved transmembrane domain and had high homology to *AtNHX1* (approximately 81 % identity in amino acids). Using the 5'-RACE and 3'-RACE systems, two PCR products were obtained separately, the 5' product was 0.4 kb and the 3' product was 1.4 kb. With the primers corresponding to 5' and 3' ends, a 2.3-kb fragment was amplified. The fragment was cloned into pMD18 vector and sequenced (Fig. 1).

The cDNA was 2.3 kb with a 5'-untranslated region of 141 bp, an open reading frame (ORF) of 1665 bp and a 3'-untranslated region of 455 bp. The amino acid

sequence deduced from the ORF showed that the cDNA encodes a protein of 554 amino acids with a calculated molecular mass of 61.2 kDa.

**Structural analysis of** *SsNHX1*: Hydropathy plot analysis of the sequence (by the method of Hofmann and Stoffel 1993) revealed that the N-terminal portion of *SsNHX1* is highly hydrophobic and has 12 putative transmembrane domains (Figs. 1, 2), the C-terminal portion is a highly hydrophilic tail in the product (Fig. 2). The deduced amino acid sequence (*SsNHX1*) has high similarity with *McNHX1* (88 %), and is similar to *AtNHX1* and *OsNHX1* with identity 67 - 68 %.



Fig. 2. Hydrophobicity plot of *SsNHX1*. The hydrophobicity values were calculated by the program TMpred available at http://www.ch.embnet.org/software/TMPRED-form.html

Based on the preliminary topological model and the known sites of glycosylation in other *NHE* isoforms, we hypothesized that the likely site(s) of N-linked glycosylation were on the loops between transmembrane segments, namely at one or more of the residues Asn-49, -292 and -367. These sites are located near the positions of the consensus N-glycosylation sites in human *NHE1* (Counillon *et al.* 1994). The results suggest that the *SsNHX1* protein is glycosylated.

In the eukaryotic Na<sup>+</sup>/H<sup>+</sup> antiporter, the membranespanning segments are well conserved. *SsNHX1* shares high similarity with other vacuolar Na<sup>+</sup>/H<sup>+</sup> antiporters, *AtNHX1*, *OsNHX1* and *InNHX1* within predicted transmembrane segments (Fig. 3). The sequence of <sup>85</sup>LFFIYLLPPI<sup>94</sup> in *SsNHX1* is highly conserved within *AtNHX1*, *OsNHX1*, *NHX1* and mammalian *NHE*. In mammals, this region is identified as the binding site of amiloride which inhibits the eukaryotic Na<sup>+</sup>/H<sup>+</sup> exchanger. These results indicated that the gene *SsNHX1* is a vacular-type Na<sup>+</sup>/H<sup>+</sup> antiporter.

Phylogenetic analysis of different Na<sup>+</sup>/H<sup>+</sup> antiporters indicated that the halophytes *Mesembryanthemum crystallinum* and *S. salsa* shared the same origin. They also shared the same origin from glycophytes, but they were different from yeast (Fig. 4). **Expression analysis of** *SsNHX1*: To examine if the expression of the *SsNHX1* gene in *S. salsa* was regulated by Na<sup>+</sup> concentration, a piece of nylon membrane was transferred with total RNAs from plants treated for 48 h with 0, 400, or 500 mM NaCl. To examine the tissue-specific expression of *SsNHX1* under NaCl stress, the other two membranes were transferred separately with total RNAs from roots or leaves of the plants treated with 0, 400, or 500 mM NaCl. The loaded RNAs were stained with ethidium bromide to access the relative quantity in each lane. A hybridization band about 2.4 kb was observed in every lane.

The expression of *SsNHX1* was increased by NaCl treatment, both in the whole plant and in root, leaf tissues. With the Na<sup>+</sup> concentration increased, the mRNA amount increased also. The results showed that the expression of *SsNHX1* was significantly stimulated by salt stress in the whole plant (Fig. 5A). In the leaves, relative amounts of mRNA increased up to 8- and 10-fold higher than the control (0 mM) in response to 400 and 500 mM NaCl treatment (Fig. 5B). In the roots, the mRNA increased up to 4 to 5 times, respectively (Fig. 5C). On the whole, *SsNHX1* expression was up-regulated by salt stress in both roots and leaves, and the amounts of induction in leaves were larger than this in roots.

### GENE EXPRESSION UNDER SALT STRESS

| SsNHX1                 | MLSQLSSFFASKMDMVSTSDHASVVSMNLFVALLRGCIVIGHLLEENRWMNESITALLIG                                                                              |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| AtNHX1                 | MLDSLVSKLPSLSTSDHASVVALNLFVALLCACIVLGHLLEENRWMNESITALLIG                                                                                  |
| 0sNHX1                 | MGMEVAAARLGALYTTSDYASVVSINLFVALLCACIVLGHLLEENRWVNESITALIIG                                                                                |
| InNHX1                 | MAFGLSSLLQNSDLFTSDHASVVSMNLFVALLCACIVLGHLLEENRWVNESITALIIG                                                                                |
|                        | * : ***:*** <u>*::******</u> . ***:***********************                                                                                |
| SsNHX1                 | LSTGIIILLISGGKSSHLLVFSEDLFFIYLLPPIIFNAGFQVKKKQFFRNFITIILFGAV                                                                              |
| AtNHX1                 | LGTGVTILLISKGKSSHLLVFSEDLFFIYLLPPIIFNAGFQVKKKQFFRNFVTIMLFGAV                                                                              |
| 0sNHX1                 | LCTGVVILLMTKGKSSHLFVFSEDLFFIYLLPPIIFNAGFOVKKKOFFRNFMTITLFGAV                                                                              |
| InNHX1                 | LCTGVVILLLSGGKSSHLLVFSEDLFFIYLLPPIIFNAGFOVKKKOFFVNFMTIMLFGAI                                                                              |
|                        | * **: ***:: ******:********************                                                                                                   |
| SsNHX1                 | GTLVSFIIISLGSIAIFQKMDIGSLELGDLLAIGAIFAATDSVCTLQVLNQDETPLLYSL                                                                              |
| AtNHX1                 | GTIISCTIISLGVTQFFKKLDIGTFDLGDYLAIGAIFAATDSVCTLQVLNQDETPLLYSL                                                                              |
| OsNHX1                 | GTMISFFTISIAAIAIFSRMNIGTLDVGDFLAIGAIFSATDSVCTLQVLNQDETPFLYSL                                                                              |
| InNHX1                 | GTLISCSIISEGAVKIEKHLDIDELDEGDYLAIGAIEAATDSVCTLOVLSQDETPLLYSL                                                                              |
|                        | **::* **: :* :::* :: ** ******                                                                                                            |
| SsNHX1                 | VEGEGVVNDATSVVLENATONEDLTHTDHRTAEQEGGNELYLEEASTLLGAVTGLLSAYV                                                                              |
| AtNHX1                 | VFGEGVVNDATSVVVFNATQSFDLTHLNHEAAFHLLGNFLYLFLLSTLLGAATGLTSAYV                                                                              |
| OsNHX1                 | VFGFGVVNDATSIVI FNALQNFDI VHIDAAVVI KFLGNFFYLFLSSTFLGVFAGLI SAYI                                                                          |
| InNHX1                 | VEGEGVVNDATSVVI ENALOSEDMTSEDPKIGI HEIGNEI VI ELSETELGVGIGLI CAVI                                                                         |
|                        | ***************************************                                                                                                   |
| SeNHX1                 | IKKI VEGRHSTDREVALIMI MAVI SYMLAFI EVI SGTI TVEEGGTVMSHVTWHNVTESSR                                                                        |
| $\Delta + NHY1$        | IKKENT GAUSTEREVALMALMENTEETMELAEEN TESGTETVIT GATVMSHTTWHAVTESSR                                                                         |
| OcNHY1                 | IKKENT GRUSTDREVALMALMENTESTMELAEED DESGTETVIT GGTVMSHTTWHVVTESSR                                                                         |
| InNHY1                 | IKKLYTOKUSTOREVALMALMENTESTMENEEDESGIETVITCOTVMSHTTWHWVTESSR                                                                              |
|                        | ***************************************                                                                                                   |
| SeNHX1                 | VTTKHAFATI SEVAFIFIFI VVCMDAL DIFKWRFVSDSPCTSVAVSSILL CLHMVCRAAF                                                                          |
| $\Delta + NHY1$        | ITTKHTEATI SEI AFTEIEI VVCMDALDIDKWRSVSDTPCTSIAVSSILLOLIMVOKKIK                                                                           |
| OcNHY1                 | VTTKHAFATI SELAFTEI EI VVCMDALDIEKWEFASDRPCKSIGISSILI CI VI ICRAAF                                                                        |
| InNHY1                 | VTTRUST THE VIEW VIEW VIEW VIEW VIEW VIEW VIEW VIE                                                                                        |
| IIIIIIXI               | ·**·*                                                                                                                                     |
| SeNHY1                 | VEPEAELMNI SKKSNSEKVTENOOTVIWWACI MKSAVSVALAVNOESPSCHTOLRCNAIM                                                                            |
| $\Delta + \text{NHY1}$ | VEPI SEI SNI AKKNOSEKINENMOVVIWSCI MEGAVSMALAVNKETRACHTDVRCNAIM                                                                           |
| OcNHY1                 | VEPI SEI SNI TKKAPNEKITWROOVVIWWACI MRCAVSTALAVNKETRSCHTOI HCNAIM                                                                         |
| InNHY1                 | VEPI SEI SNI AKKNSSDKISEROOTIIWWACI MRCAVSIALAVNKETTSCHTSI HENAIM                                                                         |
|                        | ***··** **·** ·*· · *··***·*** ********                                                                                                   |
| SeNHY1                 | ITSTITVVI ESTMVECI I TKPI II EMI POPKHETSASTVSDI CSPKSESI PI I EDRO                                                                       |
| $\Lambda + NHY1$       | TTSTITVELSTMVI OLETNI ETEL MEL QI NII TSNST VSDEUSI NSI SEI EEEDNQ<br>ITSTITVEI STWVI OLETNI ETEL MEL QI NII TSNST VSDEUSI NSI SEI EEEDNQ |
| OcNHY1                 | ITSTITVELSTVI OMETRI EISTEEI NGV ATTSM ESDDATI KSTITLED G                                                                                 |
| TDNHY1                 |                                                                                                                                           |
| THINIVI                |                                                                                                                                           |
| ScNHV1                 |                                                                                                                                           |
| $\Lambda + MUV1$       |                                                                                                                                           |
|                        |                                                                                                                                           |
|                        |                                                                                                                                           |
|                        |                                                                                                                                           |
| S <sub>c</sub> MUV1    | . ጥ                                                                                                                                       |
|                        | VI VOLTERVOTTINEORAL<br>VDCCDTEDNDDNI CKA_                                                                                                |
| AUNIAL<br>Ocivity 1    | VI USI TERNI I DESRAT                                                                                                                     |
|                        |                                                                                                                                           |
|                        | ◆本本 本・                                                                                                                                    |
|                        | · ጥጥጥ, ጥ                                                                                                                                  |

Fig. 3. Amino acid sequence alignment of SsNHX1 with NHXs from other species. All sequences are from GenBank, EMBL and DDBJ databases. The accession numbers and sources of each of the other representative Na<sup>+</sup>/H<sup>+</sup> antiporters are as follows: *S. salsa* (*SsNHX1*; AF370358), *A. thaliana* (*AtNHX1*; AC 009465), *Ipomoea nil* (*IoNHX1*; AB033989), *Oryza sativa* (*OsNHX1*; AB021878), *Saccharomyces cerevisiae* (*ScNHX1*; NP-010744.1). Sequences were aligned by the program *Clustalx*. Alignments are from the N terminus of each sequence. Asterisks indicate the identical amino acid residues, colons indicate amino acids that have high similarity, periods indicate amino acids that have low similarity, and dashes indicate gaps. The amiloride binding sites are shaded.

## Discussion

To cope with salt stress, plants have developed the mechanisms of ion homeostasis including Na<sup>+</sup> extrusion system, or sequester Na<sup>+</sup> into the vacuole and regulate the ratio of K<sup>+</sup>/Na<sup>+</sup> (Blumwald 2000a). Na<sup>+</sup>/H<sup>+</sup> antiporter plays a role in the Na<sup>+</sup> compartmentalization. In the glycophyte *A. thaliana*, sodium ions flow through the Na<sup>+</sup>/H<sup>+</sup> antiport into the prevacuoles and then into the large vacuole through a pathway of vesicles (Apse *et al.* 

#### 1999, Frommer et al. 1999).

*S. salsa* is an important euhalophyte exhibiting high degree of salt tolerance with leaf succulent character. It does not have salt glands or salt bladders on its leaves. Thus this plant must compartmentalize the excessive Na<sup>+</sup> in the vacuoles. Therefore, membrane-bound transport systems regulating cytosolic ion homeostasis and ion accumulation in the vacuole can be considered of crucial

importance for adaptation to saline conditions (Serrano *et al.* 1999, Hasegawa *et al.* 2000). It is an ideal plant for studying Na<sup>+</sup> sequestration of the vacuole. Therefore, we isolated a putative vacuolar Na<sup>+</sup>/H<sup>+</sup> antiporter gene from this euhalophyte.

Structural analysis shows that the *SsNHX1* protein is predicted to have 12 transmembrane domains in its N-terminal portion and these domains are conserved in vacuolar Na<sup>+</sup>/H<sup>+</sup> antiporter (Fig. 3). This suggests that *SsNHX1* contains conserved region consistent with the other vacuolar Na<sup>+</sup>/H<sup>+</sup> antiporters. *SsNHX1* also has a C-terminal hydrophilic tail which is shorter than that in animals. There is a binding site of amiloride that plays as the exchange activity inhibitor. Phylogenetic analysis revealed that *SsNHX1* clusters with vacuolar Na<sup>+</sup>/H<sup>+</sup> antiporters from plants such as *McNHX1*, *AtNHX1*, it does not cluster with Na<sup>+</sup>/H<sup>+</sup> antiporters from yeast and animals (Fig. 4). All these analyses indicate that the SsNHX1 protein may function at the tonoplast to sequester Na<sup>+</sup> into vacuole.



Fig. 4. Phylogenetic analysis of Na<sup>+</sup>/H<sup>+</sup> antiporter proteins. The accession numbers and sources of other five Na<sup>+</sup>/H<sup>+</sup> antiporters are: *Mesembryanthemum crystallinum (McNHX1*; AF 279671), *Zea mays (ZmNHX1*; AF 307944), *Drosophila melanogaster (DmNHE3*; AE 003614), *D. melanogaster (DmNHE2*; AE 003669), *Homo sapiens (HsNHX1*; M 81768).



Fig. 5. Up-regulated expression of SsNHX1 by NaCl stress. Total RNAs in the lanes were isolated from *S. salsa* with 0, 400, or 500 mM NaCl treated for 48 h. A fragment of SsNHX1 cDNA was used as probe. The expression were monitored in the whole plant (*A*), leaves (*B*), roots (*C*). The loaded RNAs were stained with ethidium bromide (rRNA), rRNA is showen to served as a control for the same quantity of total RNAs.

Comparison of the amino acid sequence with other three plant genes showed that the variable regions were at the N-terminal (2-7) and the C-terminal (449-498, 546-554) regions. Some experiment findings have demonostrated that the structure subdivision was consistent with the partition of function (Dibrov and Fliegel 1998). The non-homologous regions can reflect the difference in Na<sup>+</sup>/H<sup>+</sup> antiporter activities between halophytes and glycophytes. It will help to know why halophytes have efficient mechanisms to compart Na<sup>+</sup> into vacuoles.

Northern blot indicated that the *SsNHX1* gene expression was up-regulated by NaCl stress. The induced expression at 500 mM were larger than at 400 mM, and with the Na<sup>+</sup> concentration elevating, the induced amounts increased. This up-regulation was consistent with the role of *SsNHX1* in Na<sup>+</sup> tolerance. It has been known that vacuolar H<sup>+</sup>-ATPase and H<sup>+</sup>-PPase provided proton-motive force to drive Na<sup>+</sup> intracellular sequestration via Na<sup>+</sup>/H<sup>+</sup> antiporter (Blumwald 1987). The expression of vacuolar H<sup>+</sup>-ATPase gene was up-regulated by salt stress in *S. salsa* (Wang *et al.* 2000), the increase of V-ATPase would provide driving force that can sequestrate Na<sup>+</sup> in vacuole, to increase Na<sup>+</sup>/H<sup>+</sup> antiporter activity as in *M. crystallinum* (Rataczak *et al.* 1994, Barkla *et al.* 1995).

Northern blot results also suggested that the increased ratio of *SsNHX1* expression in leaves was larger than this in roots, the *SsNHX1* expression was tissue-specific. It was coordinated with the findings in a facultative halophyte ice plant: no up-regulation of V-ATPase subunit E was seen in any root cell, even indicated down-regulation, suggests that roots are apparently unable to accumulate  $Na^+$ , and  $Na^+$  is passed to the xylem for translocation to the leaves (Golldack and Dietz 2001).

Although functional adaptation mechanisms are likely to be largely conserved among glycophytes, halophytic organisms have evolved additional structural or distinct stress-recognition system and regulatory controls that account for their ability to withstand severe osmotic or ionic stress (Very et al. 1998). For a long while, the lack of progress in the characterization of the plant Na<sup>+</sup>/H<sup>+</sup> antiporter has hindered our understanding of the cellular and molecular bases of salt tolerance (Blumwald 2000b). Now, most of the studies of plant Na<sup>+</sup>/H<sup>+</sup> antiporter genes were focused on glycophytes (Fukuda et al. 1999). Based on the fact that the Na<sup>+</sup>/H<sup>+</sup> antiporter works more efficiently in halophytes, so we isolated Na<sup>+</sup>/H<sup>+</sup> antiporter from euhalophyte. It would be convenient for the study of regulatory controls system of the Na<sup>+</sup>/H<sup>+</sup> antiporter, benefit for the study of the salt-tolerance mechanism in the whole plant.

- Apse, M.P., Aharon, G.S., Snedden, W.A., Blumwald, E.: Salt tolerance conferred by overexpression of a vacuolar Na<sup>+</sup>/H<sup>+</sup> antiport in *Arabidopsis*. - Science **285**: 1256-1258, 1999.
- Barkla, B.J., Pantoja, O.: Physiology of ion transport across the tonoplast of higher plants. - Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 159-184, 1996.
- Barkla, B.J., Zingarelli, L., Blumwald, E., Smith, J.A.C.: Tonoplast  $Na^+/H^+$  antiport activity and its energization by the vacuolar  $H^+$ -ATPase in the halophytic plant *Mesembryanthemum crystallinum* L. - Plant Physiol. **109**: 549-556, 1995.
- Blumwald, E.: Tonoplast vesicles as a tool in the study of iontransport at the plant vacuole. - Physiol. Plant. 69: 731, 1987.
- Blumwald, E.: Sodium transport and salt tolerance in plants. -Curr. Opinion Cell Biol. **12**: 431-434, 2000b.
- Blumwald, E., Aharon, G.S., Apse, M.P.: Sodium transport in plant cells. - Biochim. biophys. Acta 1465: 140-151, 2000a.
- Blumwald, E., Gelli, A.: Secondary in organic ion transport at the tonoplast. Adv. Bot. Res. **25**: 401, 1997.
- Blumwald, E., Poole, R.J.: Na<sup>+</sup>/H<sup>+</sup> antiport in isolated vesicles from storage tissue of *Beta vulgaris*. - Plant Physiol. **78**: 163-167, 1985.
- Chomczynski, P., Sacci, N.: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. - Anal. Biochem. 162: 156-159, 1987.
- Counillon, L., Pouyssegur, J., Reithmeier, R.: The Na<sup>+</sup>/H<sup>+</sup> exchanger (NHE-1) contains N- and O-linked glycosyation restricted to the first N-terminal extracellular domain. Biochemistry **33**: 10463-10469, 1994.
- Dibrov, P., Fliegel, L.: Comparative molecular analysis of Na<sup>+</sup>/H<sup>+</sup> exchangers: a unified model for Na<sup>+</sup>/H<sup>+</sup> antiport? FEBS Lett. **424**: 1-5, 1998.
- Flowers, T.J., Troke, P.F., Yeo, A.R.: The mechanism of salt tolerance in halophytes. - Annu. Rev. Plant Physiol. 28: 89-121, 1977.
- Frommer, W.B., Ludewig, U., Rentsch, D.: Taking transgenic plants with a pinch of salt. - Science 285: 1222-1223, 1999.
- Fukuda, A., Nakamura, A., Tanaka, Y.: Molecular cloning and expression of the Na<sup>+</sup>/H<sup>+</sup> exchanger gene in *Oryza sativa*. -Biochim. biophys. Acta **1446**: 149-155, 1999.
- Gaxiola, R.A., Rao, R., Sherman, A., Grisafi, P., Alper, S.L., Fink, G.R.: The *Arabidopsis thaliana* proton transporters, *AtNhx1* and *Avp1*, can function in cation detoxification in yeast. - Proc. nat. Acad. Sci. USA **96**: 1480-1485, 1999.
- Golldack, D., Dietz, K.J.: Salt-induced expression of the vacuolar H<sup>+</sup>-ATPase in the common ice plant is developmentally controlled and tissue specific. Plant Physiol. **125**: 1643-1654, 2001.
- Hahnenberger, K.M., Jia, Z., Young, P.G.: Functional expression of the *Schizosaccharomyces pombe*  $Na^+/H^+$  antiporter gene, sod2, in *Saccharomyces cerevisiae*. Proc. nat. Acad. Sci. USA **93**: 5031-5036, 1996.
- Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J.: Plant cellular and molecular responses to high salinity. - Annu. Rev. Plant Physiol. Plant mol. Biol. 51: 463-499, 2000.

- Hofmann, K., Stoffel, W.: TM base-A database of membrane spanning proteins segments. - Biol. Chem. Hoppe-Seyler 347: 166, 1993.
- Jia, Z.P., Mcmullough, N., Martel, R., Hemmingsen, S., Young, P.G.: Nucleotide gene amplification at a locus encoding a putative Na<sup>+</sup>/H<sup>+</sup> antiporter confers sodium and lithium tolerance in fission yeast. - EMBO J. **11**: 1631-1640, 1992.
- Munns, R., Greenway, H., Kirst, G.O.: Halotolerant eukaryotes. - In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (ed.): Encyclopedia of Plant Physiology. Vol. 12. Part C. Pp. 59-135. Springer-Verlag, Berlin 1983.
- Nass, R., Cunningham, K.W., Rao, R.: Intracellular sequestration of sodium by a novel Na<sup>+</sup>/H<sup>+</sup> exchanger in yeast is enhanced by mutations in the plasma membrane H<sup>+</sup>-ATPase. J. biol. Chem. **272**: 26145-26152, 1997.
- Nass, R., Cunningham, K.W., Rao, R.: Novel localization of a Na<sup>+</sup>/H<sup>+</sup> exchanger in a late endosomal compartment of yeast. - J. biol. Chem. **273**: 21054-21060, 1998.
- Niu, X., Bressan, R.A., Hasegawa, P.M., Pardo, J.M.: Ion homeostasis in NaCl stress environment. - Plant Physiol. 109: 735-742, 1995.
- Orlowski, J., Grinstein, S.: Na<sup>+</sup>/H<sup>+</sup> exchangers of mammalian cell. J. biol. Chem. **272**: 22373-22376, 1997.
- Padan, E., Schuldiner, S.: Bacterial Na<sup>+</sup>/H<sup>+</sup> antiporters: molecular biology, biochemistry, and physiology. - In: Konings, W.N., Kaback, H.R., Lolkema, J.S. (ed.): Handbook of Biological Physics. Vol. 2. Pp. 501-503. Elsevier Science, Amsterdam 1996.
- Ratajczak, R., Richter, J., Lüttge, U.: Adaptation of the tonoplast V-ATPase of *Mesembryanthemum crystallinum* to salt stress, C<sub>3</sub>-CAM transition and plant age. - Plant Cell Environ. **17**: 1101-1112, 1994.
- Sambrook, J., Fritsh, E.F., Maniatis, T.: Molecular Cloning: A Laboratory Manual. 2<sup>nd</sup> Ed. - Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1989.
- Serrano, R., Mulet, J.M., Rios, G., Marquerz, J.A., Larrinoa, I.F., Leube, M.P., Mendizabal, I., Pascual-Ahuir, A., Proft, M., Ros, R., Montesinos, C.: A glimpse of the mechanisms of ion homeostasis during salt stress. - J. exp. Bot. 50: 1023-1036, 1999.
- Shi, H., Ishitani, M., Kim, C., Zhu, J.K.: The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na<sup>+</sup>/H<sup>+</sup> antiporter. - Proc. nat. Acad. Sci. USA 97: 6896-6901, 2000.
- Very, A.A., Robinson, M.F., Mansfield, T.A., Sanders, D.: Guard cell cation channels are involved in Na<sup>+</sup>-induced stomatal closure in a halophyte. - Plant J. 14: 509-521, 1998.
- Wang, B.S., Ratajczak, R., Zhang, J.H.: Activity, amount and subunit composition of vacuolar-type H<sup>+</sup>-ATPase and H<sup>+</sup>-PPiase in wheat roots under severe NaCl stress. - J. Plant Physiol. **157**: 109-116, 2000.
- Zhang, L., Ma, X.L., Zhang, Q., Ma, C.L., Wang, P.P., Zhao, Y.X., Zhang, H.: Expressed sequence tags from a NaCltreated *Suaeda salsa* cDNA library. - Gene 267: 193-200, 2001.



Dr Radosav Cerović Director of the Institute SERBIA – Chairman of the Organizational Board Prof. dr Petar Mišić Chairman of the Programme Board

# The Congress will work in plenum in comliance to the following preliminary programme PLENARY LECTURES by the invited participants and SESSIONS

- 1. Fruit Genetics and Breeding
- 2. Fruit Cultivars and Rootstocks
- 3. Fruit Physiology and Ecology
- 4. Fruit Nursery Production and Agrotechnique
- 5. Fruit Integrated and Organic Production
- 6. Fruit Protection
- 7. Fruit Harvest, Storage and Processing Technology
- 8. Economy of Fruit Production

The accompanying contents of the Congress Promoted presentations Exhibitions Round table Meeting of Scientific Pomological Society of SCG Excursion

E-mail address of Congress Secretariat: aiserbia@eunet.yu Phone/Fax ++ 381 11 624 626; ++ 381 11 628-398