



### University of Groningen

#### Molecular Conductors from Neutral-Radical Charge-Transfer Salts

Bryan, C.D.; Haddon, R.C.; Hicks, R.G.; Kennepohl, D.K.; MacKinnon, C.D.; Oakley, R.T.; Palstra, T.T.M.; Perel, A.S.; Scott, S.R.; Schneemeyer, L.F.

Published in: Journal of the American Chemical Society

DOI:

10.1021/ja00083a005

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date:

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Bryan, C. D., Haddon, R. C., Hicks, R. G., Kennepohl, D. K., MacKinnon, C. D., Oakley, R. T., Palstra, T. T. M., Perel, A. S., Scott, S. R., Schneemeyer, L. F., Waszczak, J. V., & Cordes, A. W. (1994). Molecular Conductors from Neutral-Radical Charge-Transfer Salts: Preparation and Characterization of an Iodine-Doped Hexagonal Phase of 1,2,3,5-Dithiadiazolyl ([HCN2S2]•). *Journal of the American Chemical Society*, 116(4). https://doi.org/10.1021/ja00083a005

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 17-08-2022

J-1210-MI

# Table S1 Crystal and Refinement Data

h, k, l ranges

exposure time, hrs

| formula                            | $S_4N_{4.16}C_2H$  | $\mathbf{I_2}$         | $S_2N_2CHI_{0.18}$      |                                                  |  |
|------------------------------------|--------------------|------------------------|-------------------------|--------------------------------------------------|--|
| fw                                 | 212.4              |                        | 128.20                  |                                                  |  |
| crystal size, mm                   | 0.20 x 0.30 x 0.68 |                        | 0.20 x 0.20 x 0.65      |                                                  |  |
| crystal color                      | black              |                        | black                   |                                                  |  |
| crystal mount                      | in epoxy-fil       | led capillary          | in epoxy-filled capilla | ry                                               |  |
| a, Å                               | 6.816(3)           |                        | 14.132(16)              |                                                  |  |
| b, Å                               | 13.940(2)          |                        | 14.132(16)              |                                                  |  |
| c, Å                               | 14.403(3)          |                        | 3.352(5)                |                                                  |  |
| $\alpha$ , deg                     | 116.830(14)        | )                      | 90                      |                                                  |  |
| $\beta$ , deg                      | 98.64(3)           |                        | 90                      |                                                  |  |
| $\gamma$ , deg                     | 99.18(3)           |                        | 120                     |                                                  |  |
| <i>V</i> , Å <sup>3</sup>          | 1166.5(6)          |                        | 579.8(1)                |                                                  |  |
| cell detn, refls                   | 25                 |                        | 25                      |                                                  |  |
| cell detn, $2\theta$ range, deg    | 13-25              |                        | 16-18                   |                                                  |  |
| d(calcd), g cm <sup>-3</sup>       | 1.81               |                        | 2.203                   |                                                  |  |
| space group                        | $P\overline{1}$    |                        | P6 <sub>1</sub>         |                                                  |  |
| Z                                  | 6                  |                        | 6                       |                                                  |  |
| F <sub>000</sub>                   | 645.1              | ·                      | 376.39                  |                                                  |  |
| radiation                          |                    | $MoK_{\alpha}$ , graph | ite monochromated       |                                                  |  |
| λ, Å                               |                    | 0.71073                |                         |                                                  |  |
| temp, K                            |                    | 293                    |                         |                                                  |  |
| diffractometer                     |                    | Enraf-Nonius           | CAD-4                   | © 1994 Am. Chem. Soc.<br>J. Am. Chem. Soc. v 116 |  |
| scan technique                     |                    | $\theta$ -2 $\theta$   |                         | p. 1205 Bryan                                    |  |
| linear abs coeff, mm <sup>-1</sup> | 1.10               |                        | 2.38                    | Supplementary material, page 1                   |  |
| scan speed, deg min-1              | 4-16 (in ome       | ega)                   | 4-16 (in omega)         |                                                  |  |
| scan width, deg                    | 1.0 + 0.35ta       | ${ m an}	heta$         | $1.0 + 0.35 \tan\theta$ |                                                  |  |
| $2\theta$ range, deg               | 4-50               |                        | 4-50                    |                                                  |  |
|                                    |                    |                        |                         |                                                  |  |

0,14; 0,14; 0,3

15.6

-8,8; 0,19; 0,22

53.4

| std refl indices                        | -2,1,-1; 0,0,5; 1,3,2                      | -4,2,-1; 5,0,0; 0,5,0 |  |  |
|-----------------------------------------|--------------------------------------------|-----------------------|--|--|
| drift of stds, %                        | 0.9                                        | 1.1                   |  |  |
| absorption correction                   | empirical psi-scans                        | empirical psi scans   |  |  |
| absorption, range                       | 0.80 - 1.00                                | 0.517 - 0.999         |  |  |
| refl meas                               | 8176                                       | 2324                  |  |  |
| unique refls                            | 4088                                       | 400                   |  |  |
| R for merge                             | 0.04                                       | 0.091                 |  |  |
| data with $I > 3\sigma(I)$              | 1746                                       | 198                   |  |  |
| solution method                         | Direct Methods                             | SHELX                 |  |  |
| parameters refined                      | 273                                        | 32                    |  |  |
| $R(F^2)$ , $R_w(F^2)^a$                 | 0.045,0.054                                | 0.074,0.115           |  |  |
| GOF                                     | 1.31                                       | 1.94                  |  |  |
| p, $w^{-1} = [\sigma^2(I) + pI_2]/4F^2$ | 0.03                                       | 0.05                  |  |  |
| largest $\Delta/\sigma$                 | 0.004                                      | 0.017                 |  |  |
| extinction correction                   | none                                       | none                  |  |  |
| final diff map, e Å-3                   | +0.50(9),-0.35(9)                          | -0.40(13) + 0.51(13)  |  |  |
| programs                                | NRC386 (PC version of NRCVAX) <sup>b</sup> |                       |  |  |
| scattering factors                      | Internat. Tables for Crystallography Vol 4 |                       |  |  |
| H atom treatment                        | idealized positions (C-H = $0.95A$ )       |                       |  |  |
|                                         |                                            | •                     |  |  |

$${}^{a}R = [\Sigma | |F_{o}| - |F_{c}| |]/[\Sigma |F_{o}|]; R_{w} = \{ [\Sigma w | |F_{o}| - |F_{c}| |^{2}]/[\Sigma (w |F_{o}|^{2})] \}^{1/2}$$

<sup>b</sup>NRCVAX, an interactive program system for structure analysis; see E.J. Gabe, Y. LePage, J.P. Charland, F.L. Lee, and P.S. White, *J. Appl. Cryst.* 22, 383 (1989).

© 1994 Am. Chem. Soc. J. Am. Chem. Soc. v 116 p. 1205 Bryan

J-6210-m3

Table S2 Interatomic distances (Å) and angles (deg) in [HCN<sub>2</sub>S<sub>2</sub>]<sub>2</sub>[N<sub>2</sub>]<sub>0.08</sub>.

## Distances

| S(1)-S(2)<br>S(1)-N(1)<br>S(2)-N(2)<br>S(3)-S(4)<br>S(3)-N(3)<br>S(4)-N(4)<br>S(5)-S(6)<br>S(5)-N(5)<br>S(6)-N(6)<br>S(7)-S(8)<br>S(7)-N(7)<br>S(8)-N(8)<br>S(9)-S(10)<br>S(9)-N(9)<br>S(10)-N(10)<br>S(11)-S(12) | 2.059(4)<br>1.656(9)<br>1.626(10)<br>2.058(4)<br>1.621(9)<br>1.639(9)<br>2.055(4)<br>1.658(9)<br>1.613(9)<br>2.070(4)<br>1.629(10)<br>1.639(9)<br>2.065(4)<br>1.634(9)<br>1.634(9)<br>2.065(4) | S(11)-N(11)<br>S(12)-N(12)<br>N(1)-C(1)<br>N(2)-C(1)<br>N(3)-C(2)<br>N(4)-C(2)<br>N(5)-C(3)<br>N(6)-C(3)<br>N(7)-C(4)<br>N(8)-C(4)<br>N(9)-C(5)<br>N(10)-C(5)<br>N(11)-C(6)<br>N(12)-C(6)<br>N(98)-N(99) | 1.636(9)<br>1.637(9)<br>1.333(16)<br>1.328(16)<br>1.335(16)<br>1.311(16)<br>1.334(15)<br>1.335(16)<br>1.308(15)<br>1.308(15)<br>1.323(14)<br>1.338(14)<br>1.338(14)<br>1.31(15)<br>1.17 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## Angles

| S(2) - S(1) - N(1)    | 95.2(4)          | S(5) - N(5) - C(3)                           | 112.2(7)  |
|-----------------------|------------------|----------------------------------------------|-----------|
| S(1)-S(2)-N(2)        | 95.2(4)          | S(6) - N(6) - C(3)                           | 114.4(7)  |
| S(4) - S(3) - N(3)    | 95.5(4)          | S(7) - N(7) - C(4)                           | 110.8(8)  |
| S(3) - S(4) - N(4)    | 94.9(3)          | S(8) - N(8) - C(4)                           | 111.5(8)  |
| S(6) - S(5) - N(5)    | 95 <b>.</b> 1(3) | S(9) - N(9) - C(5)                           | 111.9(7)  |
| S(5) - S(6) - N(6)    | 95.1(3)          | S(10) - N(10) - C(5)                         | • •       |
| S(8) - S(7) - N(7)    | 95.6(4)          | S(10) - N(10) - C(5)<br>S(11) - N(11) - C(6) | 113.1(8)  |
| S(7) - S(8) - N(8)    | 94.9(3)          |                                              | 112.2(7)  |
| S(10) - S(9) - N(9)   | • •              | S(12)-N(12)-C(6)                             | 112.8(7)  |
|                       | 95.4(4)          | N(1) - C(1) - N(2)                           | 124.7(10) |
| S(9) - S(10) - N(10)  | 94.6(4)          | N(3) - C(2) - N(4)                           | 125.7(10) |
| S(12)-S(11)-N(11)     | 94.8(3)          | N(5) - C(3) - N(6)                           | 123.2(9)  |
| S(11) - S(12) - N(12) | 95.0(3)          | N(7) - C(4) - N(8)                           | 127.2(11) |
| S(1) - N(1) - C(1)    | 111.6(8)         | N(9) - C(5) - N(10)                          | 124.9(10) |
| S(2) - N(2) - C(1)    | 113.2(8)         | N(11) - C(6) - N(12)                         | , ,       |
| S(3)-N(3)-C(2)        | 111.9(8)         | (11) C(0) -N(12)                             | 125.3(9)  |
| S(4) - N(4) - C(2)    | 112.0(8)         |                                              |           |
|                       |                  |                                              |           |

© 1994 Am. Chem. Soc. J. Am. Chem. Soc. v 116 p. 1205 Bryan

Table S3 Interatomic distances (Å) and angles (deg) in  $[HCN_2S_2]_6[I_{1,1}]$ .

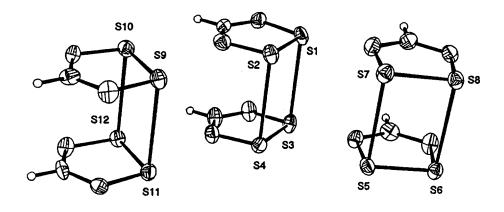
#### Distances

## Angles

© 1994 Am. Chem. Soc. J. Am. Chem. Soc. v 116 p. 1205 Bryan

Table S4 Table of u(i,j) values (\*100) for [HCN<sub>2</sub>S<sub>2</sub>]<sub>2</sub>[N<sub>2</sub>]<sub>0.08</sub>. ESDs refer to the last digit printed.

|            | u11(U)   | u22      | u33      | u12       | u13      | u23                  |
|------------|----------|----------|----------|-----------|----------|----------------------|
| S1         | 4.74(21) | 3.73(18) | 4.26(18) | -0.84(16) | 0.58(16) | 1 70/1/              |
| S2         | 5.50(22) | 3.62(19) | 4.12(18) | 0.36(17)  | 1.47(16) | 1.78(14)<br>1.56(14) |
| s3         | 6.58(24) | 2.95(17) | 4.62(19) | 1.30(17)  | 1.64(18) | 1.99(14)             |
| S4         | 4.53(20) | 3.62(18) | 3.78(17) | 0.74(16)  | 0.40(15) | 1.70(14)             |
| S5         | 4.27(20) | 3.65(18) | 4.54(18) | -0.05(16) | 0.77(15) | 2.08(14)             |
| s6         | 5.12(20) | 3.29(18) | 4.24(18) | 1.02(16)  | 0.95(16) | 2.08(14)             |
| <b>S</b> 7 | 5.59(22) | 3.68(19) | 4.78(19) | 1.00(17)  | 0.88(17) | 2.04(15)             |
| s8         | 4.64(20) | 4.38(19) | 3.22(16) | 0.27(17)  | 0.94(15) | 1.92(14)             |
| s9         | 5.22(22) | 4.08(21) | 3.95(18) | 0.74(19)  | 1.69(17) | 1.89(15)             |
| S10        | 4.16(20) | 3.55(19) | 3.95(18) | 0.31(17)  | 0.44(15) | 1.46(14)             |
| S11        | 4.72(21) | 3.73(19) | 4.33(18) | 0.74(18)  | 0.70(16) | 2.12(15)             |
| S12        | 4.62(20) | 3.30(18) | 3.38(17) | 0.68(16)  | 1.14(15) | 1.29(13)             |
| Nl         | 5.0 (7)  | 4.5 (7)  | 3.6 ( 6) | 0.5 (6)   | 0.1 (5)  | 2.1 (5)              |
| N2         | 4.4 (7)  | 4.4 (6)  | 5.3 ( 6) | 1.3 (6)   | 1.7 (5)  | 2.2 (5)              |
| из         | 7.5 (8)  | 3.9 ( 6) | 3.7 (6)  | 0.5 (6)   | 1.8 ( 6) | 1.4 (5)              |
| N4         | 5.7 (7)  | 3.6 (6)  | 4.6 (6)  | 0.4 (6)   | 1.1 ( 5) | 2.1 (5)              |
| N5         | 5.7 (7)  | 4.7 (7)  | 3.0 (6)  | 1.2 (6)   | 0.9 ( 5) | 2.0 (5)              |
| N6         | 8.1 (8)  | 2.9 (6)  | 3.3 (6)  | 0.8 (6)   | 1.3 (5)  | 1.0 (5)              |
| N7         | 5.7 (7)  | 5.0 (7)  | 5.0 (6)  | 0.9 (6)   | 0.6 (5)  | 3.0 (5)              |
| И8         | 4.4 (6)  | 4.6 (6)  | 3.8 ( 6) | 0.1 (5)   | 0.9 (5)  | 1.9 ( 5)             |
| N9         | 6.5 (8)  | 4.7 (7)  | 4.2 (6)  | 1.5 (6)   | 2.1 (6)  | 1.6 (5)              |
| N10        | 4.9 (7)  | 3.5 (6)  | 6.6 (7)  | 1.1 (6)   | 1.2 (6)  | 3.0 (5)              |
| N11        | 3.9 (6)  | 3.5 (6)  | 3.5 (6)  | 0.1 (5)   | 0.0 (5)  | 1.2 (5)              |
| N12        | 6.8 (8)  | 4.3 (6)  | 2.6 (5)  | 1.4 (6)   | 1.8 ( 5) | 1.7 (5)              |
| C1         | 3.6 (7)  | 5.4 (8)  | 5.6 (8)  | 0.5 (7)   | 0.0 (6)  | 3.9 (7)              |
| C2         | 7.4 (11) | 4.6 (9)  | 4.4 (8)  | 1.3 (8)   | 2.8 (8)  | 2.4 (7)              |
| C3         | 5.4 (9)  | 4.3 (8)  | 3.1 (7)  | 0.8 (7)   | 0.9 (6)  | 0.5 ( 6)             |
| C4         | 4.9 (9)  | 6.2 (10) | 3.7 (7)  | 0.6 (8)   | 0.0 (6)  | 2.5 (7)              |
| C5         | 4.4 (8)  | 3.2 (7)  | 3.2 (7)  | 0.9 (6)   | -0.4 (6) | 0.2 (5)              |
| C6         | 4.5 (8)  | 3.1 (7)  | 5.9 ( 8) | 0.5 ( 6)  | 2.5 (7)  | 2.5 ( 6)             |


Table S5 Table of u(i,j) values (\*100) for [HCN<sub>2</sub>S<sub>2</sub>]<sub>6</sub>[I<sub>1.1</sub>]. ESDs refer to the last digit printed.

|    | u11(U) | u22    | u33    | u12    | u13     | u23    |
|----|--------|--------|--------|--------|---------|--------|
| S1 | 8.1(5) | 8.6(5) | 7.5(7) | 3.7(4) | -1.1(5) | 1.1(5) |
| S2 | 8.6(6) | 8.5(5) | 9.7(8) | 4.1(4) | -1.1(5) | 2.3(6) |

Anisotropic temperature factors are of the form:

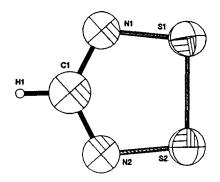

$$\exp[-2\pi^2(h^2U_{11}a^{*2}+k^2U_{22}b^{*2}+l^2U_{33}c^{*2}+2hkU_{12}a^*b^*+2hlU_{13}a^*c^*+2klU_{23}b^*c^*)].$$

Figure S1 ORTEP drawings of the three non-equivalent dimers in  $[HCN_2S_2]_2[N_2]_{0.08}$ , showing atom numbering.



© 1994 Am. Chem. Soc. J. Am. Chem. Soc. v 116 p. 1205 Bryan

Figure S2 ORTEP drawings of the heterocyclic ring in [HCN<sub>2</sub>S<sub>2</sub>]<sub>6</sub>[I<sub>1.1</sub>], showing atom numbering.



© 1994 Am. Chem. Soc. J. Am. Chem. Soc. v 116 p. 1205 Bryan