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Molecular crystals on two-dimensional van der 
Waals substrates
Xiao Huang1* and Hua Zhang2*

Two-dimensional (2D) materials, such as graphene and 
transition metal dichalcogenide nanosheets, have aroused 
enormous research interest over the past decade, because 
of their unique physical and chemical properties that are 
correlated to their atomic-scale thickness and 2D dimen-
sion [1−10]. The practical potential of 2D materials has 
been exploited and successfully demonstrated in various 
applications, such as electronics, optoelectronics, catalysis, 
energy storage devices and so on [1−4,11−18]. 

The combination of 2D materials and other function-
al structures to form hybrid architectures is promising in 
achieving enhanced properties and creation of new func-
tions [19,20]. To date, hybrid materials that integrate 2D 
materials and inorganic crystals with desirable properties 
have been explored extensively, where different nanostruc-
tures of metals, metal oxides, or metal chalcogenides have 
been in-situ deposited on the surface of 2D materials. Es-
pecially, the orientation and surface alignment of deposited 
structures can be strongly affected by the crystalline lattice 
of 2D substrate via epitaxial growth. For example, noble 
metals like Pt, Pd and Ag nanostructures have been suc-
cessfully deposited on MoS2 nanosheets via solution-phase 
epitaxial growth [21]. Additionally, semiconductor crystals 
have also been epitaxially deposited on 2D substrates via 
solid [22,23] or liquid-phase [24] preparation routes to 
yield different heterostructures. For example, GaAs thin 
film was deposited on pristine graphene via metal-organic 
chemical vapor deposition (MOCVD) [23]. The graphene 
substrate also acted as electrode in the obtained GaAs-
based light emitting diode (LED), which can be readily 
transferred to any foreign substrate, such as glass, plastic 
and metal. 

Compared with inorganic nanostructures, controlled 
growth of organic molecular crystals on 2D substrates has 
been less explored. In fact, driven by the rapid development 
of organic optoelectronics, great effort has been devoted 
to the vapor-phase deposition of organic thin films with 
high chemical purity, structural precision, and controllable 
thickness down to single-molecular level [25]. Such depo-
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sition requires highly crystalline substrates with clean sur-
face, such as graphite, mica, Si(111) and NaCl(001). Similar 
to these bulk crystalline substrates, 2D crystals of layered 
materials can also guide organic molecules to assemble 
into well-ordered structures via van der Waals interactions. 
In the past few years, mechanically exfoliated graphene or 
chemical vapor deposited (CVD) graphene have been used 
to realize the surface assembly of organic semiconducting 
molecules [26,27] and oriented growth of covalent organic 
framework (COF) thin films [28]. Importantly, the van der 
Waals 2D substrate can enable the formation of atomical-
ly well-defined interface with organic materials for further 
applications [29]. This is critically essential for the devel-
opment of organic electronic and optoelectronic devices. 

In a recent demonstration by He et al. [30],   dioctylben-
zothienobenzothiophene (C8-BTBT) crystals were epitaxi-
ally grown on graphene with precisely controlled thickness 
down to monolayer to prepare vertical organic field-ef-
fect transistors (OFETs) (Fig. 1).  As suggested by discrete 
Fourier transform (DFT) calculations, the formation of 
large-area continuous single-layer C8-BTBT on graphene 
is energetically favored. Importantly, the charge transport 
in graphene is not significantly affected by the deposited 
C8-BTBT layer, suggesting that the organic semiconduct-
ing crystal can be regarded as quasi-freestanding with 
minimal disturbance from the substrate. In the same study, 
monolayer C8-BTBT molecular crystal was also deposited 
epitaxially on hexagonal boron nitride (h-BN) to prepare 
a planar OFET, which showed record-high carrier mobil-
ity up to 10 cm2 V−1 s−1, due to the atomically smooth in-
terface and weak van der Waals interaction between h-BN 
and C8-BTBT [30]. In another similar report, Lee et al. [31] 
demonstrated the epitaxial growth of crystalline film of 
rubrene on h-BN. The formation of atomically sharp in-
terface with low charge trap density between rubrene and 
h-BN, combined with the use of pristine graphene as the 
van der Waals electrical contacts with low contact resis-
tance led to high carrier mobilities up to 11.5 cm2 V−1 s−1 
(Fig. 2), which is comparable to that of freestanding single- 
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Figure 1  (a) A constant-current STM im-
age of the initial layer of C8-BTBT on 
CVD-grown graphene (Vsample = 0.91 V and 
I = 12.9 pA). (b) Top view (top panel) and 
side view (bottom panels) of the most sta-
ble initial layer structure obtained by DFT 
calculations. The lattice constants of 2.47 
nm and 0.64 nm are in good agreement 
with experiments. (c) High-resolution AFM 
image of the second layer on graphene. 
The unit cell is marked. Inset is the Fast 
Fourier Transform of the AFM image with 
lattice indices. (d) Top view (left pan-
el) and side view (right panel) of the 2L 
structure according to the AFM image in 
(c). Reproduced from Ref. [31]. Copyright 
2014, Nature Publishing Group.
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Figure 2  (a) Schematic illustration for fabrication of graphene electrodes on h-BN. (b) AFM image of the patterned CVD-graphene electrodes on the 
h-BN/SiO2 substrate. (c) Optical images of the device before (top) and after (bottom) rubrene crystal growth on the stacked graphene/h-BN structure.
Representative output (d) and transfer (e) characteristic curves of FETs with graphene electrodes. (f) Histogram of mobility measured from 27 devices. 
The average and maximum values of mobility are 5.1 ± 2.7 cm2 V−1 s−1 and 11.5 cm2 V−1 s−1, respectively. Reproduced from Ref. [32]. Copyright 2014, 
John Wiley & Sons, Inc.
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crystal counterpart. 
The aforementioned examples suggest that graphene 

and other van der Waals 2D materials, such as h-BN and 
metal oxides, offer a new type of substrate for high-quality 
epitaxial growth of various organic semiconductor films 
for flexible electronic and optoelectronic devices. One of 
the key challenges in this promising field is the difficulty 
in the preparation of large-area single-crystal 2D substrate. 
Although CVD-based method can produce large area of 
2D crystals, the defects and grain boundaries are inevita-
ble, which can cause the disorder/defects in the deposited 
molecular crystalline films and lead to the deterioration of 
device performance. Besides, the characterization of thin 
layer molecular crystals requires special and expensive in-
struments, such as X-ray diffraction with a synchrotron 
light source and scanning tunneling microscopy (STM), 
which are not easily accessible in common laboratories. 
Nevertheless, van der Waals heterostructures that combine 
molecular crystals and 2D materials are believed to bring 
about more exciting research outcomes in the near future.
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中文摘要    通过剥离以石墨烯、金属硫族化合物等为代表的基于范德华作用力形成的层状晶体而得到的二维无机纳米片材料, 目前
已经被用作外延生长的模板, 广泛地应用于具有特定晶格取向和晶体表面的无机纳米晶体的制备. 此外, 基于石墨烯和六方氮化硼二
维材料的半导体分子晶体的制备正被不断报道, 成为一个新的研究热点. 这种基于二维材料的分子晶体复合物在有机电子器件方面具
有巨大的应用前景. 本文对基于二维材料的分子晶体复合材料的制备及应用进行了总结, 同时也讨论了这个领域目前面临的问题和挑
战, 以及未来的研究方向.


