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Abstract Chromogranin A (CGA)-N46, a derived peptide

of human chromogranin A, has antifungal activity. To

further research the active domain of CGA-N46, a series of

derivatives were designed by successively deleting amino

acid from both terminus of CGA-N46, and the amino acid

sequence of each derivative was analyzed by bioinformatic

software. Based on the predicted physicochemical proper-

ties of the peptides, including half-life time in mammalian

reticulocytes (in vitro), yeast (in vivo) and E. coli (in vivo),

instability index, aliphatic index and grand average of

hydropathicity (GRAVY), the secondary structure, net

charge, the distribution of hydrophobic residues and

hydrophilic residues, the final derivatives CGA-N15, CGA-

N16, CGA-N12 and CGA-N8 were synthesized by solid-

phase peptide synthesis. The results of bioinformatic

analysis showed that CGA-N46 and its derivatives were a-
helix, neutral or weak positive charge, hydrophilic, and

CGA-N12 and CGA-N8 were more stable than the other

derivatives. The results of circular dichroism confirmed

that CGA-N46 and its derived peptides displayed a-helical
structure in an aqueous solution and 30 mM sodium

dodecylsulfate, but a-helical contents decreased in

hydrophobic lipid vesicles. CGA-N15, CGA-N16, CGA-

N12 and CGA-N8 had higher antifungal activities than

their mother peptide CGA-N46. Among of the derived

peptides, CGA-N12 showed the least hemolytic activity. In

conclusion, we have successfully identified the active

domain of CGA-N46 with strong antifungal activity and

weak hemolytic activity, which provides the possibility to

develop a new class of antibiotics.
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1 Introduction

Over the past decades, the widespread use of antibiotics has

led to the rapid emergence of antibiotic-resistant bacteria

[1, 2]. Antimicrobial peptides (AMPs) exhibit broad-

spectrum activity against bacteria, fungi, viruses, parasites

and even cancer cells. AMPs were recently determined to

be potential candidates of conventional antibiotics for

treating drug-resistant bacterial infections [3, 4]. These

peptides have been isolated from many natural sources

including microorganism, insects, animals and plants [5,

6]. As of July 2015, the current AMP database contains

over 2500 AMPs (http://aps.unmc.edu/AP/main.php) [7].

Chromogranin A is a soluble protein which exists in

endocrine cells and neurons [8, 9]. The endogenous chro-

mogranin A-derived peptides, such as vasostatin-I and

catestatin, have been described to be natural defensive

barriers for human body [10, 11]. Vasostatin-I (CGA1-76),

an N-terminal fragment of chromogranin A, is able to kill a

large variety of fungi and yeast cells in micromolar range

[12]. Lugardon group synthesized several derived CGA

N-terminal fragments. The results of their antifungal

research indicated that the shortest active peptide corre-

sponded to the sequence Arg47–Leu66, and named chro-

mofungin. CGA-N46, a novel antifungal peptide

containing the 31st to 76th amino acids of human
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chromogranin A, showed strong anti-Candida activity. Li

et al. [13] successfully expressed CGA-N46 in engineered

Bacillus subtilis strain DB1342 and optimized the expres-

sion and purification protocol. However, the yield and the

purity of peptide CGA-N46 still could not meet the demand

of research.

Solid-phase peptide synthesis (SPPS) is another method

to prepare peptide. Compared with genetic engineering

expression, SPPS has many advantages including efficient

synthesis, easy purification and high purity. However, the

difficulty in maintaining the correct structure and function

for synthesized peptides increase with the lengthening of

peptides [14].

In this report, in order to further study the antifungal

active domain, CGA-N46 was analyzed by bioinformatics

software. The potential antifungal-derived fragments were

designed. The structures and biological activities of the

designed derivatives were further investigated to find the

candidates with strong antifungal activities and bio-safety.

2 Methods

2.1 Microorganisms and Reagents

Candida glabrata (ATCC-90525), Candida parapsilosis

(ATCC-20224), Candida krusei (ATCC-6258), Candida

tropicalis (ATCC-20240), Candida albicans (ATCC-2048)

were supplied by the ChineseAcademy ofMedical Sciences.

CGA-N46 and its derivatives were synthesized by solid-

phase peptide synthesis method. Peptide purification was

performed using high-performance liquid chromatography

(HPLC). The mass of each peptide was confirmed via mass

spectrometry. Final purity of the peptides was determined

to be 90 % by analytical HPLC.

2.2 Physicochemical Properties Analysis

The structural prediction software ProtParam tool in

bioinformatics website ExPASy (http://www.expasy.ch/

tools/) was used to predict the physicochemical properties

of the peptides, including molecular weight, isoionic point

(PI), half-life time in mammalian reticulocytes (in vitro),

yeast (in vivo) and E. coli (in vivo), instability index, ali-

phatic index and GRAVY. Peptide was predicted to be

stable when instability index was less than 40. Otherwise,

peptide was assumed to be unstable. The heat stability of

peptide was indicated by its aliphatic index. The higher

aliphatic index means higher heat stability. The

hydrophilicity and hydrophobicity of peptide were pre-

dicted by GRAVY. The peptide was hydrophobic when the

GRAVY value was plus; otherwise, it was hydrophilic.

2.3 Amino Acid Distribution Analysis

The Helical Wheel Projections software in web (http://

rzlab.ucr.edu/scripts/wheel/wheel.cgi) was used to predict

the distribution of the hydrophobic and hydrophilic resi-

dues of the derived peptides.

2.4 Preparation of Small Unilamellar Lipid Vesicles

Small unilamellar lipid vesicles (SUV) were prepared

according to the method [15, 16] with modification. One

hundred mg of phosphatidylcholine (PC): phosphatidyl-

glycerol (PG) (3:1 weight ratio) dissolved in chloroform

was dried by rotating evaporation under a vacuum to form

a lipid film on the round bottom glass bottle wall. The

obtained lipid film, composed of 75 mg of PC and 25 mg

of PG, was rehydrated with 10 ml of 20 mM potassium

phosphate buffer (pH 7.0) to the final lipid concentration of

10 mg mL-1. SUVs were prepared by ultrasonic process-

ing the sample with pulses ‘15 s on/45 s off’ for 10 min at

4 �C and an input power of 40 W until the suspension was

transparent. The peptides were added to SUVs at concen-

trations of 0.25 mg mL-1 and incubated at room temper-

ature for at least 30 min prior to the measurements.

2.5 Circular Dichroism Assay

Circular dichroism (CD) spectroscopy was performed

using a MOS-500 spectropolarimeter (Bio-Logic, MOS-

500, France) with the method according to the report [17]

with modest modification. CD spectra of the peptides were

recorded between 190 and 240 nm of scanning spectrum at

1 nm intervals at 25 �C with a scanning speed of

100 nm min-1, 2 s of response time, 1.0 nm of step size.

Peptides with a constant concentration of 0.25 mg mL-1

were prepared in three different solvents, 20 mM phos-

phate buffer, pH 7.4 (mimicking the aqueous environment),

30 mM sodium dodecyl sulfate (SDS, mimicking the

negatively charged environment of microbial membrane)

and SUVs (mimicking the hydrophobic environment of the

microbial membrane). The samples were loaded in a rect-

angular quartz cuvette with a path length of 1 mm. The

spectra of three consecutive scans were averaged and

corrected by subtracting the solvent/buffer spectra. The

mean residue molar ellipticities were calculated using the

equation h = (hobs�1000)/(c�l�n) [18], where hobs is the

ellipticity in millidegrees; c is the peptide concentration in

mole l-1; l is the optical path length of the cuvette in

centimeters; and n is the number of peptide residues.

The CD data of CGA-N46 and its derivatives were

analyzed by CDPro software package including SELCON,
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CONTIN and CDSSTR to study the conformational

changes in CGA-N46 and its derivatives in the aqueous,

SDS and SUVs environments.

2.6 Antifungal Assays

Minimum inhibitory concentrations (MICs) of CGA-N46

and its derivatives against fungi were measured according

to a modified version of broth microdilution method of the

Clinical and Laboratory Standards Institute (CLSI) [19].

Fungi cell’s viability was assessed based on the reduction

of 3-[4,5-dimethylthiazolyl]-2,5-diphenyltetrazolium bro-

mide (MTT) into formazan dye by active mitochondria

[20]. Briefly, peptides were serially twofold diluted in

20 mM PBS (pH 6.0) to a final concentration between

2 mg mL-1 and 3.9 lg mL-1. Subsequently, 100 lL
samples was dispensed into the wells of a 96-U-shaped-

well plate, and each was mixed with 100 lL of the

2 9 inoculum suspension (1–5 9 104 CFU mL-1) of a

log-phase fungal culture in Sabouraud (SD) broth. Strains

without treatment with peptides were used as negative

control. The cultures were incubated at 30 �C without

agitation for 16 h. 10 lL of MTT solution (5 mg mL-1

MTT in PBS) was added to each well, and the plate was

further incubated for 4 h. After rinsed, 100 lL of

dimethylsulfoxide (DMSO) was added to dissolve the MTT

formazan crystals. The inhibition of growth was deter-

mined by measuring the absorbance at 570 nm with a

microplate reader. The relative cellular activity was cal-

culated according to the following formula:

cell survival inhibition rate (% of control)

= [(OD570 of the negative sample

� OD570 of the treated sample)

=OD570 of the negative control]� 100 %:

And the MIC was defined as the lowest peptide concen-

tration that completely inhibited fungal growth.

Each test was performed in triplicate, and the data were

expressed as the mean ± SE.

2.7 Hemolytic Assay

Hemolytic activity was tested according to the method

[21]. Briefly, peptides were serially twofold diluted using

PBS in 96-well plates to give a volume of 100 lL of the

sample solution in each well, and the final concentration of

peptides ranged between 2.0 mg mL-1 and 3.9 lg mL-1.

Human red blood cells (RBCs) from a healthy volunteer

were diluted to a concentration of 2 % in PBS. 100 lL of

the RBC suspension was added to each well, and the

reactions were incubated at 37 �C for 60 min, followed by

150 lL supernatant being transferred to a new 96-well

plate (U-shaped well). The release of hemoglobin was

determined by measuring the absorbance of the supernatant

at 570 nm. RBCs in PBS and 0.1 % (v/v) Triton-X100

were used as the negative and positive controls, respec-

tively. The percentage of hemolysis was calculated using

the following formula:

Hemolysis rate %ð Þ ¼ ½ðOD570of the treated sample

� OD570of the negative controlÞ
= OD570of the positive controlð
�OD570of the negative controlÞ� � 100 %:

Each test was performed in triplicate, and the data were

expressed as the mean ± SE.

2.8 Statistical Analysis

Experimental data were analyzed using the PASW statis-

tical 18 (SPSS, Inc., Chicago, IL, USA) to perform one-

way analysis of variance followed by least significant dif-

ference and Duncan’s tests. The results are reported as

mean ± standard error of the mean (SEM). Differences

between treatment groups and the control group were

considered to be statistically significant at p\ 0.05 and

extremely significant at p\ 0.01.

3 Results

3.1 Peptide Design and Predicted Physicochemical

Properties

Derived peptides were obtained by successively deleting

amino acid from both ends of CGA-N46. The amino acid

sequences of the derived peptides were analyzed by soft-

ware ProtParam tool. The physicochemical properties of

CGA-N46 and its derived peptides were predicted and

compared. Four potential peptides with long half-life time

and high stability were obtained, and were named as CGA-

N15, CGA-N16, CGA-N12 and CGA-N8. The amino acid

sequences are given in Table 1. CGA-N15 is the middle

fragment of CGA-N46 with 15 amino acids. CGA-N16 is

the C-terminal fragment of CGA-N46. CGA-N12 is a

derived fragment of CGA-N16, and CGA-N8 is a derived

peptide of CGA-N12.

As given in Table 2, all the derived peptides were near

neutral or weak alkaline and hydrophilic. Among of them,

CGA-N12 and CGA-N8 had longer half-life time and were

more stable than CGA-N15 and CGA-N16. Compared with

CGA-N8, the heat stability of CGA-N12 was higher.
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Table 1 Amino acid sequences

of CGA-N46 and its derived

peptides

Peptide Amino acid sequence

CGA-N46 NH2–PMPVSQECFETLRGHERILSILRHQNLLKELQDLALQGAKERAHQQ–COOH

CGA-N15 NH2–ERILSILRHQNLLKE–COOH

CGA-N16 NH2–LQDLALQGAKERAHQQ–COOH

CGA-N12 NH2–ALQGAKERAHQQ–COOH

CGA-N8 NH2–GAKERAHQ–COOH

Table 2 Physicochemical properties of four peptides derived from CGA-N46

Peptide Molecular PI GRAVY Half-life Instability index Aliphatic index

Mammalian reticulocytes Yeast E. coli

CGA-N46 5363.1 7.38 -0.674 [20 h [20 h Unpredicted 75.91 97.16

CGA-N15 1862.2 8.85 -0.447 1 h 30 min [10 h 55.03 156.0

CGA-N16 1806.0 6.75 -1.012 5.5 h 3 min 2 min 91.88 91.88

CGA-N12 1336.4 8.8 -1.400 4.4 h [20 h [10 h 38.23 57.5

CGA-N8 895.9 8.75 -1.925 30 h [20 h [10 h -12.48 25

Fig. 1 Predicted amino acid residues distribution of CGA-N46 and

its derived peptides. a CGA-N46, b CGA-N15, c CGA-N16, d CGA-

N12, e CGA-N8. Note Hydrophilic residues present as circles,

hydrophobic residues as diamonds, potentially negatively charged as

triangles and potentially positively charged as pentagons. Figure has

been produced by Helical Wheel Projections and Photoshop
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3.2 Amino Acid Distribution of CGA-N46 and Its

Derivatives

The amino acid sequences of the derived peptides were

analyzed by software the Helical Wheel Projections. The

amino acid distribution of CGA-N46 derived peptides were

predicted as shown in Fig. 1. The results in Fig. 1 indicated

that there were no typical hydrophilic face and hydropho-

bic face in the structure of peptide CGA-N46 and its

derivatives. The hydrophobic residues, hydrophilic resi-

dues and the residues with positive or negative charges

scattered randomly.

CD spectroscopy was performed to research the sec-

ondary structure of CGA-N46 and its derivatives peptides

in aqueous environment, SDS and SUVs. The CD spectra

were analyzed and the mean residue ellipticity is shown in

Fig. 2. CGA-N46 and its derived peptides displayed a

typical of a-helical conformation with characteristic double

minima at 208 and 222 nm [22, 23]. Interestingly, an

increase in the mean residue ellipticity at 208 and 222 nm

was observed at the presence of SUVs. The CD spectra

difference suggested that the secondary structural alter-

ations of CGA-N46 and its derivatives were promoted

when they interacted with cell membranes.

To examine the conformational percentage in the

absence and presence of SUVs, the CD data of CGA-N46

and its derivatives were analyzed by CDPro software

package including SELCON, CONTIN and CDSSTR. The

percentage of secondary structure elements for CGA-N46

and its derived peptides (Table 3) demonstrated that the

spectra of CGA-N46 resembled the spectra of its derived

peptides in the absence and presence of SUVs; however,

their intensity of a-helical in SUVs is somewhat lower than

that in aqueous conditions, which indicated that

hydrophobicity might reduce the content of a-helix and

promote other folding conformation of CGA-N46 and its

derivatives. This result is different from some related

reports [24, 27, 28].

Fig. 2 CD spectra of CGA-N46 and its derived peptides in different solution. a CGA-N46, b CGA-N15, c CGA-N16, d CGA-N12, e CGA-N8.
Figure has been produced by Excel and Adobe Illustrator CS6
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3.3 Antifungal and Hemolytic Activities of CGA-

N46 and Its Derived Peptides

The antifungal activity of CGA-N46 and its derived pep-

tides against several Candida spp. (Table 4) was used as an

indicator of the peptide’s anti-Candida activity. CGA-N46

and its derived peptides were active against all of the tested

yeasts (MICs, less than 0.5 mM). But interestingly, dif-

ferent yeast exhibited various greatest sensitivity for dif-

ferent peptides: C. krusei (MIC, 0.37 mM) for CGA-N46,

C. tropicalis (MIC, 0.073 mM) for CGA-N15, C. glabrata

(MIC, 0.28 mM) for CGA-N16, C. tropicalis (MIC,

0.075 mM) for CGA-N12, and C. krusei and C. albicans

(MIC, 0.24 mM) for CGA-N8. The most sensitive strain C.

krusei for CGA-N46 changed to be C. tropicalis for CGA-

N15 and CGA-N12.

The hemolytic activity of CGA-N46 and its derived

peptides against the highly sensitive human erythrocytes

was determined as a measure of its toxicity to mammalian

cells. The release of hemoglobin was monitored by mea-

suring the absorbance at 570 nm. As negative and positive

controls, erythrocytes in PBS without CGA-N46 and 0.1 %

(v/v) Triton X-100 in PBS were employed, respectively.

CGA-N46 and CGA-N12 showed weak hemolytic activity

at the concentration of MIC. For CGA-N8, the MIC was

near the concentration of its 5 % hemolysis. Meanwhile,

CGA-N15 and CGA-N16 showed strong hemolytic activ-

ity. Comparing the ratio of the 5 % hemolytic concentra-

tion with the MIC for the sensitive yeasts, CGA-N12 (5.2-

fold) is higher than that of CGA-N46 (twofold).

4 Discussion

Andreu et al. [25] shortened an antimicrobial peptide with

26 amino acids without losing antimicrobial activity. Park

et al. [26] found the antimicrobial buforin I C-terminal with

21 amino acids had stronger antimicrobial activity than

parent peptides. In this study, we shortened CGA-N46 to

find stronger antifungal-derived peptide with better bio-

logical characters based on the bioinformatics analysis and

obtained derived fragments CGA-N16, CGA-N15, CGA-

N12 and CGA-N8.

There were reports that some peptides including cla-

vanin A formed random coil structure in aqueous solution

[17, 24, 27, 28]. In contrast, peptides folded into certain

secondary structures in the presence of trifluoroethanol [27,

28]. van Kan et al. [24] reported that the folding behavior

of the peptides in aqueous solution highly depends on the

nature of the amino acids. Different from the reports, CGA-

N46 and its derivatives displayed a-helix in aqueous

solution and SDS environments, but conformation changed

in SUVs.

CGA-N46 and its derived peptides had inhibitory effects

on the growth of fungi, but their antifungal activity was

Table 3 Percentages of the secondary structural elements of CGA-

N46 and its derived peptides

a-Helix (%) b-Sheet (%) b-Turn (%) Random (%)

CGA-N46

H2O 79.57 15.79 3.54 1.1

SDS 80.32 14.96 2.32 2.4

SUV 38.74 25.96 22.79 12.51

CGA-N15

H2O 82.69 10.89 3.65 2.77

SDS 83.41 11.25 3.82 1.52

SUV 41.53 30.47 13.96 14.04

CGA-N16

H2O 83.67 11.16 3.23 1.94

SDS 83.33 11.43 3.36 1.88

SUV 40.91 35.67 12.59 10.83

CGA-N12

H2O 88.36 8.64 1.56 1.44

SDS 87.91 9.53 1.38 1.18

SUV 43.21 32.09 15.39 9.31

CGA-N8

H2O 87.79 8.56 1.34 2.13

SDS 84.89 9.87 1.79 3.45

SUV 43.76 34.27 13.86 8.11

Table 4 MIC and hemolytic activity of CGA-N46 and its derived peptides

Peptide MIC (mmol L-1) 5 % Hemolysis (mmol L-1)

C. glabrata C. parapsilosis C. krusei C. tropicalis C. albicans

CGA-N15 0.11 0.13 0.13 0.073 0.13 0.031

CGA-N16 0.28 0.32 0.38 0.41 0.38 0.056

CGA-N12 0.26 0.27 0.27 0.075 0.28 0.39

CGA-N8 0.3 0.3 0.24 0.29 0.24 0.27

CGA-N46 0.48 0.48 0.37 0.50 0.50 0.74
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different. CGA-N12 was the inner sequence of CGA-N16,

which was also the inner sequence of CGA-N46. They

shared the same active center. The results of MTT assay

suggested that the amount and features of amino acids

influenced the antifungal activity of peptides.

As common structural characteristics, AMPs are pep-

tides with net positive charges and adopt amphipathic

structures [29]. Three kinds of models, including barrel–

stave model, toroidal (or worm-hole) model and carpet

model, have been proposed how AMPs finally form ion

channels, transmembrane pores or extensive membrane

rupture. The toroidal model appears to be more consistent

with the mechanism of most AMPs [30]. The structure of

the AMPs is necessary to lead the AMPs insert into the

membrane. The bioinformatics analysis results of CGA-

N46 and its derived peptides suggested that CGA-N46 and

its derived peptides were weak positive charge or neutral,

hydrophilic peptides. The results of CD demonstrated that

the secondary structure of CGA-N46 and its derived pep-

tides were a-helical in PBS and SDS, and they changed

with a-helix decreasing and b-sheet, b-turn and random

coil increasing when the solvents changed from PBS to

SUVs. The results suggested that CGA-N46 and its derived

peptides did not share the similar action mechanism with

common a-helical AMPs.

As defenders in innate immunity, AMPs select ‘killing’

microbial without destroying human red cells [31]. Vaso-

statin-I was supposed to be one of innate immunity factors

in mammalian [32]. Our study demonstrated that CGA-

N12 showed strong antifungal activity and the least

hemolytic activity.

5 Conclusions

Based on the bioinformatics analysis of CGA-N46, a series

of CGA-N46 derivatives were synthesized. The structure,

antifungal activities, hemolytic activities were studied.

Among the derivatives, CGA-N12 had higher antifungal

activity and less hemolytic effect. It would be a potential

candidate for further preclinical research.
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