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Abstract. To better understand the effects of wildfires on
air quality and climate, it is important to assess the occur-
rence of chromophoric compounds in smoke and character-
ize their optical properties. This study explores the molecu-
lar composition of light-absorbing organic aerosol, or brown
carbon (BrC), sampled at the Missoula Fire Sciences labora-
tory as a part of the FIREX Fall 2016 lab intensive. A total
of 12 biomass fuels from different plant types were tested,
including gymnosperm (coniferous) and angiosperm (flower-
ing) plants and different ecosystem components such as duff,
litter, and canopy. Emitted biomass burning organic aerosol
(BBOA) particles were collected onto Teflon filters and ana-
lyzed offline using high-performance liquid chromatography
coupled to a photodiode array spectrophotometer and a high-
resolution mass spectrometer (HPLC–PDA–HRMS). Sepa-
rated BrC chromophores were classified by their retention
times, absorption spectra, integrated absorbance in the near-
UV and visible spectral range (300–700 nm), and chemical
formulas from the accurate m/z measurements. BrC chro-
mophores were grouped into the following classes and sub-
classes: lignin-derived products, which include lignin pyrol-
ysis products; distillation products, which include coumarins
and flavonoids; nitroaromatics; and polycyclic aromatic hy-
drocarbons (PAHs). The observed classes and subclasses
were common across most fuel types, although specific BrC
chromophores varied based on plant type (gymnosperm or
angiosperm) and ecosystem component(s) burned. To study

the stability of the observed BrC compounds with respect
to photodegradation, BBOA particle samples were irradi-
ated directly on filters with near UV (300–400 nm) radia-
tion, followed by extraction and HPLC–PDA–HRMS anal-
ysis. Lifetimes of individual BrC chromophores depended
on the fuel type and the corresponding combustion condi-
tion. Lignin-derived and flavonoid classes of BrC generally
had the longest lifetimes with respect to UV photodegra-
dation. Moreover, lifetimes for the same type of BrC chro-
mophores varied depending on biomass fuel and combus-
tion conditions. While individual BrC chromophores disap-
peared on a timescale of several days, the overall light ab-
sorption by the sample persisted longer, presumably because
the condensed-phase photochemical processes converted one
set of chromophores into another without complete photo-
bleaching or from undetected BrC chromophores that photo-
bleached more slowly. To model the effect of BrC on climate,
it is important to understand the change in the overall absorp-
tion coefficient with time. We measured the equivalent atmo-
spheric lifetimes of the overall BrC absorption coefficient,
which ranged from 10 to 41 d, with subalpine fir having the
shortest lifetime and conifer canopies, i.e., juniper, having
the longest lifetime. BrC emitted from biomass fuel loads
encompassing multiple ecosystem components (litter, shrub,
canopy) had absorption lifetimes on the lower end of the
range. These results indicate that photobleaching of BBOA
by condensed-phase photochemistry is relatively slow. Com-
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peting chemical aging mechanisms, such as heterogeneous
oxidation by OH, may be more important for controlling the
rate of BrC photobleaching in BBOA.

1 Introduction

Forests have naturally occurring wildfire cycles that main-
tain the forest ecosystem, but global climate change is alter-
ing the cycles with unpredictable consequences (Shvidenko
and Schepaschenko, 2013; Weber and Stocks, 1998). In addi-
tion to the impacts of wildfires on ecosystems, biomass burn-
ing plumes have pronounced effects on atmospheric chem-
istry and climate (Boulanger et al., 2014; Moriondo et al.,
2006; Shvidenko and Schepaschenko, 2013; Wotton et al.,
2010; Wotton and Flannigan, 1993). Wildfire plumes con-
tain a complex mixture of greenhouse gases (carbon diox-
ide and methane), multiple non-methane organic compounds
(NMOCs), and carbonaceous and ash particles. The effects
arising from biomass burning organic aerosol (BBOA) are
not well understood because BBOA composition and opti-
cal properties may depend on many factors, such as the type
of fuel burned and combustion conditions (Chen and Bond,
2010; Jen et al., 2019; Kirchstetter et al., 2004), wind speed,
heading or backing fires (Surawski et al., 2015), and fuel
moisture content (Tihay-Felicelli et al., 2017). Global cli-
mate models are starting to include contributions from light-
absorbing organic carbon, termed brown carbon (BrC), be-
cause treating BBOA as purely scattering leads to incorrect
predictions of climate forcing (Bond et al., 2011; Laskin et
al., 2015; Ma et al., 2012). One of the first studies incor-
porating BrC into models was by Feng et al. (2013), who
found that in areas where primary BrC emissions are high
the absorbing component of BBOA can dominate over the
scattering component, switching net radiative forcing by or-
ganic aerosols from negative (cooling) to positive (warming)
at the top of the atmosphere. Other modeling studies have
demonstrated that BrC can have large positive effects on the
radiative forcing (Bahadur et al., 2012; Chung et al., 2012;
Laskin et al., 2015; Ramanathan et al., 2007). However, field
measurements to date indicate that BrC has a short lifetime
of ∼ 10 h, which would considerably reduce its impact if
included in models (Forrister et al., 2015; Selimovic et al.,
2019). Light absorption by BrC can also result in a signifi-
cant decrease in the photolysis rates of photochemically ac-
tive gases, such as HONO and NO2, which affect the mixing
ratios of atmospheric oxidants (Jiang et al., 2012; Li et al.,
2011). To better quantify the effect of BrC on climate, the
chemical composition and lifetimes of individual BrC chro-
mophores, as well as the effect of photochemical aging on the
optical properties of BrC particles, should be studied. Fur-
ther, for a comprehensive understanding, we should consider
the diversity of BrC, spanning nonpolar to polar molecules,
and BBOA from a range of sources.

Previous studies have identified important classes of
BBOA chemical components that contribute to light absorp-
tion. A major class includes lignin-pyrolysis products, which
are typically substituted aromatics with a high degree of un-
saturation, such as coniferaldehyde (Budisulistiorini et al.,
2017; Fleming et al., 2018; Simoneit et al., 1993). Another
class is nitroaromatics, such as nitrocatechols, which are
readily produced in the presence of NOx and absorb strongly,
with a λmax around 340 nm (Iinuma et al., 2010; Lin et al.,
2017). Polycyclic aromatic hydrocarbons (PAHs) have long
been known to be emitted from incomplete combustion pro-
cesses, and large PAHs can be significantly light-absorbing at
the near-UV and visible wavelengths (Simoneit, 2002). Bud-
isulistiorini et al. (2017) observed sulfur-containing species
from fern and peat pyrolysis, and suggested that they are
formed via acid-catalyzed heterogeneous reactions. Tar balls
are largely externally mixed spheres or spherical aggregates
produced from smoldering combustion or through multi-
phase secondary chemistry (Sedlacek et al., 2018; Tóth et al.,
2014). In terms of their chemical composition, tar balls are
thought be comprised primarily of oxygenated organic com-
pounds, similar to that of BBOA (Chakrabarty et al., 2010;
Girotto et al., 2018; Li et al., 2019; Pósfai et al., 2004; Sed-
lacek et al., 2018).

BrC components undergo photochemical transformations
during atmospheric transport, including photobleaching or
photo-enhancement of their absorption coefficients. For ex-
ample, the field studies of Forrister et al. (2015) and Se-
limovic et al. (2019) observed a substantial decay in aerosol
UV light absorption in biomass burning plumes, correspond-
ing to a half-life of 9 to 15 h. Similarly, Lin et al. (2017)
reported rapid evolution of both the BBOA composition and
optical properties during a nationwide biomass burning event
in Israel. However, there is a recalcitrant fraction of BrC that
persists even after long aging times. Di Lorenzo et al. (2017)
found that the fraction of higher-molecular-weight chro-
mophores (> 500 Da) relative to lower-molecular-weight
chromophores (< 500 Da) increased with plume transport
time, on the order of hours to days. These changes in BBOA
properties are supported by laboratory studies of photochem-
ical aging of BBOA or relevant surrogates via heterogeneous
photooxidation (exposure of particles to gaseous OH and
other oxidants), aqueous photooxidation (exposure of BBOA
compounds to OH within cloud/fog water droplets), direct
photolysis (exposure of particles or their aqueous extracts
to actinic UV radiation), and indirect photolysis (photosen-
sitized reactions between BBOA molecules and electroni-
cally excited triplet states of photosensitizers). Several stud-
ies have characterized changes in the UV–Vis spectra of ni-
trophenols, common in BBOA, as they are exposed to UV
radiation. For example, Hinks et al. (2016) irradiated 2,4-
dinitrophenol incorporated in limonene secondary organic
aerosol material and observed the absorbance decrease in
the range of 250–320 nm, while the absorbance from 400
to 450 nm increased. Similarly, Zhao et al. (2015) observed
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a photo-enhancement at 420 nm for a 4-nitrocatechol aque-
ous solution, in response to direct photolysis. During pho-
tooxidation with OH (produced by an intentional addition
of hydrogen peroxide to the photolyzed solution), photo-
enhancement at 420 nm was observed initially, but the so-
lution photobleached within an hour. In Hems and Ab-
batt (2018), aqueous solutions of nitrophenols and hydrogen
peroxide were irradiated, atomized, and then analyzed by an
aerosol chemical ionization mass spectrometer. This study
attributed the photo-enhancement at 420 nm to the function-
alization of nitrophenols, followed by their photodegradation
at 420 nm, as was evidenced by fragmentation of functional-
ized nitrophenols. Lignin pyrolysis products and other lignin-
derived molecules have been shown to be oxidized into light-
absorbing compounds under certain conditions. For exam-
ple, Gelencsér et al. (2003) observed an increase in ab-
sorption at visible wavelengths during the photooxidation of
single-component aromatic hydroxy acids in aqueous solu-
tions. Chang and Thompson (2010) and Tang and Thomp-
son (2012) observed production of light-absorbing com-
pounds during aqueous reactions of OH with multiple pheno-
lic compounds. Smith et al. (2016) found that triplet-excited
molecules can react with phenolic compounds in cloud water
and mimic producing BrC chromophoric products. In Kaur
et al. (2019), five model BBOA model compounds were ir-
radiated and hydroxyl radicals, singlet molecular oxygen,
and triplet excited-state molecules were detected with probe
molecules. They found that all model compounds decayed
on the order of hours from indirect photooxidation. There
are many studies that have investigated the photodegrada-
tion of PAHs on ice surfaces, ocean water mimics, and soil
(Smol and Włodarczyk-Makuła, 2017). Shankar et al. (2019)
found that the degradation of the three-ring PAH phenan-
threne had a half-life of 13 to 23 h depending on the solvent it
was dissolved in. Using infrared spectroscopy they observed
the emergence of carboxylic acid, aldehyde, and ketone func-
tionalities during photolysis. Miller and Olejnik (2001) irra-
diated aqueous solutions of PAH mixtures with UVC lamps.
They found that the photodegradation of benzo[a]pyrene and
chrysene proceeds more rapidly at acidic pH values and pro-
posed a mechanism based on their findings.

The photochemical aging of actual mixtures of BBOA
compounds, not just surrogates, was also reported in the lit-
erature. For example, Tomaz et al. (2018) found that aqueous
BBOA mixtures from the 2016 FIREX lab intensive decayed
rapidly, with most having lifetimes due to aqueous OH oxi-
dation mimicking clouds of a half a day or less. The decay
of compounds such as catechol, benzoic acid, and methylfur-
fural lead to the formation of oxalate, which made up 13 %–
16 % of total dissolved organic carbon after 150 h. Saleh et
al. (2013) burned pocosin pine and oak, and diluted smoke
was irradiated with UV lights in a smog chamber. Aerosol
optical properties were monitored with an aethalometer at
seven wavelengths. They found that aged emissions were
more absorbing than fresh emissions at 370 and 470 nm af-

ter 1 h. Zhong and Jang (2014) tracked the absorption co-
efficients of BBOA during solar exposure in a smog cham-
ber, and observed an increase of 11 %–54 % in the integrated
mass absorption cross section (280–600 nm) in the first half
of the day, followed by decrease in the afternoon. In Lin
et al. (2016), BBOA collected from ponderosa pine and In-
donesian peat burns were dissolved in a 50 % by volume
water/acetonitrile solvent and irradiated with actinic wave-
lengths. They found that, regardless of the fuel type, the
half-life of the absorbance at 300 nm was roughly 16 h under
sunlight for soluble BBOA. Wong et al. (2017) found that
irradiated BBOA water extracts lost water-soluble organic
carbon (WSOC) when irradiated with 300–400 nm light. Si-
multaneously, the absorption coefficients at 365 and 400 nm
first increased, in the latter case to about 0.035 m2 g−1

after 20 min of illumination time, and then decreased to
nearly 0 in 60 min. Size-exclusion chromatography showed
that low-molecular-weight BrC chromophores (< 400 Da)
were quickly formed and photo-degraded, giving yield to a
photo-enhancement due to the formation of high-molecular-
weight species (> 400 Da). They concluded that this high-
molecular-weight fraction was responsible for long-lived
light absorption. In Sumlin et al. (2017), BBOA produced
from burning Alaskan peat were aged by reactions with OH
in an oxidation flow reactor (OFR), and light absorption co-
efficients of aged and unaged BBOA were measured by an
integrated photoacoustic nephelometer. They found that the
mass absorption coefficient at 375 nm deceased roughly 45 %
after an equivalent of 4.5 d of photochemical aging.

To summarize the literature survey above, much work has
been done in terms of characterizing optical properties of
photochemically aged BBOA and surrogates, but a consensus
on what drives the photobleaching and photo-enhancement
of chromophores in BBOA and the relative importance of
these processes on atmospherically relevant timescales has
not been reached. This study aims to better understand the
molecular composition of BrC for different fuel types and
combustion conditions as it may be essential to understand-
ing the optical properties of BBOA and predicting their evo-
lution during photochemical aging.

This study explored the diversity in the molecular compo-
sition of BrC chromophores found in BBOA samples gen-
erated by burning forest fire fuels, and examined how the
chemical composition and optical properties change during
UV irradiation of BrC materials in the absence of gas-phase
oxidants. BBOA samples from 12 biomass fuels collected
from around the United States, encompassing both gym-
nosperm and angiosperm plant types and different parts of
the ecosystem, including duff, litter and canopy, were ex-
amined. Samples collected on filters were extracted by a
mixture of dichloromethane, acetonitrile, and hexanes and
analyzed by high-performance liquid chromatography cou-
pled to a photodiode array spectrophotometer and a high-
resolution mass spectrometer (HPLC–PDA–HRMS) to tar-
get BrC chromophores. To investigate whether the BrC chro-
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mophores are photolabile or photostable, BBOA particle
samples were directly irradiated on filter substrates before
analysis by HPLC–PDA–HRMS or UV–Vis spectrometry.
We estimated their lifetimes in BBOA under UV-irradiated
conditions by measuring the time-resolved absorbance of in-
dividual chromophores. We found that the equivalent atmo-
spheric lifetime for photochemical transformations of indi-
vidual chromophores ranged from 0.4 to 1.6 d, which is a
relevant timescale for long-range atmospheric transport. BrC
chromophores could survive the exposure to UV radiation
on different timescales, depending on their molecular struc-
ture or their interactions with neighboring molecules dic-
tated by BBOA type. However, the overall absorption by BrC
(integrated over 300–700 nm) persisted longer under UV ir-
radiation, with lifetimes ranging from 10 to 41 d, presum-
ably because products of the condensed-phase photochem-
ical reactions of the original BrC chromophores are also
light-absorbing. The equivalent atmospheric lifetimes of BrC
absorption under UV irradiation are long in comparison to
typical lifetimes for heterogeneous oxidation of BBOA by
OH. For climate modeling applications, these results suggest
that chemical aging mechanisms other than condensed-phase
photochemistry may play a more significant role in the evo-
lution of the BrC optical properties.

2 Experimental methods

2.1 Sample collection and information

BBOA particle samples were collected during the FIREX
Fall 2016 lab intensive at the Missoula Fire Lab (https:
//www.esrl.noaa.gov/csd/projects/firex/firelab/, last access:
1 May 2019). One of the BBOA samples used in this study
was from a “stack” burn and the other samples were from
“room” burns. Selimovic et al. (2018) explains room and
stack burns and fuels in detail. Briefly, the combustion of
forest fire fuels lasted 5–20 min and during stack burns emis-
sions were collected from a constant, diluted flow of en-
trained emissions by way of the stack. In room burns, the
smoke from the fire was allowed to mix in the room during
sample collection, and BBOA was collected during both the
burn and mixing periods. Smoke was purged from the room
by clean air between burns. Fuels were collected from differ-
ent US regions and brought to the Missoula Fire Lab for test
burns. This paper focuses on 12 fires covering gymnosperm
or conifers, including ponderosa pine (Pinus ponderosa),
lodgepole pine (Pinus contorta), Engelmann spruce (Picea

engelmannii), Douglas fir (Pseudotsuga menziesii), juniper
(Juniperus), longleaf pine (Pinus palustris), and subalpine
fir (Abies lasiocarpa). Angiosperm forest fire fuels included
Montana sagebrush and two types of chaparral, i.e., man-
zanita (Arctostaphylos) and chamise (Adenostoma fascicula-

tum). In some test burns, a representative “ecosystem” mix of
biomass was used, including canopy, duff, litter, herbaceous,

and shrub components. In other test burns, single biomass
components of the ecosystem were used, such as rotten log
samples. Information for each fire is provided in Table S1 in
the Supplement.

Copper tubing with a PM2.5 cyclone inlet was placed in
the combustion room, while the pump and filter were lo-
cated in an adjacent room. The pump was operating at a
flow of 16.7 L min−1 with the aid of a critical orifice, and
BBOA particle samples were collected on PTFE filter sub-
strates (FGLP04700, Millipore, 47 mm diameter, 0.2 µm pore
size) during both of the combustion and smoke-mixing stages
of the room burns. Loaded filters were stored at −18 ◦C un-
til they were analyzed for BrC chromophores no more than
2 months after sampling. The room burn protocols allowed
for long collection times and therefore higher aerosol mass
loading, which is desirable for the analysis described below.

2.2 HPLC–PDA–HRMS

The molecular identity and relative abundance of BrC
chromophores were determined using the HPLC–PDA–
HRMS platform described by Fleming et al. (2018) and
Lin et al. (2018). Segments of the filter were extracted
into a mixture of organic solvents composed of 2.0 mL
dichloromethane, 2.0 mL acetonitrile, and 1.0 mL of hex-
anes, which was shown to optimize the extraction efficiency
(Lin et al., 2017). The extraction occurred overnight on a
platform shaker. Extracts were filtered with polyvinylidene
fluoride (PVDF) syringe filters (Millipore, Duropore, 13 mm,
0.22 µm) to remove undissolved suspended particles. Water
(50 µL) and dimethyl sulfoxide (DMSO; 100 µL) were added
to the extracts, which were then concentrated under a flow of
N2 until the volume was reduced to roughly 150 µL, which
signified that the extracting solvent evaporated and (mostly)
water and DMSO remained in the solution. For photolyzed
BBOA, DMSO (30 µL) was exclusively added to the extract,
and evaporated to a volume of 30 µL. Visual inspection con-
firmed that the extracted material did not precipitate out of
solution.

The HPLC utilized a reverse-phase column (Luna C18,
2 × 150 mm, 5 µm particles, 100 Å pore size, Phenomenex,
Inc.). The injection volume was 5.0 µL for unphotolyzed or
10 µL for extractions of post-irradiated samples, with the lat-
ter providing more analyte mass since only a quarter of the
filter was used in irradiation experiments. The mobile phase
consisted of 0.05 % formic acid in liquid chromatography–
mass spectrometry (LC–MS) grade water (A) and LC–MS
grade acetonitrile (B). Gradient elution was performed with
the A–B mixture at a flow rate of 200 µL min−1: 0–3 min
hold at 90 % A, 3–62 min linear gradient to 10 % A, 63–
75 min hold at 10 % A, 76–89 min linear gradient to 0 % A,
90–100 min hold at 0 % A, then 101–120 min hold at 90 %
A. The electrospray ionization (ESI) settings of the Orbitrap
HRMS were as follows: 4.0 kV spray potential, 35 units of
sheath gas flow, 10 units of auxiliary gas flow, and 8 units of
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sweep gas flow. The solutions were analyzed in both positive
and negative ion ESI-HRMS modes.

The HPLC–PDA–HRMS data were acquired and first an-
alyzed using Xcalibur 2.4 software (Thermo Scientific). Pos-
sible exact masses were identified based on the correspond-
ing LC retention time using the open-source software toolbox
MZmine version 2.23 (http://mzmine.github.io/, last access:
28 July 2017) (Pluskal et al., 2010). Chemical formulas were
assigned from exact m/z values using the Formula Calcu-
lator v1.1. More details about experimental procedures and
data processing can be found elsewhere (Lin et al., 2015b,
2016, 2018).

2.3 Condensed-phase photochemistry experiments

A quarter of the filter was directly irradiated by either an ul-
traviolet light-emitting diode (LED, Thorlabs M300L4) or a
filtered xenon arc lamp. The LED was used in experiments
aimed at estimating lifetimes of individual chromophores.
The LED emission spectrum was centered at 300 nm with
a full width at half maximum (FWHM) of 20 nm. This wave-
length was chosen because it corresponds to the most ener-
getic UV photons available in the lower troposphere. It is
common practice in photochemical experiments to use nar-
row band UV sources, as opposed to a broadband simulator,
as it limits sample heating and evaporation (Calvert and Pitts,
1966). The LED was fixed half a centimeter away from the
filter, resulting in an incident power density of 11 mW cm−2.
Irradiation times for these experiments are given in Table S2.
After the irradiation step, the photolyzed BBOA were ex-
tracted and analyzed using HPLC–PDA–HRMS as described
in the previous section.

The irradiation time using the LED was converted into
an equivalent time under sunlight by calculating the ratio of
the 290–350 nm integrated spectral flux of the Sun and the
300 nm LED, given in Eq. (1). This conversion assumes that
photochemistry is limited to the < 350 nm range, consistent
with the photochemistry of many organic molecules, which
exhibit a sharp drop in the photochemical quantum yields at
longer wavelengths (Turro et al., 2009). Because the radia-
tion source does not replicate the solar spectrum, the life-
times calculated from the formula below should be regarded
as estimates.

τatm = τLED ×

∫ 350 nm
290 nm FLED (λ)dλ

∫ 350 nm
290 nm 〈Fsolar (λ)〉24 hdλ

(1)

The spectral flux density for the LED and the Sun as a func-
tion of wavelength is shown in Fig. 1. The solar flux den-
sity was estimated every hour and averaged over a 24 h pe-
riod for Los Angeles, CA (34◦ N, 118◦ W), on 20 June 2017
from the quick Tropospheric Ultraviolet Visible (TUV) cal-
culator (Madronich et al., 2002) using the following param-
eters: 300 DU overhead ozone column, 0.1 surface albedo
(0–1), and ground elevation of 0 km with default outputs for

Figure 1. Spectral flux density (photons cm−2 s−1 nm−1) approxi-
mated for a solar zenith angle of 0◦ (orange), as well as the 24 h av-
erage for the latitude and longitude of Los Angeles (34◦ N, 118◦ W)
on 20 June 2017 (red). The spectral flux density for the 300 nm LED
(blue) and the filtered Xe arc lamp (green) are also shown.

aerosols and clouds. The procedure for calculating the spec-
tral flux density of the LED is described in the Supplement.
The maximum possible spectral flux density from the Sun
was also calculated at a solar zenith angle (SZA) of 0◦ using
the TUV calculator. The equation for calculating the equiv-
alent atmospheric lifetime at an SZA of 0◦ is the same as
Eq. (1), except that the 24 h averaged flux density is replaced
by the peak flux density at SZA = 0. The SZA = 0◦ compar-
ison represents the lower limit of BrC absorption lifetimes.

In a separate series of experiments, filter samples were ir-
radiated by the filtered radiation from a xenon arc lamp to
determine the characteristic lifetime for the photobleaching
of the overall absorption by BrC molecules. A quarter of
a PTFE filter sample was exposed to filtered light emitted
from a xenon arc lamp (Newport 66902). Broadband light
was reflected at a 90◦ angle using a dichroic mirror, then fil-
tered through a 295 nm long-pass filter (Schott WG295), and
finally passed through a UV bandpass filter (Schott BG1),
ultimately transmitting light in the range of 290–400 nm.
The incident overall power density was 196 mW cm−2. Par-
ticles were irradiated for ∼ 12 h to 1.8 d; the exact time var-
ied from sample to sample depending on the offline trans-
mission spectra. Transmission spectra were acquired directly
from the PTFE filter without any material extraction using
a Jasco V-670 absorption spectrometer, with a blank PTFE
filter used as a reference. Four to six transmission spectra
were collected at each time point as the filter was rotated,
to minimize the effect of the filter orientation. The filter was
then returned to the irradiation setup for further irradiation.
When there was no longer any change in the transmission
spectrum due to irradiation, the filter was extracted into an
organic solvent mixture of 10 mL methanol, 5.0 mL acetoni-
trile, and 2.0 mL of hexane in a scintillation vial using a
vortex mixer. While dichloromethane would be a better sol-
vent for BBOA material, methanol was used for these experi-
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ments, since dichloromethane absorbs at longer wavelengths
in the UV (up to 240 nm) and could interfere with the mea-
surement. The solution was then evaporated down to 5 mL in
order to increase the analyte concentration. For comparison,
an un-irradiated quarter of the filter was prepared identically
in a separate vial, and solution-phase transmission spectra
of both solutions were recorded using a dual beam UV–Vis
spectrometer (Shimadzu UV-2450). Sample filter-based and
solution-phase spectra are shown in Fig. S2, with the y axis
converted to effective base-10 absorbance, A = − log(T ),
where T is the wavelength-dependent transmittance through
the filter or the cuvette. For filter-based transmission spec-
tra, the baseline was manually corrected by assuming the ab-
sorbance at 850 nm was zero for BrC.

In all UV irradiation experiments, the integrated ab-
sorbance from 300 to 700 nm was calculated and normalized
to the starting integrated absorbance before the UV exposure.
The decay constants and corresponding lifetimes were calcu-
lated as described in Fig. S1. The linear regression trend line
was constrained to have a y intercept of zero. Error bars were
calculated from the standard error of the slope of the linear
trend line, the first-order rate constant. It should be noted that
lifetimes of BrC absorption and chromophores given in this
paper are lower-limit estimates since there are uncertainties
due to scattering by the Teflon substrate (Presser et al., 2014).

3 Results and discussion

3.1 BrC chromophores

Table 1 summarizes BrC chromophores observed in two
or more fires or fuel types. The table numbers BrC chro-
mophores by their ascending retention time on the HPLC
column, i.e., with smaller, more polar compounds appearing
first. Each entry includes the absorption spectrum recorded
by the PDA detector, the chemical formula(s) corresponding
to the detected characteristic masses at that retention time,
and a potential structure based on a spectra acquired from
standards or observations in previous studies. All PDA chro-
matograms were integrated over 300–700 nm and normal-
ized to the maximum integrated absorbance. Chromophores
in Table 1 are binned with respect to their normalized PDA
absorbance as M – major (75 %–100 %); I – intermediate
(25 %–75 %); or W – weak (5 %–25 %). Abundance and ab-
sorption cross sections of BrC chromophores both factor
into their assigned absorbance bin, as absorbance was not
mass normalized with standards. It is possible that the chro-
mophores labeled as “M” are present in small concentrations
but have a large absorption coefficient. Compounds making
up less than 5 % of the normalized absorbance are not in-
cluded in the table.

Lignin pyrolysis products make up one group of BrC
chromophores observed. Lignin is a large, heterogeneous
biopolymer that is a significant component of wood, along

Figure 2. The lignin pyrolysis products sinapaldehyde (C11H12O4)
and coniferaldehyde (C10H10O3) elute at slightly different reten-
tion times, roughly 18.1 and 18.4 min, respectively.

with cellulose and hemicellulose. Lignin monomer units vary
depending on the class of the plant but generally possess
phenolic moieties that are largely preserved during pyroly-
sis (Simoneit et al., 1993). Sinapaldehyde (8) and conifer-
aldehyde (9) are known lignin pyrolysis products derived
from the corresponding lignin monomer units, sinapyl and
coniferyl alcohol, respectively. However, they are detected in
varying abundance depending on the lignin monomer units
of the plant class. Sinapaldehyde and coniferaldehyde are
separated by the column but elute only 0.3 min apart, as
shown in Fig. 2. Sinapaldehyde is a major BrC chromophore
for nearly all angiosperm or flowering fuel types, includ-
ing ceanothus, chamise, and sagebrush, while coniferalde-
hyde is a major BrC chromophore largely among conifers or
soft wood species such as subalpine fir duff, longleaf pine,
juniper, and ponderosa pine litter. Coniferaldehyde has one
fewer methoxy ring substituent compared to sinapaldehyde,
and its PDA intensity is generally anticorrelated to that of
sinapaldehyde. In other words, for fuel types with low sina-
paldehyde absorbance, we observe coniferaldehyde as a ma-
jor BrC chromophore and vice versa. This is consistent with
the composition of lignin monomers for angiosperms and
gymnosperms (Sarkanen and Ludwig, 1971; Simoneit et al.,
1993).

Other BrC chromophores cannot be classified as lignin
pyrolysis products but are clearly lignin-derived. Vanillic
acid (1) elutes at 10.07–10.29 min as the first, shared chro-
mophore across multiple fuel types that is notable in terms
of absorption. It is observed in three fires as a weak chro-
mophore, including subalpine fir duff, ponderosa pine rotten
log, and Engelmann spruce duff. All three fires are domi-
nated by smoldering combustion and have the lowest modi-
fied combustion efficiencies (MCEs) of all fires (Table S1).
This evidence suggests that vanillic acid is a product of smol-
dering combustion. Further, it also has the coniferyl moiety
observed for softwoods. Salicylic acid (3) is an intermediate-
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absorbing BrC chromophore produced during lodgepole pine
burning, and weakly absorbing among other softwoods and
duffs. Veratraldehyde (4) is another lignin-derived BrC chro-
mophore, which appears in nearly all BBOA samples of this
study, regardless of whether they are gymnosperm or an-
giosperm fuels.

There are other BrC chromophores with CxHyOz com-
position that can be explained as distillation products, or
the volatilization of molecules originating in plants as sec-
ondary metabolites (Agati et al., 2012; Iranshahi et al., 2009).
Found in plants, coumarins such as umbelliferone (5) and
nodakenetin (13) have been researched because of their pos-
itive pharmacological properties (Venugopala et al., 2013).
The absorption spectrum for nodakenetin has not been re-
ported; however, the molecule has previously been detected
in plant tissues (Lee et al., 2003; Wang et al., 2014) and is
a major or intermediate BrC chromophore in smoke from all
fuel types except chamise and ceanothus. Another type of
distillation product is flavonoids, which give leaves, flow-
ers, and fruits their color, protecting the plant from so-
lar UV radiation, and are antioxidants, guarding the plant
from reactive oxygen species (Agati et al., 2012). Flavones
and flavonols have the backbone structure of 2-phenyl-1-
benzopyran-4-one, and flavonols additionally require a hy-
droxy substituent on the only available carbon of the pyra-
none ring. BrC chromophores 11, 14, and 16 could have
flavonoid structures based on their chemical formulas. Inter-
estingly, tentatively assigned kaempferol (11) and diosmetin
(14) are observed in only conifer species, such as lodge-
pole pine and longleaf pine. On the other hand, 7-hydroxy-
3’,4’-dimethoxyflavone (16) is only observed in angiosperm
BBOA: ceanothus, chamise, and sagebrush. The former two
plants appear to be related as they have the order Rosales
in common, which could explain the same flavone detected
in both. Coumarins and flavonoids were distillation products
observed across fuel types, although the observation of spe-
cific BrC chromophores depends on the plant class, i.e., an-
giosperm or gymnosperm.

Nitroaromatics are a strongly absorbing class of BrC chro-
mophores that are formed from the reaction of aromatics with
NOx in plumes (Harrison et al., 2005). This class of com-
pounds is represented in Table 1 with nitropyrogallol (2),
nitrocatechol (6), hydroxynitroguaiacol (7), and methyl ni-
trocatechol (10). Xie et al. (2019) suggest that chromophore
(12) with the chemical formula C11H13NO5 is not a nitroaro-
matic compound but rather a compound containing a differ-
ent nitrogen-containing functional group, such as a nitrile
group. We did not observe this group of chromophores for
fires with low NOx levels, such as duff, as qualitatively in-
dicated by the peak NO level (Table S1). Nitrocatechol and
methyl nitrocatechol are tracers for BBOA emissions formed
from the photooxidation of phenol or m-cresol, toluene, and
other aromatic compounds in the presence of NOx (Iinuma
et al., 2010, 2016; Lin et al., 2015a). These chromophores
are most prominent in BBOA from chamise and sagebrush

burns. Those two fires exhibited the highest NO mixing ra-
tios in the entire study – 3.79 ppmv (82 % of total N emis-
sions) and 1.62 ppmv (57 % of total N emissions) peak NO
values, respectively. Nitropyrogallol (2) has an additional hy-
droxy group and is likely formed in the same way as nitro-
catechol and methyl nitrocatechol but is more oxidized. A
compound with the same formula as nitropyrogallol (2) was
observed during the photooxidation of nitrocatechol in the
lab (Hems and Abbatt, 2018). This is an intermediate or ma-
jor BrC chromophore detected in BBOA samples from lon-
gleaf pine, manzanita, and ponderosa pine litter fires. Hy-
droxynitroguaiacol (7) was observed in 10 of the 12 fires and
is most prominent in ponderosa pine log BBOA despite this
fire having the lowest NO levels. However, it may still form
through photooxidation of guaiacol in the presence of NOx

(Hems and Abbatt, 2018). Nitrocatechol and methyl nitro-
catechol are often used as biomass burning tracers in aged
plumes (Al-Naiema and Stone, 2017; Iinuma et al., 2010;
Li et al., 2016). However, in addition to these, we observed
more oxidized versions of these nitroaromatic species with
varying abundance depending on the BrC chromophore and
test fire. This suggests that the BBOA markers nitrocatechol
and methyl nitrocatechol become more functionalized on rel-
atively short timescales (less than 2 h) due to photooxidative
aging.

Polycyclic aromatic hydrocarbons (PAHs) are known to
be products of incomplete combustion, and they have the po-
tential to be long-lived BrC chromophores despite their re-
activity (Keyte et al., 2013). PAHs have been observed in
pristine environments, and it has been suggested that this
is due to phase separation of particles and slow diffusivity
of PAHs to surfaces where they react with atmospheric oxi-
dants (Fernández et al., 2002; Keyte et al., 2013; Macdon-
ald et al., 2000; Sofowote et al., 2011; Zhou et al., 2012,
2019). In addition to its climatic effects, PAHs are muta-
genic and carcinogenic as their metabolites, diol epoxides,
bind to guanidine nucleobases in DNA, effectively leading
to mutations (Finlayson-Pitts and Pitts, 2000; Moorthy et
al., 2015; Wood et al., 1984; Xue and Warshawsky, 2005;
Zhou et al., 2017). Various PAHs (17–25, Table 1) were ob-
served in only ceanothus, chamise, and sagebrush BBOA.
PAHs in Table 1 are detected from positive ion mode ESI,
and although positive mode ESI is not optimal for observing
PAHs, larger PAHs are still detectable by this method (Cha
et al., 2018). The same PAHs were previously observed by
Lin et al. (2018) for sagebrush using atmospheric pressure
photoionization (APPI) coupled with HPLC–PDA–HRMS,
which is more sensitive for the detection of nonpolar aro-
matic compounds. In general, individual PAH chromophores
are binned as “weak” in Table 1 based on their contribution
to optical absorption, but, for BBOA sampled from flam-
ing sagebrush and chamise burns, they make up a significant
fraction of the overall light absorption by BrC.

Table 2 presents abundant BrC chromophores observed
only in a single type of biomass fuel emissions. It should be
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Table 2. Chromophores appreciably found in only one fuel type, listed by their HPLC retention time, absorption spectra, assigned elemental
formulas, and examples of possible structures. The absorbance by each chromophore is binned by integrated photodiode array absorbance
normalized to the highest absorbance in each chromatogram: M – major (75 %–100 %); I – intermediate (25 %–75 %); or W – weak (5 %–
25 %).
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Table 2. Continued.
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Table 2. Continued.

noted that compounds making up less than 5 % of the normal-
ized PDA absorbance (integrated from 300 to 700 nm) are not
included in the tables. Due to this constraint, chromophores
in Table 2 may also be present in other fires but at very low
PDA absorbance values. Despite BrC chromophores in Ta-
ble 2 being observed significantly for only one fuel type,
they belong to the same compound classes as the BrC chro-
mophores in Table 1. For example, a coumarin known as
scopoletin (26) was observed from sagebrush BBOA. Previ-
ously we discussed that these coumarins are possible distilla-
tion products, along with flavonoids, which we also observe
as a product (40) from the ceanothus fire. These distillation
products (26 and 40) are among the most strongly absorbing
of the BrC chromophores, characterized as intermediate or
“I” in Table 2.

3.2 Aging by condensed-phase photochemistry

Gymnosperm (lodgepole pine) and angiosperm (cean-
othus) BBOA particle samples were selected for the initial
condensed-phase photochemistry experiments. BBOA filter
samples from a lodgepole pine burn were irradiated for 6 h by
an LED centered around 300 nm (which corresponds to ap-
proximately 33 h of irradiation from 24 h average solar flux
density; see Eq. 1). BBOA from the ceanothus burn were ir-
radiated by the same LED for 16 h (equivalent to 88 h of 24 h
averaged atmospheric sunlight). The burning of gymnosperm
(lodgepole pine) and angiosperm (ceanothus) resulted in dif-
ferent distributions of BrC chromophore classes. However,
the same compound classes, lignin-derived and flavonoid
compounds, were photo-resistant in both samples.

www.atmos-chem-phys.net/20/1105/2020/ Atmos. Chem. Phys., 20, 1105–1129, 2020
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Figure 3. BrC chromophores present in the BBOA sample before (a) and after (b) 300 nm irradiation for a conifer fuel: lodgepole pine.

Figure 4. BrC chromophores present in the BBOA sample before (a) and after (b) 300 nm irradiation for an angiosperm fuel: ceanothus.

Most chromophores from the lodgepole pine burn sample
experienced complete photobleaching during this exposure,
but six of them remained observable, including coniferalde-
hyde (C10H10O3, 80 % decrease), salicylic acid (C7H6O3,
70 % decrease), veratraldehyde (C9H8O3, 90 % decrease),
flavonoids (C15H10O6 and C16H12O6, both 70 % decrease),
and nodakenetin (C14H14O4, 90 % decrease), as shown in
Fig. 3. Figure 4 shows five chromophores from the ceanothus
burn sample that remained observable under these condi-
tions, including sinapaldehyde (C11H12O4, 90 % decrease),

a lignin-derived chromophore (C18H16O6, 80 % decrease),
and flavonoids (C16H12O5, C17H14O6, and C17H14O5, all
80 % decrease), some of which were observed exclusively in
this fire. These comparatively resilient species are aromatic,
which helps them be more resistant to photodegradation.

Next, we estimate the lifetime of individual BrC chro-
mophores in BBOA. For chamise, manzanita, and lodgepole
pine fires we measured the integrated PDA intensity over
300–700 nm for chromatographically separated BrC chro-
mophores in the starting samples and for up to three irra-
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Figure 5. Approximate atmospheric lifetimes for select individual
BrC chromophores due to UV irradiation in BBOA from chamise,
manzanita, and lodgepole pine fires (the irradiation times are listed
in Table S2). These lifetimes are shorter than those calculated for
overall BrC absorption.

diation time points (listed in Table S2). The limited num-
ber of samples and destructive nature of the chemical anal-
ysis only made it possible to do measurements for very few
time points. Integrated PDA intensities as a function of irra-
diation time were fit assuming that the decay was exponen-
tial in time. LED lifetimes were then converted to equiva-
lent lifetimes in the atmosphere, calculated from the average
spectral flux density over 20 June 2017 in Los Angeles. It
should be noted that due to scattering of light by the Teflon
filter substrate, which effectively increases the absorption ef-
ficiency of particles trapped on the filter, lifetimes in Fig. 5
are lower limits (Presser et al., 2014). Regardless of the chro-
mophore identities, BrC chromophores from chamise burns
have shorter predicted lifetimes (0.4–0.5 d) than those from
manzanita burns (0.5–0.9 d), which in turn have shorter pre-
dicted equivalent atmospheric lifetimes due to sunlight ex-
posure than BrC from lodgepole pine burns (1.0–1.6 d), as
shown in Fig. 5. These lifetimes of BrC chromophores are
consistent with atmospheric observations of a rapid evolu-
tion in a California wildfire, which showed that the BrC
absorbance lifetime at 370 nm was 9–15 h (Forrister et al.,
2015).

The same chromophores were found to decay at different
rates depending on the fuel/fire type (Fig. 5). For example,
very different equivalent atmospheric lifetimes due to UV ir-
radiation were obtained across fuel types for veratraldehyde
(no. 4 in Table 1, C9H8O3), a BrC chromophore common
to all three fires. One explanation is that there are multiple
chromophores co-eluting at this retention time, and there-
fore the calculation is an average lifetime for multiple com-
pounds. A more interesting explanation is that the surround-
ing matrix could affect the rate of condensed-phase pho-
tochemical transformations for individual chromophores by
several possible mechanisms. First, different matrices could
quench the electronic excitation in the chromophores to a
different extent. Another possibility is that photodegradation
of BrC chromophores could be not due to direct photoly-
sis but rather occurring through condensed-phase photosen-
sitized reactions (Malecha and Nizkorodov, 2017; Monge et

al., 2012), in which case the rate of decomposition would de-
pend on concentration of photosensitizers in the samples as
well as viscosity of the material (Hinks et al., 2016; Kaur
et al., 2019). Lastly, other absorbing species, such as black
carbon, could be shielding BrC chromophores from irra-
diation, altering the amount of radiation absorbed by BrC
chromophores. Given the different mechanisms, the poten-
tial contributions from each are difficult to distinguish in this
study. The particle matrix is different for all three BBOA par-
ticle samples and could contribute to the very different equiv-
alent atmospheric lifetimes of individual BrC chromophores
observed in Fig. 5.

We also estimated the decay lifetime for the overall BrC
absorption, integrated over 300–700 nm, from different fuel
types. In these experiments, BBOA filters were irradiated
with a filtered xenon arc lamp, which gave a spectral flux
density more similar to the Sun, although more intense
(Fig. 1). The advantage of taking transmission spectra di-
rectly through the filters is that it makes it possible to moni-
tor photodegradation of BrC absorption at several irradiation
times, which is not possible with the solution-phase spec-
trophotometry, which irreversibly destroys the filter sample
by extraction. The filter transmission spectra indicated that
the decay of absorbance was not actually exponential. After
a certain irradiation time, the BrC absorbance no longer de-
creased, as observed for the samples from subalpine fir and
longleaf pine burns. For example, in Fig. S2, after 21 h the re-
calcitrant or “baseline BrC” level has already been reached,
as revealed by the next measurement at 33 h. The absorbance
decreased 70 % before it reached the baseline BrC level for
subalpine fir, and 60 % for longleaf pine. For estimates of
the BrC absorbance lifetimes, we used only the time before
reaching the final light-absorbance state. Table 3 summarizes
the resulting lifetimes for BrC from four fuel types, longleaf
pine, juniper, lodgepole pine, and subalpine fir. Once again, it
should be noted that BrC absorption lifetimes are lower lim-
its, due to the enhanced efficiency of absorption by particles
caused by scattering of UV radiation scattering by the Teflon
filter substrate (Presser et al., 2014).

Once there was no further significant change in the trans-
mission spectrum, the filter was extracted for the solution-
phase UV–Vis measurement, in order to compare the spectra
obtained from the filter and in the solution. The reduction
in absorbance in the solution-phase spectra was comparable
to that observed in the filter transmission spectra (Fig. S2).
However, there were differences in the shape of the spectra
– there was no measurable absorbance above 550 nm in the
extracted samples, but filter samples absorbed even at these
long wavelengths (Fig. S2). It is likely that the extraction
from the filter was not complete, and some of the absorbers
remained on the filter after the extraction. The latter is an-
other advantage of doing these experiments with filter sam-
ples as opposed to their solvent extracts.

BBOA from subalpine fir (litter and other components)
had the shortest equivalent absorption lifetime at 10 d, and
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Table 3. Lifetimes for the loss of the measured integrated ab-
sorbance from 300 to 700 nm. The results are expressed in equiv-
alent days of solar exposure to either time-averaged solar flux in
Los Angeles (middle column) or peak solar flux at SZA = 0◦ (right
column). The lifetimes were calculated from the transmission spec-
tra measured for particles on PTFE filters. The irradiation was done
in the condensed phase on the filter for all samples.

Fuel type BrC absorption BrC absorption
lifetime lifetime

averaged LA SZA = 0◦

(equivalent days) (equivalent days)

Longleaf pine 25 ± 0 8.5 ± 0
Juniper 41 ± 4 14 ± 1
Ponderosa pine litter 17 ± 1 6.0 ± 0
Subalpine fir 10 ± 2 3.4 ± 1

ponderosa pine (litter and canopy) had the next shortest
equivalent absorption lifetime at 17 d. Different ecosystem
biomass components were burned in the longleaf pine fire,
such as duff, litter, and canopy, and had the next longest ab-
sorption lifetime of 25 d. The longest living BrC absorbance,
at 41 d, was observed for the sample from juniper (canopy
only) burn. Fuel components appear to affect BrC absorp-
tion lifetimes, as it does seem that non-canopy fuel compo-
nents, such as litter and duff, lower the BrC absorption life-
times. However, it is difficult to correlate the BrC absorp-
tion lifetimes with quantitative measures such as NO levels
or MCE (Table S1). Table S1 shows that the peak NO level
was lower for longleaf pine (0.67 ppmv) compared to juniper
(1.72 ppmv) and ponderosa pine (1.61 ppmv), suggesting less
flaming combustion may have occurred for the longleaf pine
fire (although this is not reflected in the MCE trends). Re-
gardless, the data suggest that BrC absorption can be long-
lived from direct photodegradation.

In general, the lifetimes for the loss of the absorbance in-
tegrated over 300–700 nm (Table 3) are much longer than
those of individual chromophores (Fig. 5). There are two
likely reasons for that. First, the photochemical transfor-
mation of individual chromophores creates product(s) that
may also absorb in the same wavelength range. The inte-
grated BrC absorption (300–700 nm) may significantly de-
crease only after the compounds go through several succes-
sive stages of photodegradation, finally resulting in products
that no longer absorb above 300 nm. The results of both
UV irradiation experiments is consistent with work by Di
Lorenzo et al. (2017) and Wong et al. (2017), which show
that during aging, high-molecular-weight BrC chromophores
are formed after lower-molecular-weight chromophores are
photo-degraded. The high-molecular-weight fraction of BrC
chromophores persists even at long aging times and are re-
ferred to as the recalcitrant fraction. This theory is one expla-
nation for the short lifetimes of low-molecular-weight BrC
compounds, while observing longer overall BrC absorption

lifetimes. Second, Eq. (1), which we use to estimate life-
times, does not take into account photochemical quantum
yields, which tend to increase greatly at shorter wavelengths.
The LED, which was used in measurements of lifetimes of
individual chromophores, has a higher density of higher-
energy photons compared to the Xe lamp (Fig. 1), which
could accelerate the observed photodegradation rate.

The lifetimes for BrC photobleaching due to UV irradi-
ation (10 to 41 d) are longer than what other studies have
observed or approximated for other aging mechanisms. Lin
et al. (2016) found that peat and ponderosa pine BBOA had
similar half-lives of around 16 h based on absorption coeffi-
cients at 300 nm. However, in Lin et al. (2016), BBOA was
extracted and irradiated in solution where photodegradation
could occur more rapidly due to molecular diffusion (Lignell
et al., 2014). Forrister et al. (2015) collected filter samples in
the plumes of wildfires with different transport times dur-
ing the SEAC4RS campaign and found that the BrC ab-
sorbance lifetime at 370 nm was 9–15 h. Similarly, Selimovic
et al. (2019) found a significant decrease in the absorption
Angstrom exponent after 10 h of daytime aging during a
wildfire event in the northwestern US. Sumlin et al. (2017)
aged smoldering peat BBOA in an OFR and reported a de-
crease of ∼ 40 %–50 % in the aerosol mass absorption coef-
ficients at 375 and 405 nm after 4.5 equivalent aging days.
They attributed this decrease to fragmentation of BrC chro-
mophores due to photooxidation (oxidation by gaseous OH).
Based on the comparison of these observations, photooxida-
tion could be a more important aging mechanism affecting
BrC absorption lifetimes than the UV-induced photochemi-
cal processes inside the particles.

4 Conclusions and implications

Samples of BBOA particles from laboratory burns of 12 for-
est fire fuels collected around the United States were ana-
lyzed for BrC chromophores. Biomass fuels spanned plant
types (gymnosperm versus angiosperm) and ecosystem com-
ponents (duff, litter, canopy, etc.). BrC chromophores were
grouped among classes, including lignin pyrolysis products,
lignin-derived products, distillation products (coumarins and
flavonoids), nitroaromatics, and PAHs. While most BrC
chromophore classes were observed in all burns, regardless
of fuel type, there were specific BrC chromophores that were
divided across angiosperm (flowering) and gymnosperm
(conifer) lines. For example, sinapaldehyde was mainly ob-
served in BBOA when angiosperm fuels were burned, and
coniferaldehyde was mainly observed when gymnosperm fu-
els were burned. Additionally, there were flavonoids specific
to conifers, tentatively kaempferol and diosmetin (Table 1,
chromophores 11 and 14), and unique to angiosperms such
as chromophore 16. PAHs are largely angiosperm BrC chro-
mophores, showing up mainly for sagebrush, chamise, and
ceanothus fuels. There are some BrC chromophores that are
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only appreciably observed in a single fuel type or burn; many
of these are likely distillation or lignin-derived products. The
most absorbing of these BrC chromophores are components
of the angiosperm BBOA (Table 2).

UV irradiation of BBOA from different fuels directly on
filters removes some BrC chromophores but some appear to
be photo-stable, specifically, lignin-derived compounds (in-
cluding lignin-pyrolysis products) and flavonoids. Interest-
ingly, individual BrC chromophore lifetimes varied based on
the fuel burned and perhaps the underlying combustion con-
ditions, rather than just the structure of the chromophore.
Part of the reason is that co-elution of chromophores with
different stabilities complicates measurements of individual
chromophore lifetimes. In addition, indirect photochemical
mechanisms, such as photosensitized reactions, energy loss
to neighboring molecules, and shielding of light by other ab-
sorbing molecules could change depending on the specific
BBOA material. The BrC chromophores of chaparral fuels
had shorter equivalent photochemical lifetimes compared to
BBOA generated from the canopies of conifer fuel types. On
the whole, these results suggest that some of the primary BrC
chromophores may be destroyed by UV irradiation after sev-
eral hours.

Despite the rapid change in the absorbance of individual
chromophores, the overall integrated BrC absorbance from
300 to 700 nm decayed with a much longer lifetime of 10
to 41 d. These observations contrast with individual chro-
mophores in particles that decayed on the timescale of 0.4
to 1.6 d. Taken together, the two types of UV irradiation ex-
periments suggest that the absorption by the complete pool
of BrC compounds persists during irradiation longer than
the individual BrC chromophores detected. Our findings also
show that ecosystem components, and the combustion con-
ditions they create, could influence the apparent BrC absorp-
tion lifetimes. BrC from the subalpine fir mix burned with
more smoldering combustion and had the shortest equivalent
lifetime of 10 d, while BBOA from the juniper and lodgepole
canopy fuels had longer BrC absorption lifetimes of 25–41 d.
The canopy fuels contributed to more flaming combustion.
These fairly long BrC absorption lifetimes suggest that the
that optical properties of BrC particles change slowly un-
der UV-irradiated conditions and that other chemical aging
mechanisms such as OH oxidation may be more important
under atmospheric conditions. Based on these results, cli-
mate modelers should first focus on chemical aging mech-
anisms other than condensed-phase photochemistry, such as
heterogeneous oxidation by OH.
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