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Abstract

The neurohypophysial nonapeptides vasotocin (VT) and mesotocin (MT) are the amphibian counterparts

of arginine vasopressin (AVP) and oxytocin (OT). We have here reported the cloning and functional

characterization of the receptors for vasotocin (VTR) and mesotocin (MTR) in two species of frog, Rana

catesbeiana and Rana esculenta. The frog VTR and MTR cDNAs encode proteins of 419 and 384 amino

acids respectively. Frog VTR exhibits a high degree of sequence identity with the mammalian AVP-1a

(V1a) receptor while the frog MTR possesses a high degree of sequence identity with the mammalian OT

receptor. Activation of VTR induced both c-fos promoter- and cAMP-responsive element (CRE)-driven

transcriptional activities, while activation of MTR induced c-fos promoter-driven transcriptional activity but

failed to evoke CRE-driven transcriptional activity, suggesting differential G protein coupling between VTR

and MTR. The VTR exhibited the highest sensitivity for VT followed by OT.AVP<MT, whereas the MTR

showed preferential ligand sensitivity for MT.OT.VT.AVP. A V1a agonist but not V2 and OT agonists

substantially activated both VTR and MTR with a similar sensitivity. V1a, V2 and OT antagonists inhibited

MT-induced MTR activation but not VT-induced VTR activation. In the frog brain, VTR and MTR mRNAs

were found to be widely expressed in the telencephalon, diencephalon and mesencephalon, and

exhibited very similar regional distribution. In the pituitary, VTR and MTR were expressed in the distal and

intermediate lobes but were virtually absent in the neural lobe. Taken together, these data indicated that,

although the distribution of VTR and MTR largely overlaps in the frog brain and pituitary, VT and MT may

play distinct activities owing to the ligand selectivity and different signaling pathways activated by their

receptors.
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Introduction

In mammals, the neurohypophysial hormones
arginine vasopressin (AVP) and oxytocin (OT)
exhibit a wide range of biological activities both as
neurohormones secreted in the posterior pituitary
and neuromediators released in the central nervous
system. At the periphery, AVP regulates water
excretion, vascular tone, and adrenocorticotropin
(ACTH) secretion (De Rouffignac et al. 1991, de
Keyzer et al. 1996, Szczepanska-Sadowska 1996)
while OT stimulates milk ejection and enhances

uterine contractility during parturition (Chibbar
et al. 1993, Nishimori et al. 1996). In the central
nervous system, AVP is involved in thermoregula-
tion, learning and memory processes, social
recognition, and aggressive behavior (de Wied et al.
1993, Alescio-Lautier & Soumireu-Mourat 1998,
Rose & Moore 2002) while OT plays a crucial role
in sexual activity and induces maternal behavior
(Pedersen & Prange 1979, Ivell et al. 1997). The
effects of AVP and OT are mediated through four
types of G protein-coupled receptors (GPCRs),
i.e. the AVP receptors V1aR, V2R and V1bR (also
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called V3R) (Lolait et al. 1992, Morel et al. 1992,
Sugimoto et al. 1994), and the OT receptor (OTR)
(Kimura et al. 1992). These various membrane
receptor subtypes differ in their tissue distribution,
their relative affinity for a broad range of synthetic
analogs, and their signaling mechanisms (Barberis
et al. 1998, Gimpl & Fahrenholz 2001). At the
periphery, V1aR is primarily located on vascular
smooth muscle cells and hepatocytes (Morel et al.
1992), V1bR is exclusively present in pituitary corti-
cotrophs (Sugimoto et al. 1994, de Keyzer et al.
1996), V2R is found in the kidney (Lolait et al. 1992),
and OTR is expressed in smooth muscle cells of the
uterus (Kimura et al. 1992). All four receptor types
are also expressed in the central nervous system
(Burbach et al. 1995). Stimulation of V1aR, V1bR
and OTR activates the phospholipase C/protein
kinase C (PLC/PKC) signaling pathway, while
stimulation of V2R activates the adenylyl cyclase/
protein kinase A (AC/PKA) pathway (Liu & Wess
1996, Gimpl & Fahrenholz 2001).

AVP and OT belong to a large family of
nonapeptides that encompasses at least 12 mem-
bers (Acher et al. 1995). In most non-mammalian
vertebrates including lungfish, amphibians, reptiles
and birds, the AVP counterpart is vasotocin (VT;
[Ile3]AVP) and the OT counterpart is mesotocin
(MT; [Ile8]OT). In the frog, VT and MT are
expressed in both hypothalamic and extrahypotha-
lamic cell bodies (González & Smeets 1992),
indicating that, in amphibians as in mammals, VT
and MT may act both as neurohormones and
neurotransmitters. Indeed, it is firmly established
that both VT and MT regulate osmotic and
electrolyte balance, VT being an anti-diuretic
hormone while MT acts as a diuretic agent (Pang &
Sawyer 1978, Warburg 1995). Concurrently, it has
been shown that VT is expressed in chromaffin
cells in the frog adrenal gland and that synthetic
VT stimulates steroid secretion by frog adrenocor-
tical cells (Larcher et al. 1989, 1992a, 1992b). There
is also clear evidence that VT is involved in repro-
ductive behavior in amphibians (Moore et al. 2000,
Rose & Moore 2002), and sexual dimorphism in
the distribution of VT-containing neurons has been
reported in the frog brain (Boyd et al. 1992).

In spite of the diverse and crucial roles of VT
and MT in lower vertebrates, little is known
regarding the structure, pharmacological profile,
distribution and regulation of their receptors. To
date, the VT receptor (VTR) has been character-

ized in several non-mammalian species, including
the white sucker Catostomus commersoni (Mahlmann
et al. 1994), the Pacific salmon Oncorhynchus kisutch
(Mahlmann et al. 1994), the cave-dwelling fish
Astyanax fasciatus (Mahlmann et al. 1994), the
euryhaline flounder Platichthys flesus (Warne 2001),
the anuran Xenopus laevis (Mahlmann et al. 1994),
and the domestic chicken Gallus gallus (Tan et al.
2000). An MT receptor (MTR) has also been
cloned in the giant toad Bufo marinus (Akhundova
et al. 1996). However, the sites of expression, the
coupling mechanisms and the regulation of VTR
and MTR have not been thoroughly investigated in
non-mammalian vertebrates.

In the present study, we have cloned the cDNAs
encoding the MTR and the V1a-type VTR in two
species of frog, the bullfrog Rana catesbeiana and the
European green frog Rana esculenta, a hybrid
between Rana ridibunda and Rana lessonae. We have
characterized the ligand sensitivity and signal
transduction mechanisms of Rana catesbeiana VTR
and MTR and we have compared the pharmaco-
logical profiles of frog VTR and MTR with those
of their mammalian counterparts. Further, we have
determined the distribution of VTR and MTR
mRNAs in the brain and pituitary of Rana esculenta.

Materials and methods

Peptides

Synthetic peptides including AVP, OT, VT, MT,
the V1 agonist ([Phe2,Orn8]OT), the V2 agonist
([deamino-Cys1,Val4,-Arg8]-AVP), the V1a
antagonist ([d(CH2)5

1,Tyr(Me)2]AVP), the V2
antagonist ([d(CH2)5

1,-Ile2,Ile4]AVP), and the OT
antagonist ([d(CH2)5

1,Tyr(Me)2,Thr4,Orn8,des-
Gly-NH2

9]VT) were purchased from Bachem
(Bubendorf, Switzerland). The OT agonist
([Thr4,Gly7]OT) was purchased from Sigma (St
Louis, MO, USA).

Plasmids

The pcDNA3 expression vector was purchased
from Invitrogen (San Diego, CA, USA). The
pCMV�-Gal vector was obtained from Clontech
(Palo Alto, CA, USA). The CRE-luc vector which
contains four copies of the cyclic AMP-responsive
element (CRE; TGACGTCA) was from Stratagene
(La Jolla, CA, USA). The c-fos-luc vector,
containing the �711�+45 sequence of the
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human c-fos promoter constructed in the pFLASH
vector, was a kind gift from Dr R Prywes,
Columbia University, NY, USA.

Animals and tissue preparation

Male and female bullfrogs (R. catesbeiana, 100–120 g
body weight) were obtained from a local supplier
(BCPC, Taein, Korea). Male european green frogs
(R. esculenta, 30–40 g body weight) were obtained
from a commercial source (Couétard, Saint-Hilaire
de Riez, France). The animals were kept in glass
tanks supplied with tap water under simulated
natural conditions. Frogs were killed by cervical
transection and the tissues were quickly dissected,
immediately frozen in liquid nitrogen, and stored at
–80 �C until use. Animal manipulations were
performed according to the recommendations of
the ethical committees at our institutions and under
the supervision of authorized investigators.

RNA isolation and RT-PCR

Total RNA was extracted from either the forebrain
or the pituitary of five male R. catesbeiana and five

male R. esculenta by using Trireagent (Sigma)
according to the manufacturer’s instructions.
Poly(A)+ RNA was purified from total RNA by
using QIAGEN Oligotex mRNA kit (QIAGEN,
Chatsworth, CA, USA). The RNAs from different
tissues (obtained from five male and five female
R. catesbeiana) were reverse transcribed by using the
random hexamer and MMTV reverse transcriptase
(Promega Corp., Madison, WI, USA). The cDNAs
served as templates for subsequent PCR amplifi-
cation of partial clones by using several sets of
forward (DGF1, DGF2, DGF3) and reverse
(DGR1, DGR2, DGR3) degenerate primers
(Table 1). PCR conditions were: denaturation at
94 �C for 5 min, followed by 35 cycles at 94 �C for
30 s, 55 �C for 30 s, and 72 �C for 50 s. PCR
products of expected sizes were excised, purified
and subcloned into pGEM-T easy vector
(Promega). Positive clones were isolated and
purified by using a QIAGEN Plasmid Miniprep
Kit (QIAGEN). Plasmids containing the proper
inserts were analyzed for their DNA sequence
by the dideoxy chain-termination method, using
the DNA sequencing kit (USB Corp., Cleveland,
OH, USA).

Table 1 Oligonucleotide sequences of primers

Name Oligonucleotide sequence

Application
Amplification of partial cDNA DGF1 58-AA(G/A)CACCT(G/A)AGCAT(A/C/T)GC(C/T/A/G)GA(C/T)

DGF2 58-TT(C/T)CA(G/A)GT(G/T/C)CT(G/C/T/A)CC(G/T/C)CAG(C/T)T(T/G/C)
DGF3 58-GG(C/G)ATGTT(C/T)GC(G/C/T/A)TC(C/T)ACCTA(C/T)
DGR1 58-AA(A/G)AA(G/C/A/T)GG(T/C)GCCCA(A/G)CA
DGR2 58-TCCCA(C/A/G)AC(T/G/A)(G/C)(T/A)CCACAT(T/C)TG
DGR3 58-CCA(A/C/T/G)GGGTT(A/G)CA(A/G)CAGCTGTT

58-RACE of VTR VSR-PR 58-GACCTCTTGGTAGGCTGGTGGAGA
MSV-CR 58-AGCATGTAGGTAGACGCAAACAT

38-RACE of VTR VSR-SF 58-CAAGTGCAAAACCAAGAGAGGTGA
MVR-CF 58-GCCAAAATCAGGACAGTGAA

58-RACE of MTR MSR-NR 58-TGCCCACAGAGGTGAGGGAGA
MSR-PR 58-ACACAATCCGACCGTCTATGTAAG

38-RACE of MTR MSR-NF 58-GTCCGTCTACATCATCCCAGTCC
MSR-SF 58-TCGCCTGAAGACGGTCTGTGAGAG

Cloning of VTR ORF VTR-F 58-TGCGAATTCACTATGGGCTTCTCTAAACTGGG
VTR-R 58-CCTGTTCTCGAGCGGTCAGATTTGCAGGGGCAG

Cloning of MTR ORF MTR-F 58-GACGAATTCATCATGGGGGGCTTTGACAGCGACTGTAT
MTR-R 58-GGGCTCGAGGGGTCACACTGTCGATGGTTGAGTGAT

MTR tissue distribution MTPA-F 58-AGACGGTCGGATTGTGTCTAC
MTPA-R 58-CTCGGGACAAGGTGGCTCTTT

VTR tissue distribution VTPA-F 58-CTGATGATCGGTAGCGCTTGG
VTPA-R 58-CTTGAAATGGTCCTCACGCTG
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Cloning of the full-length cDNAs by rapid

amplification of cDNA ends (RACE)

Two sets of gene-specific primers (GSPs) were
designed for each VTR and MTR on the basis of
the partial sequences of the cDNAs obtained by
RT-PCR. To obtain the full-length VTR cDNA,
the primers sets VSR-PR and MVR-CR (for
5�-RACE), and VSR-SF and MVR-CF (for
3�-RACE) were used (Table 1). For the MTR, the
primer sets MSR-NR and MSR-PR (for 5�-RACE),
and MSR-NF and MSR-SF (for 3�-RACE) were
used (Table 1). Poly(A)-rich RNA purified from the
forebrain and pituitary was used to synthesize
adapter-ligated double-stranded cDNA by using
the Marathon cDNA Amplification Kit (Clontech).
Next, 5�- and 3�-RACE was performed by using the
GSPs in combination with the adapter primers AP1
and AP2 respectively. RACE products were cloned
in pGEM-T easy vector (Promega). After obtaining
the proper 5�- and 3�-RACE products, gene specific
forward and reverse primers were designed to
obtain the full-length cDNAs which were inserted
into the pcDNA3 expression vector at the EcoRI
and XhoI enzyme sites. The rat V1aR and V2R
cDNAs were amplified through PCR from rat liver
and kidney tissues respectively, and inserted at the
EcoRI and XhoI sites of the pcDNA3. The human
OTR cloned in the PRK5 plasmid was a kind gift
from Dr Thierry Durroux (INSERM U469,
Montpellier, France). The human OTR was cut at
BamHI and XhoI sites and reinserted into the
pcDNA3 expression vector.

Luciferase assays

CV-1 cells were maintained in Dulbecco’s modified
Eagle’s medium (DMEM) in the presence of 10%
fetal bovine serum. For luciferase assays, cells were
plated in 24-well plates 1 day before transfection
and transfected with SuperFect reagent (QIAGEN)
according to the manufacturer’s instructions.
Approximately 48 h after transfection, cells were
treated with the respective ligands for 6 h. For c-fos
promoter-driven luciferase assay, cells were main-
tained in serum-free DMEM 16–18 h before
treatment with the ligand as previously described
(Seong et al. 2003). Cells were harvested 6 h after
ligand treatment and luciferase activity in cell
extracts was determined using a luciferase assay
system according to the standard method in a

Lumat LB9501 (EB & G, Berhold, Germany). The
luciferase values were normalized by the
�-galactosidase values. Transfection experiments
were performed in duplicate and repeated at
least three times. All data are presented as
means�S.E.M.

VTR and MTR expression in peripheral tissues

Tissues were collected from five male R. catesbeiana
(five females for the oviduct) and stored at �80 �C.
The first-strand cDNA was prepared using the
random hexamer and MMTV reverse transcriptase
(Promega). To determine the tissue distribution of
VTR and MTR, the primer sets MTPA-F and
MTPA-R, and VTPA-F and VTPA-R respectively
were used (Table 1). PCR conditions were:
denaturation at 94 �C for 3 min, followed by 30
cycles at 94 �C for 30 s, 60 �C for 30 s and 72 �C
for 50 s.

In situ hybridization histochemistry

In situ hybridization was performed as previously
described (Alexandre et al. 1999). Briefly, six adult
male frogs, R. esculenta, were anesthetized and
perfused transcardially with 50 ml 0·1 M phosphate
buffer (PB, pH 7·4) containing 4% paraformalde-
hyde. The brain with the attached pituitary was
rapidly dissected and post-fixed in the same fixative
for 24 h at 4 �C. The tissues were rinsed for 12 h in
PB containing 15% sucrose and 24 h in PB
containing 30% sucrose. The brains were placed in
an embedding medium (O.C.T. Tissue Teck;
Leica, Nussloch, Germany) and frozen at �80 �C.
Frontal sections (12 µm thick) were cut in a cryo-
stat (Frigocut 2800E; Reichert-Jung, Nussloch,
Germany) and mounted on poly--lysine- and
gelatin-coated slides. Partial VTR (nt 424–934)
and MTR (nt 271–884) cDNA obtained from R.
esculenta were subcloned into the pGME-T vector
between SpeI and NcoI sites, and sense and
antisense riboprobes were generated by in vitro tran-
scription using T7 and Sp6 RNA polymerases in
the presence of [35S]UTP (Combination Systems;
Promega). Sections were incubated for 10 min in
0·1 M triethanolamine/0·9% NaCl (pH 8·0)/0·25
acetic anhydride, rinsed in 2�SSC, and incubated
for 60 min with prehybridization buffer (pH 7·5)
containing 50% formamide, 0·6 M NaCl, 10 mM
Tris–HCl (pH 7·5), 1�Denhart, 0·02% Ficoll,
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0·02% polyvinylpyrrolidone, 0·02% bovine serum
albumin, 1 mM EDTA (pH 8·0), 550 µg/ml
denatured salmon sperm DNA, and 50 µg/ml yeast
tRNA. Hybridization was performed overnight at
55 �C in the same buffer (except for salmon sperm
DNA whose concentration was reduced to 60 µg/
ml) supplemented with 10 mM dithiothreitol, 10%
dextran sulfate, and 1·5�107 c.p.m./ml heat-
denatured RNA riboprobes. Tissue sections were
then washed in 2�SSC at 55 �C and treated with
ribonuclease A (50 µg/ml) for 60 min at 37 �C.
High stringency washes were performed in
0·01�SSC containing 14 mM �-mercaptoethanol
and 0·05% sodium pyrophosphate at 60 �C. The
tissue sections were dehydrated in ethanol and
exposed onto Hyperfilm �-max (Amersham Phar-
macia Biotech, Orsay, France) for 2 weeks. The
optic density of the autoradiograms was quantified
by means of a computer-assisted image analyzer
(SAMBA Autoradio 4·10; SAMBA Technologies,
Meylan, France). To identify anatomical structures,
the sections were stained with hematoxylin/eosin.
Nomenclature of frog brain structures was based on
the atlas of Neary & Northcutt (1983).

Results

Cloning of full-length VTR and MTR

Using degenerate primers we obtained two partial
PCR fragments for R. catesbeiana VTR and MTR
with 520 bp and 630 bp respectively. The 5�- and
3�-cDNA end sequences for each receptor were
obtained by performing RACE using gene-specific
primers. The full-length bullfrog VTR and MTR
consisted of 1257 and 1152 nucleotides that
encoded proteins of 419 and 384 amino acids
respectively (Fig. 1). We also identified full-length
sequences for the R. esculenta VTR having the same
amino acid sequence as the bullfrog VTR but
differing by five nucleotides. We cloned a partial
sequence for R. esculenta MTR that showed 98%
sequence similarity with the bullfrog MTR. The
hydropathy analysis of frog VTR and MTR
revealed the presence of seven stretches of
hydrophobic amino acid residues corresponding to
the seven transmembrane domains. Potential sites
for N-linked glycosylation and phosphorylation
were present in both the VTR and MTR. Several
putative sites for phosphorylation by PKC, casein

kinase II, and G protein-coupled receptor kinase
(GRK) were seen in the intracellular loops and
C-terminal tails of the receptors (Fig. 1). The frog
VTR showed the highest sequence identity (63%)
with the flounder VTR and relatively high
sequence identity (58%) with the human V1aR.
The frog MTR exhibited the highest sequence
identity (85%) with the giant toad MTR and a
relatively high degree of homology (67%) with the
human OTR. The VTR and MTR shared 47%
sequence identity with each other (Table 2).

Ligand selectivity and signal transduction

pathways of frog VTR and MTR

The open reading frames of the R. catesbeiana VTR
and MTR were subcloned in the pcDNA3, a
mammalian expression vector, and the VTR and
MTR cDNAs were transiently transfected in CV-1
cells in combination with the CRE-luc or c-fos-luc
reporter vectors. We have previously demonstrated
that CRE-luc and c-fos-luc reporter systems are
useful tools to discriminate AC/PKA and PLC/
PKC signaling pathways respectively (Oh et al.
2003, Seong et al. 2003). In the absence of frog
VTR or MTR, neither CRE- nor c-fos-promoter-
driven transcriptional activity in CV-1 cells was
induced by the nonapeptide ligands VT, AVP, MT
and OT, indicating that CV-1 cells do not naturally
express the endogenous receptors for these ligands
(data not shown).

In CV-1 cells transfected with the VTR cDNA,
VT induced a concentration-dependent increase of
both CRE- and c-fos-promoter-driven luciferase
activity (Fig. 2A and B). The other nonapeptide
ligands tested also stimulated VTR activity with the
following rank order of potency: OT>AVP�MT
(Fig. 2A and B). In CV-1 cells transfected with the
MTR cDNA, the nonapeptide ligands did not
induce CRE-driven luciferase activity (Fig. 2C)
but substantially increased c-fos-promoter-driven
luciferase activity with the following rank order of
potency: MT>OT>VT>AVP (Fig. 2D). These
data indicated that frog VTR and MTR have
different functional characteristics with respect
to signal transduction and ligand sensitivity: frog
VTR couples to both the PLC/PKC and AC/
PKA pathways, while frog MTR preferentially
couples to the PLC/PKC pathway but margin-
ally to the AC/PKA pathway. Frog VTR and
MTR exhibited the highest sensitivity to the
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homologous ligands but low sensitivity to the
opposite ligand.

Comparison of the pharmacological profiles of

frog versus mammalian nonapeptide receptors

The pharmacological characteristics of R. catesbeiana
VTR and MTR were compared with the
mammalian receptors, rat V1aR, V2R and human
OTR. Both rat V1aR and V2R were able to

induce CRE- and c-fos promoter-driven luciferase
activity in response to the nonapeptides (Fig. 3). As
expected, V1aR and V2R exhibited the highest
sensitivity towards AVP. However, V1aR and
V2R showed a slight difference in the rank order
of ligand sensitivity: AVP>VT>OT�MT for
V1aR, and AVP>VT�OT>MT for V2R (Fig.
3A–D and Table 3). Interestingly, the human OTR
substantially increased c-fos-promoter-driven luci-
ferase activity but failed to induce CRE-driven

Figure 1 Comparison of the deduced amino acid sequences of the MTR and VTR. Black-shaded residues are
identical between two receptors. Gaps introduced for optimal alignment are indicated as dashes. The putative
transmembrane domains are indicated above the aligned sequence. The symbols indicate specific sites
(", N-glycosylation sites for bullfrog (bf)VTR; !, N-glycosylation sites for bfMTR; •, PKC phosphorylation sites for
bfVTR; d, PKC phosphorylation sites for bfMTR; M, casein kinase II phosphorylation sites for bfVTR; ", casein
kinase II phosphorylation sites for bfMTR. A GRK phosphorylation motif is underlined in the VTR sequence.
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luciferase activity. The OTR responded better to
OT and MT than to VT and AVP (Fig. 3E and F).

The rat V2R increased CRE-driven luciferase
activity slightly better than c-fos-promoter-driven
luciferase activity, while all other receptors
increased c-fos-promoter-driven luciferase activity
more strongly. Thus, in subsequent experiments,
we chose the CRE-luc reporter system for
characterizing rat V2R, and the c-fos-luc reporter
system for characterizing rat V1aR, human OTR,
and frog VTR and MTR. The effects of
mammalian AVP and OT agonists (Fig. 4) and
antagonists (Fig. 5) on VTR and MTR were
examined. The V1a agonist ([Phe2,Orn8]OT) was
able to activate both VTR and MTR while the V2
agonist ([deamino-Cys1,Val4,-Arg8]AVP) was not.
The OT agonist ([Thr4,Gly7]OT) failed to activate
either VTR or MTR (Fig. 4A and B). The V1a and
V2 agonists activated rat V1aR with similar
potency while the V2 agonist was much more
potent than the V1a agonist to stimulate rat V2R.
The OT agonist did not activate rat V1aR at all
but partially activated V2R (Fig. 4C and D). The
OTR was activated by the OT agonist alone but
not by the V1 or V2 agonist (Fig. 4E). The V1a
antagonist ([d(CH2)5

1,Tyr(Me)2]AVP), the V2 an-
tagonist ([d(CH2)5

1,-Ile2,Ile4]AVP), and the OT
antagonist ([d(CH2)5

1,Tyr(Me)2,Thr4,Orn8,des-
Gly-NH2

9]VT) had no effect on VT-induced VTR

activity (Fig. 5A) but inhibited MT-induced MTR
activity with the following rank order of potency:
V1a antagonist>OT antagonist>V2 antagonist
(Fig. 5B). The V1a antagonist selectively suppressed
AVP-induced rat V1aR activity, while the V2
antagonist specifically inhibited AVP-induced rat
V2R activity (Fig. 5C and D). All three antagonists
blocked the human OTR activity in the following
rank order of potency: OT antagonist>V1a
antagonist>V2 antagonist (Fig. 5E). These results
indicated that the pharmacological characteristics
of frog VTR and MTR markedly differ from
each other (Table 3) but their pharmacological
characteristics are very similar to those of their
mammalian homologs.

Tissue distribution of frog VTR and MTR

In order to determine the tissue expression of frog
VTR and MTR in R. catesbeiana, RT-PCR was
performed with 30 cycles of amplification (Fig. 6).
The VTR mRNA was abundant in the forebrain,
hypothalamus, distal lobe of the pituitary, heart,
adrenal gland, kidney and oviduct, while the MTR
mRNA was primarily expressed in the forebrain,
hypothalamus, neurointermediate lobe of the
pituitary, adrenal gland, kidney and testis. How-
ever, after 33 cycles of amplification both VTR and
MTR transcripts could be detected in all the tissues

Table 2 Amino acid identity of frog VTR and frog MTR with other members of AVP/OT receptor family

Species
% Identity with
frog VTR

% Identity with
frog MTR

Receptor type
(Genbank accession number)
VTR (AF184966) Platichthys flesus (European flounder) 63 46
VTR (X76321) Catostomus commersoni (white sucker) 56 46
VT1R (AF147743) Gallus gallus (chicken) 42 40
VT1bR (AY008272) Gallus gallus (chicken) 41 45
VT2R (AB073979) Hyla japonica (Japanese treefrog) 39 39
MTR (X93313) Bufo marinus (giant toad) 49 86
MTR (AB073980) Hyla japonica (Japanese treefrog) 48 85
ITR (X87783) Catostomus commersoni (white sucker) 45 64
V1aR (U19906) Homo sapiens (man) 58 44
V1aR (Z11690) Rattus norvegicus (Norway rat) 55 44
OTR (X64878) Homo sapiens (man) 43 67
OTR (L81169) Rattus norvegicus (Norway rat) 44 67
V2R (AF101727) Homo sapiens (man) 36 37
V2R (Z22758) Rattus norvegicus (Norwary rat) 36 39
V1bR (AF101726) Homo sapiens (man) 43 48
V1bR (D45400) Rattus norvegicus (Norway rat) 42 46
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examined (data not shown). To rule out the
possible contamination of genomic DNA, a similar
set of experiments was conducted using RNA
samples that were not reverse transcribed, showing
no amplification of the VTR or MTR cDNAs (data
not shown).

Distribution of VTR and MTR mRNAs in the

frog brain and pituitary

The localization of VTR and MTR mRNAs in the
brain and pituitary of R. esculenta was determined
by in situ hybridization histochemistry using
35S-labeled antisense riboprobes. The distribution
and relative density of the hybridization signals are
summarized in Table 4.

VTR mRNA

In the telencephalon, a strong hybridization signal
was observed in the nucleus accumbens (Fig. 7A),

the ventral striatum (Fig. 7A), the lateral pallium
(Fig. 7B), and the lateral amygdala (Fig. 7B and C).
A moderate density of VTR mRNA was seen in the
lateral septum (Fig. 7A), the dorsal striatum (Fig.
7A), and the medial and dorsal pallium (Fig. 7A
and B). A weak hybridization signal was also
detected in the olfactory tubercle, the internal
granular layer of the olfactory bulb, the medial
septum (Fig. 7A), the anterior entopeduncular
nucleus (Fig. 7B), and the medial amygdala
(Fig. 7B).

In the diencephalon, a strong VTR hybridiz-
ation signal was observed in the anterior preoptic
area (Fig. 7B), the ventral and dorsal aspects of
the magnocellular preoptic nucleus (Fig. 7B), the
ventral hypothalamic nucleus (Fig. 7E and F),
the posterior tuberculum (Fig. 7E and F), the
dorsal hypothalamic nucleus (Fig. 7F), the nucleus
of the periventricular organ (Fig. 7F), and the
ventromedial thalamic nucleus (Fig. 7D and
E). Moderate labeling was visualized in the

Figure 2 Effects of various natural nonapeptides on bullfrog VTR and MTR. The plasmids
containing the VTR or MTR cDNA were cotransfected with (A and C) CRE-luc or (B and D)
c-fos-luc reporter vectors into CV-1 cells along with �-gal as an internal control. Forty-eight
hours after transfection, cells were treated with graded concentrations of ligands: AVP (•),
VT (M), OT (d), and MT (") for 6 h and luciferase activity was determined. The results
represent the means±S.E.M. of three independent experiments.
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dorsal and ventral habenular nuclei (Fig. 7C), the
suprachiasmatic nucleus (Fig. 7D), the central
thalamic nucleus (Fig. 7E), and the posterior
thalamic nucleus (Fig. 7E and F). A positive
VTR mRNA signal was also detected in the
magnocellular preoptic nucleus (Fig. 7D) and in
the anterior and ventrolateral thalamic nuclei
(Fig. 7D).

In the mesencephalon, intense VTR mRNA
signal was observed in the nucleus of the medial
longitudinal fasciculus (Fig. 7G), the pretoral gray
(Fig. 7G), and the internal layers of the optic
tectum (Fig. 7H). A moderate signal was found in
the tectal lamina six (Fig. 7F and G), the pretectal
gray (Fig. 7G), and the anterodorsal and antero-
ventral tegmental nuclei (Fig. 7G and H). A weak

Figure 3 Effects of various natural nonapeptides on rat V1aR, rat V2R, and human OTR.
The plasmids containing receptor cDNA were cotransfected with (A, C and E) CRE-luc or
(B, D and F) c-fos-luc reporter vectors into CV-1 cells along with �-gal as an internal
control. Forty-eight hours after transfection, cells were treated with graded concentrations
of ligand, AVP (•), VT (M), OT (d), and MT (") for 6 h and luciferase activity was
determined.
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hybridization signal was also detected in the torus
semicircularis (Fig. 7H).

In the pituitary, moderate labeling was seen in
the distal and intermediate lobes whereas the

neural lobe was devoid of VTR mRNA signal (Fig.
7H).

Control sections, taken at different levels of the
brain and treated with the sense VTR probe, did

Table 3 EC50 and IC50 values of ligands treated in frog MTR and frog VTR. Data are
means±S.E.M. of three independent experiments

EC50 (log,M)

VTR MTR V1aR V2R OTR

Ligand
VT −8·71±0·18 −7·42±0·13 −8·70±0·20 −9·73±0·24 −8·09±0·12
MT −6·68±0·23 −8·10±0·12 −6·75±0·18 −7·67±0·30 −8·57±0·22
AVP −6·52±0·51 −6·83±0·02 −9·34±0·19 −10·47±0·12 −7·63±0·29
OT −7·05±0·19 −7·41±0·19 −6·84±0·14 −9·14±0·19 −8·33±0·36
V1a agonist −7·81±0·12 −7·74±0·13 −7·98±0·16 −7·87±0·11 n.d.
V2 agonist n.d. n.d. −7·87±0·16 −11·45±0·22 n.d.
OT agonist n.d. n.d. n.d. −6·33±0·18 −7·27±0·09

IC50 (log,M)

V1a antagonist n.d. −7·18±0·29 −9·61±0·19 −7·05±0·24 −7·91±0·31
V2 antagonist n.d. −6·10±1·33 −8·01±0·73 −10·06±0·16 −6·11±1·01
OT antagonist n.d. −6·54±0·42 n.d. n.d. −10·10±0·19

n.d., not determined.

Figure 4 Effects of nonapeptide agonists on (A) bullfrog VTR, (B) bullfrog MTR, (C) rat
V1aR, (D) rat V2R, and (E) human OTR. In the case of VTR, MTR, rat V1aR, and human
OTR, c-fos-luc reporter activity was determined, whereas for rat V2R, CRE-luc reporter
activity was determined. Forty-eight hours after transfection, cells were treated with
different concentrations of V1a (m), V2 (n), and OT (d) agonists for 6 h.
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not show any hybridization signal (Fig. 7B, left
hemisection).

MTR mRNA

In the telencephalon, a strong hybridization signal
was observed in the ventral striatum (Fig. 8A), the
dorsal lateral and medial pallium (Fig. 8A and B),
and the lateral and medial amygdala (Fig. 8B and

C). A moderate MTR mRNA signal was seen in
the lateral septum (Fig. 8A), the dorsal striatum
(Fig. 8A), the nucleus accumbens (Fig. 8A), and the
anterior commissure (Fig. 8B). A low density of
MTR mRNA was detected in the internal granular
layer of the olfactory bulb, the medial septum (Fig.
8A), the anterior entopeduncular nucleus (Fig. 8B),
and the bed nucleus of the pallial commissure (Fig.
8B).

Figure 5 Effects of nonapeptide antagonists on (A) bullfrog VTR, (B) bullfrog MTR, (C)
rat V1aR, (D) rat V2R, (E) and human OTR. In the case of VTR, MTR, rat V1a and
human OT receptors, c-fos-luc reporter activity was determined, whereas for rat V2R,
CRE-luc reporter activity was determined. Forty-eight hours after transfection, cells were
treated with graded concentrations of V1a antagonist (♦), V2 antagonist (e), and OT
antagonist (m) in the presence of 10 nM VT, MT, AVP, and OT for VTR, MTR, rat V1aR
and V2R, and human OTR respectively.

Figure 6 Tissue distribution of bullfrog VTR and MTR. RT-PCR was
performed in different tissues, forebrain (FB), hypothalamus (HYP), distal
lobe of the pituitary (DL), neurointermediate lobe of the pituitary (NIL), heart
(HRT), adrenal gland (ADR), liver (LIV), kidney (KID), oviduct (OVDT), and
testis (TES), with 30 rounds of amplification, to determine the distribution of
VTR and MTR. RT-PCR amplification was performed in the same conditions
with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) primers.
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Table 4 Comparative distribution and relative abundance of VTR and MTR mRNAs, and VT- and MT-immunoreactive
cell bodies and fibers in the brain and pituitary of the frog Rana esculenta

VTR
mRNA

MTR
mRNA

VTb MTb

Cell
bodies Fibers

Cell
bodies Fibers

Structuresa

Telencephalon
Accessory olfactory bulb (AOB) − − − − − −
Anterior commissure (AC) − ++ ++ + ++ ++
Anterior entopeduncular nucleus (Ea) + + − + − +
Bed nucleus of the pallial commissure (BN) − + − − − −
Dorsal pallium (DP) +++ +++ − − − −
Dorsal striatum (DS) +++ ++ − + − +
Lateral amygdala (LA) +++ +++ ++ ++ − +
Lateral pallium (LP) +++ +++ + + − +
Lateral septum (LS) ++ ++ + +++ − ++
Medial amygdala (MA) + +++ ++ +++ + ++
Medial pallium (MP) ++ +++ − − − ++
Medial septum (MS) + + + + − +
Nucleus accumbens (NA) +++ ++ ++ ++ − ++
Olfactory blub, extragranular plexiform layer (EPL) − − − + − +
Olfactory blub, glomerular layer (GL) − − − − − −
Olfactory bulb, internal granular layer (IGL) + + − + + +
Olfactory bulb, mitral cellular layer (ML) − − − − − −
Olfactory tubercle (TO) + − − + − +
Postolfactory eminence (PE) + − − − − +
Ventral striatum (VS) +++ +++ − + − +

Diencephalon
Anterior preoptic area (Poa) +++ +++ +++ +++ +++ +++
Anterior thalamic nucleus (A) + + − − − −
Bed nucleus of the stria medullaris (BM) − − − − − −
Central thalamic nucleus (CNT) ++ ++ − + − +
Corpus geniculatum thalamicum (CP) − − − − − −
Dorsal hypothalamic nucleus (DH) +++ ++ − ++ − +
Dorsal habenular nucleus (Hd) ++ − − − − −
Epiphysis (E) − − − − − −
Lateral thalamic nucleus, anterior division (La) − + − + − +
Lateral hypothalamic nucleus (LH) − − + +++ − ++
Lateral thalamic nucleus, posterodorsal division (Lpd) − − − − − −
Lateral thalamic nucleus, posteroventral division (Lpv) − − − − − −
Magnocellular preoptic nucleus (Mg) ++ + +++ +++ +++ +++
Magnocellular preoptic nucleus, dorsal part (Mgd) +++ ++ ++ ++ ++ ++
Magnocellular preoptic nucleus, ventral part (Mgv) +++ ++ +++ +++ +++ +++
Neuropil of Bellonci (B) − − − − − −
Nucleus of Bellonci (NB) − − − − − −
Nucleus of the periventricular organ (NPv) +++ +++ + ++ − +
Optic chiasma (OC) − − − − − −
Optic nerve (ON) − − − − − −
Organum vasculosum (OV) − − − − − −
Posterior entopeduncular nucleus (Ep) − − − − − −
Posterior thalamic nucleus (P) ++ +++ − + − +
Posterior tuberculum (TP) +++ +++ − ++ − +++
Subcommissural organ (CO) − − − + − +
Superficial ventral thalamic nucleus (Vs) − − − − − −
Suprachiasmatic nucleus (SC) ++ ++ +++ +++ + +++
Thalamic eminence (TE) − + − + − +
Uncinate neuropil (U) − − − + − +
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Table 4 Continued

VTR
mRNA

MTR
mRNA

VTb MTb

Cell
bodies Fibers

Cell
bodies Fibers

Structuresa

Diencephalon continued
Ventral habenular nucleus (Hv) ++ + − ++ − ++
Ventral hypothalamic nucleus (VH) +++ ++ +++ +++ − ++
Ventrolateral thalamic nucleus, dorsal part (Vld) + + − − − −
Ventrolateral thalamic nucleus, ventral part (Vlv) + + − − − −
Ventromedial thalamic nucleus (VM) +++ ++ − + − +

Mesencephalon
Anterodorsal tegmental nucleus (AD) ++ ++ − + − +
Anterioventral tegmental nucleus (AV) ++ ++ + ++ − ++
Basic optic nucleus (BON) − − − − − −
Nucleus interpeduncularis (NIP) − − − + − ++
Nucleus lentiformis mesencephali (NLM) − − − − − −
Nucleus of the medial longitudinal fasiculus (NMLF) ++ + − + − +
Nucleus of the posterior commissure (NPC) − − − − − −
Nucleus profundus mesencephali (NPM) − − − − − −
Nucleus reticularis isthmi (RIS) − − − + − ++
Oculomotor and trochlear nuclei (III) − − − + − +
Optic tectum (OT) +++ +++ − ++ − ++
Pretectal gray (PtG) ++ + − + − +
Pretoral gray (PtrG) +++ ++ − + − +
Tectal lamina six (6) ++ ++ − + − +
Torus semicircularis (TS) ++ ++ − + − ++

Metencephalon
Auricular lobe of the cerebellum (CAL) − − − − − −
Granular cell layer of the cerebellum (GC) + + − + − +
Molecular cell layer of the cerebellum (MC) − − − − − −
Purkinje cell layer of the cerebellum (PC) − − − − − −

Rhombencephalon
Choroid plexus (Pch) − − − − − −
Dorsal nucleus of the stato-acusticus nerve (VIII d) − − − − − −
Fasciculus solitarius (FS) − − − − − −
Griseum centrale rhombencephali (Gc) + + − + − +
Nucleus of the abducent nerve (VI) + + − + − +
Nucleus of the facial nerve (VII) + + − + − +
Nucleus of the glossopharyngeal nerve (IX) − − − − − −
Nucleus of the hypoglossal nerve (XII) − − − − − −
Nucleus of the trigeminal nerve (V) − − − − − −
Nucleus raphes (Ra) − − − − − −
Nucleus reticularis inferior (Ri) − − − + − +
Nucleus reticularis medius (Rm) − − − + − +
Sulcus limitans (SL) − − − − − −
Ventral nucleus of the stato-acusticus nerve (VIII v) + + − + − +

Pituitary
Pars distalis (Pdis) ++ ++ − − − −
Pars intermedia (PI) ++ ++ − ++ − ++
Pars nervosa (PN) − − − ++ − ++

+++, high density; ++, moderate density; +, low density; −, no mRNA hybridization signal, or immunoreactive cell bodies and fibers.
Quantification of the optic density (OD) of the autoradiograms was performed by means of a computer-assisted image analyzer and
the OD values were used to qualify the relative density of receptor mRNA: +++, OD.50; ++, 50.ODR30; +, 30.OD.10; −,
OD%10.
aAnatomical structures are designated according to Northcutt & Kicliter (1980), Neary & Northcutt (1983) and González et al. (1994).
bThe distribution of VT- and MT-immunoreactive elements in the frog brain is from Lamacz et al. (1989), González & Smeets (1992),
Boyd et al. (1992) and Smeets & González (2001).
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In the diencephalon, a high density of MTR
mRNA was found in the anterior preoptic area
(Fig. 8B), the nucleus of the periventricular organ
(Fig. 8E), the posterior thalamic nucleus (Fig. 8E
and F), and the posterior tuberculum (Fig. 8E and
F). A moderate hybridization signal was visualized
in the ventral aspect of the magnocellular preoptic
nucleus (Fig. 8C), the suprachiasmatic nucleus (Fig.
8D), the ventromedial (Fig. 8C and D) and the
central (Fig. 8E and F) thalamic nuclei, and the
dorsal (Fig. 8F) and ventral (Fig. 8E–G) hypotha-
lamic nuclei. A weak signal was detected in the
thalamic eminence (Fig. 8B), the dorsal (Fig. 8C)
and central (Fig. 8D) aspects of the magnocellular
preoptic nucleus, the anterior division of the lateral
hypothalamic nucleus (Fig. 8D), and the anterior
thalamic nucleus (Fig. 8D).

In the mesencephalon, a strong MTR mRNA
hybridization signal was observed in the optic
tectum (Fig. 8H). Moderate labeling was visualized
in tectal lamina six (Fig. 8F and G), the pretectal
gray (Fig. 8G), and the anterodorsal and antero-
ventral tegmental nuclei (Fig. 8G and H). Low
MTR mRNA level was also detected in the nucleus
of the medial longitudinal fasciculus (Fig. 7G), the
pretectal gray (Fig. 8G), and the torus semicircu-
laris (Fig. 8H).

In the pituitary, a moderate concentration of
MTR mRNA was seen in the distal and
intermediate lobes but no hybridization signal was
detected in the neural lobe (Fig. 8H).

Control sections treated with the sense MTR
probe exhibited only background labeling (Fig. 8F,
left hemisection).

Discussion

The bullfrog R. catesbeiana and the European green
frog R. esculenta have long been used as models for
studying the neuroendocrine and behavioral
activities of the neurohypophysial hormones VT
and MT (Warburg 1995, Boyd 1997). However,
none of the receptors mediating the effects of VT

and MT in these two advantageous amphibian
species models has yet been characterized. Here,
we report the molecular cloning of a V1a-like VTR
and the MTR in both R. catesbeiana and R. esculenta.
We have also investigated the pharmacological
profile of these two receptors and compared their
ligand selectivity to those of their mammalian
counterparts, and we have determined the distri-
bution of the mRNAs encoding VTR and MTR in
the frog brain and pituitary.

The cloned frog VTR and MTR, like their
mammalian counterparts, belong to the rhodopsin
family of GPCRs as they exhibit the typical Asp
residue at 2·50 position of transmembrane domain
II (TMDII) (at amino acid position 105 in VTR
and 85 in MTR) and an NPXXY motif in
TMDVII (Bockaert & Pin 1999). The frog VTR
and MTR also possess several amino acid
sequences that are highly conserved in neurohypo-
physial hormone receptors, such as an FQVLPQ
motif in TMDII, a Gln residue in TMDII (at
position 139 for VTR and 119 for MTR), and Gln
and Phe residues in TMDIV (positions 171 and
197 for VTR, and 193 and 175 for MTR
respectively). Mutational analyses of neurohypo-
physial hormone receptors have previously shown
that these conserved residues are important for
ligand binding (Mouillac et al. 1995, Hausmann
et al. 1996).

Frog VTR and MTR exhibited differential
ligand sensitivity and signaling pathway from each
other, but possessed functional similarity to their
mammalian counterparts, i.e. AVP and OT
receptors respectively. Upon ligand stimulation,
frog VTR, and mammalian V1aR and V2R
activated both CRE- and c-fos-promoter-driven
transcriptional activity. For VTR and V1aR,
c-fos-promoter-driven transcriptional activity was
higher than CRE-driven transcriptional activity
while for V2R, CRE-driven transcriptional activity
was slightly higher than c-fos-promoter-driven
transcriptional activity. It is known that the V2R
primarily couples to Gs (Liu & Wess 1996) while

Figure 7 In situ hybridization analysis showing the distribution of VTR mRNA in the brain and pituitary of Rana
esculenta. (A–H) Frontal brain sections were hybridized with a 35S-labeled Rana esculenta VTR riboprobe and
exposed onto Hyperfilm �-max for 2 weeks. A control section treated with the sense 35S-labeled VTR riboprobe (B,
left hemisection) is compared with a consecutive section hybridized with the antisense probe (B, middle hemisection).
The anatomical structures, identified by microscopic analysis, are designated on the right hemisections according to
Neary & Northcutt (1983). (I) The rostrocaudal levels of the sections are indicated on the schematic sagittal section.
For abbreviations, see Table 4.
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our study showed that the rat V2R could activate
both the CRE- and c-fos-luc activity. Our findings
can be supported by a previous report showing that
overexpression (100 000 sites/cell) of the V2R can
stimulate phospholipase C, which explains the dual
signaling potential of the V2R (Zhu et al. 1994).
Alternatively, the reporter system used in this study
is more sensitive than the second messenger assay
system which allows us to detect amplified signals
through multiple signaling cascades. These obser-
vations indicated that AVP/VT receptors couple to
both PKA- and PKC-mediated signaling pathways,
but that VTR and V1aR preferentially couple to
PKC-linked signaling, while V2R preferentially
couple to PKA-linked signaling, which is in good
agreement with previous reports (Liu & Wess
1996). Concurrently, frog MTR and OTR
triggered only c-fos-promoter-driven transcrip-
tional activity, indicating that MTR and OTR
exclusively couple to the PKC-mediated signaling
pathway. We found that VTR, like V1aR, contains
a highly conserved triplet of residues (Asp-Arg-Tyr,
DRY) at the boundary between TMDIII and
intracellular loop 2 (ICL2), which is a common
feature of the rhodopsin family of GPCRs
(Bockaert & Pin 1999). Interestingly, in MTR, the
DRY motif was changed to DRC as found in the
OTR (Gimpl & Fahrenholz 2001), while this motif
is modified to DRH in V2R (Lolait et al. 1992). The
DRY motif plays a pivotal role in G protein
coupling and is important for receptor activation
and internalization (Arora et al. 1997, Gether &
Kobilka 1998, Mitchell et al. 1998). Substitution
of the Tyr residue in the DRY motif may thus
account for the differential signaling between
VT/AVP receptors and MT/OT receptors. Alter-
natively, differential signaling may be ascribed to
amino acid substitutions in ICLs. It has been
demonstrated that chimeric receptors having the
V1aR sequence in ICL2 are able to activate the
phosphatidylinositol pathway with high efficiency,
while hybrid receptors containing the V2R

sequence in ICL3 are capable of efficiently
stimulating cAMP production (Liu & Wess 1996).
Another motif at the junction between TMDV and
ICL3, CYGLISF/YKIW, is highly conserved in
MTR and OTR, but not in VTR/V1aR and in
V2R. The lack of conservation of this motif may
also explain the differential signal transduction
activated by VT/AVP receptors and MT/OT
receptors. Recently, VTR and MTR have been
cloned from the Japanese treefrog Hyla japonica
(Kohno et al. 2003). This VTR differs considerably
from the bullfrog VTR. The Japanese treefrog
VTR shows high homology with the mammalian
V2R subtype and couples to Gs. So, it is likely that
the amphibians possess two different kinds of VTR,
one resembling the mammalian V1a subtype and
the other representing the mammalian V2 subtype.

With regard to ligand sensitivity, the VT/AVP
receptor family responded better to VT than MT,
while MT/OT receptors were more sensitive to
MT than VT. This finding indicated that the
specific amino acids responsible for ligand selec-
tivity are conserved within the VT/AVP and
MT/OT receptor families. It is known that the
Tyr115 residue in extracellular loop 1 (ECL1) of the
human V1aR is crucial for agonist selectivity (Chini
et al. 1995). Interestingly, this residue is substituted
to Asp in the V2R and to Phe in the OTR
respectively. It has been suggested that amino acid
at position 8 (Arg for VT/AVP and Leu for
MT/OT) in neurohypophysial nonapeptides may
interact with the amino acid at this position (Tyr115

for V1aR, Asp103 for V2R, and Phe103 for OTR).
AVP and VT that possess an Arg8 residue exhibit
similar sensitivity to V1aR, V2R and OTR,
whereas OT and AVP with an Arg8�Leu sub-
stitution exhibit highest sensitivity to OTR and a
remarkable decrease in sensitivity to V1aR and
V2R (Chini et al. 1995). Like V1aR, frog VTR
contains a Tyr residue at this position, while frog
MTR has a Phe residue as has the OTR. These
observations suggest that a single amino acid

Figure 8 In situ hybridization analysis showing the distribution of MTR mRNA in the brain and pituitary of Rana
esculenta. (A–H) Frontal brain sections were hybridized with a 35S-labeled Rana esculenta MTR riboprobe and
exposed onto Hyperfilm �-max for 2 weeks. A control section treated with the sense 35S-labeled MTR riboprobe (F,
left hemisection) is compared with a consecutive section hybridized with the antisense probe (F, central hemisection).
The anatomical structures, identified by microscopic analysis, are designated on the right hemisections according to
Neary & Northcutt (1983). (I) The rostrocaudal levels of the sections are indicated on the schematic sagittal section.
For abbreviations, see Table 4.
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difference at this position may confer differential
ligand selectivity between the VT/AVP and
MT/OT receptor families. It thus appears that a
high selective pressure has acted to conserve crucial
amino acid residues that confer selectivity of each
receptor subfamily for its natural ligand. Surpris-
ingly however, AVP, the mammalian counterpart
of VT, was a very poor agonist of VTR. In fact,
frog VTR exhibited the same rank order of
potency (VT>OT>AVP�MT) as a fish VTR
(Mahlmann et al. 1994), whereas chicken VT1R
exhibited a different order of potency, AVT�
AVP>OT�MT (Tan et al. 2000) so that the VTR
of lower vertebrates exhibits low affinity for AVP
while the VTR of higher vertebrates has high
sensitivity to AVP. These observations imply that,
during the process of co-evolution of neurohypo-
physial nonapeptides and their receptors, changes
of VT/AVP receptors preceded those of their
ligands.

Agonists and antagonists for V1a, V2, and OT
that are highly selective for the respective
mammalian receptors did not discriminate frog
VTR and MTR. In particular, the V1a agonist
[Phe2,Orn8]OT activated VTR and MTR with
similar potency while V2 and OT agonists were
totally devoid of activity on VTR and MTR.
Site-directed mutagenesis studies combined with
computer modeling indicate that the Asp97, Gln104,
Gln108, Lys128, Gln131, Gln185, and Gln311 residues
of the human V1aR interact with AVP and the
V1a agonist (Mouillac et al. 1995). Interestingly,
these amino acids are well conserved in frog VTR
and MTR. It has previously been shown that AVP
and V1a agonist have poor selectivity for V1a and
V2R, while the V2 agonist [deamino-Cys1,Val4,-
Arg8]AVP exhibits high specificity for V2R having
Asp at position 103 (Chini et al. 1995, Ufer et al.
1995). The fact that the amino acid residues at this
position in VTR and MTR are Tyr and Phe
respectively may account for the failure of the V2
agonist to activate frog VTR and MTR. It is also
interesting to note that none of the V1a, V2 and
OT antagonists inhibited VT-induced VTR acti-
vation, while these antagonists inhibited MT-
induced MTR activation to some extent. It has
been previously shown that mutations in agonist-
binding sites of V1aR do not affect antagonist
binding, indicating that the residues responsible for
agonist and antagonist binding to V1aR are
different (Mouillac et al. 1995). It is known that

aromatic residues in TMDVI of human V1aR
(Trp304, Phe307, and Phe308) are responsible for
V1a antagonist binding (Cotte et al. 2000). The
corresponding residues in both VTR and MTR are
well conserved except for Phe307. In VTR, Phe307

is replaced by Tyr, suggesting that this substitution
may account for the insensitivity of the nonapep-
tide antagonist towards VTR even though VTR
and V1aR show a high degree of sequence identity.
Another motif in TMDIII (Leu-Val-Lys, LVK for
OTR and Val-Val-Lys, VVK for V1aR) has
recently been found to be responsible for binding
cyclic peptide antagonist (Breton et al. 2001). Like
OTR, frog MTR contains an LVK motif, whereas
VTR has an Ile-Ile-Lys (IIK) motif instead of the
VVK sequence found in V1aR, suggesting that the
failure of the nonapeptide antagonists to inhibit
VT-induced VTR activation may be ascribed to
the VVK�IIK double substitution. These results
indicate that although frog VTR and MTR exhibit
high selectivity for natural ligands they show poor
selectivity for the agonist and antagonist. It appears
therefore that a degree of caution should be taken
when using the agonists and antagonists designed
for mammalian AVP and OT receptors to charac-
terize the pharmacological profile of amphibian
VTR and MTR.

RT-PCR analysis and in situ hybridization
histochemistry revealed that the mRNAs encoding
frog V1a-type VTR and MTR were differentially
expressed although they largely overlapped in
many regions of the brain and peripheral organs.
The occurrence of VTR mRNA in the distal lobe
of the pituitary is consistent with a role of VT in the
control of ACTH secretion (Tonon et al. 1986).
Previous studies have shown that the intermediate
lobe of the pituitary is innervated by MT-
containing fibers (Dierickx & Vandesande 1976,
Tonon et al. 1985, Lamacz et al. 1989). The fact
that MTR mRNA is actively expressed in the pars
intermedia strongly suggests that MT controls the
activity of pituitary melanotrophs. The intense
expression of VTR mRNA in the frog adrenal
gland is in agreement with functional studies that
have shown that AVP is a potent stimulator of
corticosterone and aldosterone secretion in vitro
(Larcher et al. 1989, 1992a). Interestingly, the rank
order of potency of the natural nonapeptides on
recombinant VTR (VT>OT>AVP�MT) was
similar to that observed on frog adrenocortical cells
(Larcher et al. 1992a).
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In the brain, the distribution of VTR and MTR
largely overlapped in the telencephalon, dien-
cephalon, and mesencephalon (Table 4). In a few
regions, however, one of the receptors was more
intensely expressed than the other. For example, in
the medial amygdala, MTR mRNA was far more
abundant than VTR mRNA whereas in the dorsal
aspect of the magnocellular preoptic nucleus, VTR
mRNA was predominant.

A strong correlation was observed between the
localization of VT- and MT-immunoreactive fibers
and the distribution of VTR and MTR mRNAs
respectively (Table 4). For instance, several areas
such as the lateral septum, the accumbens nucleus,
the anterior preoptic area, the dorsal hypothalamic
nucleus, the ventral part of the magnocellular
preoptic nucleus, and the ventral hypothalamic
nucleus contained high density of VT fibers and a
dense accumulation of VTR mRNA. In amphib-
ians, VT administration enhances reproductive
behavior, i.e. vocalization, male amplectic clasping
behavior, and female sexual receptivity (Moore
1992, Boyd 1997). In this respect, the dense
network of VT-containing fibers and the intense
expression of VTR mRNA in the anterior preoptic
area is of particular interest since this nucleus is
clearly involved in the regulation of male calling
behavior (Boyd 1997) and sexual activity (Moore
et al. 2000).

However, in a few regions of the brain,
mismatching was observed between the localization
of VT- or MT-immunoreactive fibers and VTR or
MTR mRNAs respectively (Table 4). For example,
the dorsal pallium, the ventral striatum, and the
nucleus of the periventricular organ exhibited
intense MTR mRNA expression but contained
very few MT-positive processes. The receptors
expressed in these areas may be influenced by
nonapeptides released at a distance, i.e. through
volume transmission (Fuxe & Agnati 1991,
MacMillan et al. 1998). Reciprocally, the lateral
hypothalamic nucleus that is innervated by a high
density of VT fibers did not express VTR mRNA,
suggesting that these VT-positive processes project
towards distant areas.

In conclusion, we have cloned and functionally
characterized two different neurohypophysial pep-
tide receptors in the frog. Although the distribution
of VTR and MTR mRNAs overlapped in many
brain regions and in some peripheral tissues, these
receptors may play distinct roles as they showed

differential ligand sensitivity and signal transduc-
tion mechanisms. This study will provide important
information for the development of new analogs for
VT/AVP and MT/OT families.
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