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Abstract

Background: Nematoda diverged from other animals between 600–1,200 million years ago and

has become one of the most diverse animal phyla on earth. Most nematodes are free-living animals,

but many are parasites of plants and animals including humans, posing major ecological and

economical challenges around the world.

Results: We investigated phylum-specific molecular characteristics in Nematoda by exploring over

214,000 polypeptides from 32 nematode species including 27 parasites. Over 50,000 nematode

protein families were identified based on primary sequence, including ~10% with members from at

least three different species. Nearly 1,600 of the multi-species families did not share homology to

Pfam domains, including a total of 758 restricted to Nematoda. Majority of the 462 families that

were conserved among both free-living and parasitic species contained members from multiple

nematode clades, yet ~90% of the 296 parasite-specific families originated only from a single clade.

Features of these protein families were revealed through extrapolation of essential functions from

observed RNAi phenotypes in C. elegans, bioinformatics-based functional annotations, identification

of distant homology based on protein folds, and prediction of expression at accessible nematode

surfaces. In addition, we identified a group of nematode-restricted sequence features in energy-

generating electron transfer complexes as potential targets for new chemicals with minimal or no

toxicity to the host.

Conclusion: This study identified and characterized the molecular determinants that help in

defining the phylum Nematoda, and therefore improved our understanding of nematode protein

evolution and provided novel insights for the development of next generation parasite control

strategies.
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Background
The phylum Nematoda (roundworms) is one of the most
common phyla of animals, estimated to contain over a
million species [1]. Over 20,000 nematode species have
been described [2], most of them are free-living but many
are successful parasites of humans, animals, and plants,
causing diseases of major socio-economic importance
globally. Nearly three billion people are infected by the
three most prevalent soil-transmitted intestinal worms,
including roundworms (Ascaris lumbricoides), whipworms
(Trichuris trichiura), and hookworms (Necator americanus
and Ancylostoma ceylanicum) [3]. Tissue-dwelling filarial
nematodes infect at least a billion people, causing river
blindness (Onchocerca volvulus), elephantiasis (Wuchereria
bancrofti and Brugia malayi), etc. In agriculture, the current
financial losses caused by parasites to domesticated ani-
mals and crops greatly affect farm profitability and exacer-
bate challenges to global food production and
distribution. For example, the root-knot nematodes Mel-
oidogyne spp. and the cyst species (Globodera and Heterod-
era) cause an estimated $100 billion in annual damage
[4].

Nematodes are believed to have diverged evolutionarily
from other animals between 600–1,200 million years ago
[2]. Proteins encoded by their genomes have experienced
drastic changes since then, as evident in both expressed
sequence tags (ESTs) [5-7] and genomes [8,9], and many
are closely related to functional diversification, specia-
tion, and species adaptation [10-14]. Among them are the
nematode-specific proteins, which bear crucial impor-
tance for understanding nematode biology and parasitism
[15-17]. In addition, studies on the proteins unique to
nematodes can illustrate the roles of different genetic
mechanisms, such as gene duplication and degeneration,
retroposition, and de novo origination, in the emergence
of novel proteins and protein families in nematodes. Fur-
thermore, proteins that are specific to the pathogen or
have sufficiently diverged from those in the host can be
good targets for drugs with low toxicity to the host and the
environment. Examples of such differential drug activities
are antibiotics such as β-lactam and streptomycin and
many anti-fungals [18].

Despite the importance of nematode-specific proteins and
protein families, their representations are extremely lim-
ited in public databases. For example, 2,635 of the 8,296
protein families in Pfam-A [19,20] (v20) include nema-
tode sequences, yet only 78 of them contain no members
from non-nematode species and are thus putative nema-
tode-specific families. This under-representation is a result
of the quality control measures applied by the existing
protein domain databases, such as Pfam, to restrict the
sequences they incorporate to only the full length-pro-
teins or those predicted from complete genomes [19].

Work by our laboratory and others have generated the vast
majority of sequences currently available for many para-
sites from the phylum Nematoda as ESTs and genome sur-
vey sequences (GSSs) [21,22]. For example,
transcriptomes of 38 nematode species, 32 of which are
parasites of vertebrates or plants, have been sampled to
generate over 510,000 ESTs [23]. However, putative nem-
atode coding sequences among these ESTs and GSSs have
never been explored systematically for the identification
of nematode-specific protein-coding features.

To extend our and others' investigation of nematode evo-
lution based on pan-phylum analyses [7,24,25], we have
undertaken the challenge of identifying nematode-spe-
cific (or restricted) protein families using high-through-
put computational methods developed to detect highly
conserved coding regions in a robust fashion. From over
214,000 polypeptides in 32 nematode species including
27 parasites, we identified 758 protein families that were
conserved in various nematode subgroups across the phy-
lum Nematoda but were not represented in Pfam-A. These
proteins were conserved in at least three species, therefore
prospectively with essential functions, making them
excellent candidates for the understanding of nematode
evolution as well as targets for the broad control of nem-
atodes. With cautions on the incompleteness of the cur-
rently available phylogenetic sampling, these nematode
protein families were further categorized and character-
ized at functional and at structural levels. Most of them
were conserved proteins with no functional annotations
identified, a fraction of which were found to contain dis-
tant structural homology that may infer putative func-
tions.

Results and discussion
Sequence organization

Sequence data is available for many nematode species pri-
marily because of the recent sampling of nematode tran-
scriptomes using ESTs [21,22]. In this study, a total of
130,357 contig-level EST consensus sequences, assembled
from 262,497 ESTs from 29 nematode species, were trans-
lated into putative primary sequences of nematode pro-
teins (Table 1). In addition, the complete gene-sets of
84,408 proteins from five genome sequencing projects (3
Caenorhabditis species, B. malayi, and Ancylostoma cani-
num) were added. Hence, a total of 214,159 polypeptides/
proteins from 32 nematode species in four nematode
clades were used for the subsequent analysis (Table 1).
The complete dataset is available online for retrieval [26].

Building nematode protein families

Protein families were built using MCL clustering [27] with
the Markov cluster algorithm (MCL), which would not
suffer greatly from potential problems caused by multi-
domain proteins, promiscuous domains, or fragmented
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sequences. In total, the 214,159 nematode coding
sequences were clustered into 54,036 protein families.
Protein families conserved across multiple species suggest
conserved features and essential functions, therefore a
total of 5,326 multi-species families (112,271 sequences),
with members from at least three different nematode spe-
cies, were chosen for further evaluation. Of these, 1,939
protein families (36%) did not share homology to protein
family models in Pfam-A (Figure 1).

A protein family built by MCL can include multiple EST
contigs originating from a single gene. To reduce this
redundancy, we first clustered EST contigs into EST clus-
ters, each containing a group of contigs likely representing
the same gene [28-31]. Then a step-wise approach was
implemented for each MCL family to: i) generate a multi-
ple alignment from all members, ii) build a Hidden

Markov model (HMM) from the multiple alignment, iii)
calculate a matching score for each member of the family
based on the HMM, and iv) retain only the single EST con-
tig from each EST cluster assigned with the best matching
score as the sole representative of the gene in the protein
family. Finally, an additional filtering step required each
valid family to have at least 10% (in length) of its full
alignment contributed simultaneously by sequences from
3 or more species. All of the above led to the identification
of 1,593 multi-species non-Pfam Nematode protein Fam-
ilies (NFs) with a total of 13,963 coding sequences (Figure
1).

Identification of novel phyla-restricted nematode protein 

families

The NFs were further categorized by sequence similarities
and taxonomic origins of their members. Comparison to

Table 1: Species and sequences.

Clades/Species Code # EST Contigs # Poly-peptides

EST contigs

V Ancylostoma caninum a AC 5,484 5,444

Ancylostoma ceylanicum a AE 4,953 4,954

Haemonchus contortus a HC 9,842 9,819

Nippostrongylus brasiliensis a NB 3,949 3,852

Ostertagia ostertagi a OS 4,831 4,821

Pristionchus pacificus f PP 2,654 2,654

IVa Parastrongyloides trichosuri a PT 4,934 4,925

Strongyloides ratti a SR 5,237 5,235

Strongyloides stercoralis a SS 3,479 3,478

IVb Globodera pallida p GP 2,973 2,960

Globodera rostochiensis p GR 2,530 2,528

Heterodera glycines p HG 2,026 2,016

Heterodera schachtii p HS 1,600 1,593

Meloidogyne arenaria p MA 3,372 3,354

Meloidogyne chitwoodi p MC 5,880 5,860

Meloidogyne hapla p MH 11,193 11,178

Meloidogyne incognita p MI 9,107 9,098

Meloidogyne javanica p MJ 5,172 5,162

Meloidogyne paranaensis p MP 2,263 2,252

Pratylenchus penetrant p PE 488 488

Radopholus similis p RS 788 789

Zeldia punctata f ZP 202 202

III Ascaris suum a AS 17,989 17,843

Brugia malayi a BM 1,609 1,517

Dirofilaria immitis a DI 2,534 2,527

Toxocara canis a TX 2,135 2,113

I Trichinella spiralis a TS 5,958 5,952

Trichuris vulpis a TV 1,690 1,681

Xiphinema index p XI 5,485 5,451

Genes

V Ancylostoma caninum a AC 3,998

Caenorhabditis elegans f CE 23,162

Caenorhabditis briggsae f CB 19,723

Caenorhabditis remanei f CR 25,775

III Brugia malayi a BM 11,750

a Animal parasite; b Plant parasite; f Free-living nematode.
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the NR-noNema database (all protein sequences in the
non-redundant NR database except those from nema-
todes), at a BLAST e-value cutoff of 1.0e-03, identified 835
NFs (8,764 proteins) containing homology in non-nema-
tode species although they were derived from nematodes
(Figure 1) (see Additional file 1). Approximately 90% of
these NFs shared primary sequence similarities to arthro-
pod proteins, among which 26 families (NFa; 212
sequences) were found to be homologous only to
sequences from arthropods but not to any proteins from
non-nematode and non-arthropod species at a BLAST e-
value cutoff of 1.0e-03 (see Additional file 2). Molecular
features conserved in the sequences of both nematodes
and arthropods were evident in these families, such as
small insertions/deletions [see Additional file 3]. Both
Nematoda and Arthropoda belong to Ecdysozoa, sharing
the common pattern of growth-by-molting [32,33], there-
fore these protein families likely reflect the evolutionary
conservation between these organisms at the molecular
level. In addition, macrocyclic lactones, such as avermec-
tion and milbemycin, have been successfully used as
endectocides to treat both the nematode endoparasites
and arthropod ectoparasites simultaneously [34]. Hence,
the 26 NFs that were conserved only among nematodes
and arthropods could be potential targets for the develop-
ment of novel endectocides. Interestingly, five of the 26

families were mapped to canonical KEGG metabolic
enzymes [35-37] as various subunits of the electron trans-
fer Complex I [see Additional file 2].

The remaining 758 NF families (5,199 sequences) did not
contain members with sequence similarities to any non-
nematode proteins with the BLAST e-value cutoff of 1.0e-
03 (Figure 1). With no obvious homology to either non-
nematode proteins or Pfam-A entries, they became candi-
date novel protein families specific (or restricted) to nem-
atodes. Their conservation among multiple nematode
species, especially of those spanning all the four nema-
tode clades (Table 2) (phylogeny based on [38]) included
in this study (see below), suggests that they may have
emerged in early nematode ancestors after they diverged
from other animals, and they may include the molecular
determinants archetypical to the phylum Nematoda.
Although their nematode-specificity implies only limited
knowledge currently available, close investigation will
likely reveal conserved functions essential to many nema-
todes, and the interference with their functions will likely
cause severe damaging effects in nematode parasites in a
novel, safe, and broad fashion.

In addition, by comparing to a database containing all the
currently available sequences from free-living nematodes

Identification and classification of nematode-restricted protein familiesFigure 1
Identification and classification of nematode-restricted protein families.
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Table 2: NF families spanning the four clades.

NFs Members (#) SP TM Struct. 
Homology

Intfam KEGG 
Annotation

InterPro Mapping RNAi

NFp

NF_0405_1573 5 + + - - IPR013032 
(EGF-like region)

-

NF_0410_0798 13 - + - - - -

NFn

NF_0404_1399 5 - - - - - - -

NF_0406_0090 6 - + - - - - Dpy Let unc Prl 
transgene_expression_incre
ased Gro

NF_0407_1004 8 - + - - - - fat_content_increased

NF_0407_1250 7 - + - - - - WT

NF_0407_1301 8 + - - - - - transgene_expression_incre
ased WT

NF_0408_0068 8 + + - - - IPR000583 
(Glutamine 
amidotransferase, 
class-II)

Ric

NF_0408_0121 11 + + - - - - unc thin Lon Gro WT

NF_0408_0187 12 + - + - - - WT

NF_0408_0355 8 + + - - - - WT

NF_0408_0750 8 + + - - - - WT

NF_0408_1462 9 + + - - - IPR002057 
(Isopenicillin N 
synthetase)

-

NF_0409_1025 11 + + - - - - WT

NF_0410_0459 14 + - - - - IPR010345 
(Interleukin-17) 
IPR000173 
(Glyceraldehyde 3-
phosphate 
dehydrogenase)

WT

NF_0412_0004 12 - + - - - - WT

NF_0412_0519 13 + - - - - - unc Prl unclassified Rup 
transgene_localization_abno
rmal Gro

NF_0412_0625 13 - - - - - IPR005374 (Protein 
of unknown function 
UPF0184) 
IPR009053 
(Prefoldin)

Clr unc 
fat_content_reduced Gro

NF_0412_1508 12 + + - - - - unc Lva Gro

NF_0412_1534 14 + - - - - - WT

NF_0413_0363 14 - + - - - - Bmd Let Lva Emb 
reduced_brood_size

NF_0413_1248 14 + + - - - IPR008263 
(Glycoside 
hydrolase, family 16, 
active site)

unc

NF_0414_0910 30 + + - - - IPR014756 
(Immunoglobulin E-
set)

WT

NF_0416_0115 21 - - - - - - WT

NF_0417_1395 19 - - - + - - Muv

NF_0419_1162 19 - + - + K03960 
(NADH 
dehydrogenase 
(ubiquinone) 1 
beta 
subcomplex 4)

IPR009866 (NADH-
ubiquinone 
oxidoreductase, 
subunit NDUFB4)

Bmd Lva Emb

NF_0423_0313 35 + + - - - IPR013032 
(EGF-like region)

WT
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(at a BLAST e-value cutoff of 1.0e-05), these nematode-
restricted NFs were further divided into 296 NFp (puta-
tively specific to parasitic nematodes) [see Additional file
4] and 462 NFn (conserved across both free-living and
parasitic nematodes) [see Additional file 5]. The NFp and
NFn groups contained 1,514 and 3,685 proteins, respec-
tively, averaging at 5 and 8 members per family with dif-
ferent family size distributions [see Additional files 1 and
6], suggesting differences between the two groups. In
addition, while the majority in the NFp group (90%) con-
tained members from only a single nematode clade, a
similar number of NFn families were found to span 1, 2,
or 3 nematode clades respectively (~31% of all NFn for
each) (Figure 2). These results indicate that proteins
within the NFn families are conserved in more evolution-
arily divergent nematode species and are thus likely
involved in essential nematode function across the phy-
lum Nematoda; on the other hand, the NFp families tend
to be restricted to smaller evolutionary niches and are
most likely related to the specific patterns of parasitism
that were hypothesized to emerge independently, at mul-
tiple times, during nematode evolution [38].

NF families containing C. elegans members with RNAi 

phenotypes

RNA interference (RNAi) has become an efficient high-
throughput approach for rapidly determining gene func-

tions via transcript knockdown in many organisms, and
especially in C. elegans [39-42]. However, applying RNAi
in parasitic nematodes possesses significant challenges.
For example, their obligate parasitic life cycles, with
movement into and out of the host, make both the deliv-
ery of double-stranded RNA and the assessment of pheno-
type difficult. Although successes have been demonstrated
in several parasitic nematode species (reviewed in
[21,43]), these methodologies are far from established for
large-scale investigation.

Gene functions derived from RNAi experiments in C. ele-
gans can be further extrapolated, to an extent, to ortholo-
gous genes in other nematodes [21]. The NFp families did
not have members from the free-living C. elegans. A total
of 356 of the 462 NFn families had C. elegans members,
most of them (321) had RNAi results available. Among
them, 85 families contained C. elegans genes associated
with non-wild type RNAi phenotypes, including 62 with
strongly deleterious effects (Emb, Ste, Stp, Lva, Lvl, and
Gro) [see Additional file 5]. Such RNAi results could shed
light on the putative functions of their counterparts in
other nematodes included in the same protein families.
For example, NF_0208_1522 contained two members
from each of the three clade V free-living Caenorhabditis
species, as well as four from animal parasites (AC02485
and OS00413 from clade V and SS02646 and PT01276
from clade IVa), and one from the clade IVb plant parasite
M. incognita (MI03217). The inclusion of the two C. ele-
gans insulin-like genes, ins-17 and ins-18, suggested that
this family represented a group of conserved nematode
proteins likely regulating the growth and lifespan as dem-
onstrated by RNAi in C. elegans.

Furthermore, the distribution of these RNAi results
among NFn families showed that families conserved in
nematodes spanning a broader evolutionary distance,
especially those with members from all the four nema-
tode clades included in this study, were much more likely
to have observable phenotypes with RNAi knockdown in
C. elegans (Figure 3). This suggested that these multi-clade
NFn families, which might have emerged in the early
common ancestors of Nematoda and remained to be con-
served in many nematode species since then, could be the
most essential genes required for nematode survival.

NF families with functional annotations

Based on sequence similarities, members of the NFs were
mapped to the Kyoto Encyclopedia of Genes and
Genomes (KEGG), which offers curated information
about genes and proteins, as well as molecular wirings of
interactions and reaction networks especially in the
canonical metabolic pathways [36,37]. As expected for
these novel families, none of the NFp members could be
mapped, and the limited assignments for the NFn families
were always derived from their C. elegans members that

Phylogenetic distribution by members of the NFn and NFp familiesFigure 2
Phylogenetic distribution by members of the NFn 
and NFp families. A similar number of NFn families were 
found to span 1, 2, or 3 nematode clades respectively (~31% 
for each). In contrast, the majority in the NFp group (90%) 
contained members from only a single nematode clade.
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were previously annotated by KEGG [see Additional file
5]. In addition, for each of the eight NFn families mapped
through KEGG, a same KEGG Orthology (KO) entry was
always assigned consistently to all of its family members
meeting the mapping criteria (Table 3), confirming that
the family members grouped by MCL were indeed homol-
ogous proteins.

Unexpectedly, all the eight KEGG entries assigned to NFn
proteins, such as the various subunits of electron-transfer

complexes (Table 3), were canonical enzymes with exten-
sive knowledge available, including sequences of ortholo-
gous groups from many non-nematode species. It was
intriguing because the proteins included in these nema-
tode families, especially the C. elegans members that had
been previously annotated in KEGG, had to contain a fair
amount of sequence homology to be recognized as the
canonical enzymes, yet they were found without similari-
ties to any non-nematode proteins by our discovery pipe-
line. Close examination showed that this conflict was
caused by a slightly looser requirement of homology dur-
ing the KEGG mapping. Therefore, the putative annota-
tion assigned to these nematode proteins represented the
relatively low levels of sequence similarities that were still
able to reveal their functions with confidence.

More interestingly, we were able to identify unique
sequence features of these nematode proteins, such as
nematode-specific insertions and deletions, in all the
eight NFn families with KEGG annotations. Such nema-
tode-specific features may have prevented their homology
from being identified in our initial screening. For exam-
ple, members of NFn family NF_0313_0956 were
mapped to KO: K03951 as the NADH dehydrogenase
(ubiquinone) 1 alpha subcomplex 7. Indeed, these nema-
tode sequences could be forcibly aligned with the group of
proteins from non-nematode organisms that were
assigned to the same KEGG entry, after allowing two frag-
ments of nematode-specific insertions (Figure 4). The lack
of a homologous 3D model of this enzyme made it
impossible to investigate the impact on its structure
caused by these insertions, but they likely created addi-
tional loops in the nematode proteins that may introduce
novel functional features specific to Nematoda. These
results demonstrated the mechanism of directed diversifi-

RNAi phenotypes of C. elegans members in the NFn familiesFigure 3
RNAi phenotypes of C. elegans members in the NFn 
families. Families conserved in nematodes spanning a 
broader evolutionary distance, especially those with mem-
bers from all the four nematode clades included in this study, 
were much more likely to have observable phenotypes with 
RNAi knockdown in C. elegans. Severe Pheno., strongly dele-
terious effects including Emb, Ste, Stp, Lva, Lvl, and Gro; 
Other Pheno., other observable phenotypes.
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Table 3: KEGG mappings for NFn families.

NFn Families # Members # Mapped EC Enzyme KEGG Orthology KEGG Pathway

NF_0103_0353 3 1 4.2.1.1 E4.2.1.1: carbonic anhydrase (K01672) Nitrogen metabolism (ko00910)

NF_0203_0963 5 2 - Potassium channel, subfamily K, 
invertebrate (K05323)

NF_0207_1379 9 8 1.6.5.3 1.6.99.3 NDUFS5: NADH dehydrogenase 
(ubiquinone) Fe-S protein 5 (K03938)

Oxidative phosphorylation (ko00190)

NF_0308_0938 12 9 1.6.5.3 ND4L: NADH dehydrogenase I subunit 4L 
(K03882)

Oxidative phosphorylation (ko00190)

NF_0312_1355 13 7 1.10.2.2 QCR10: ubiquinol-cytochrome c 
reductase subunit 10 (K0420)

Oxidative phosphorylation (ko00190)

NF_0313_0956 13 11 1.6.5.3 1.6.99.3 NDUFA7: NADH dehydrogenase 
(ubiquinone) 1 alpha subcomplex 7 
(K03951)

Oxidative phosphorylation (ko00190)

NF_0320_0609 30 25 1.9.3.1 COX6C: cytochrome c oxidase subunit 
Vic (K02268)

Oxidative phosphorylation (ko00190)

NF_0419_1162 19 19 1.6.5.3 1.6.99.3 NDUFB4: NADH dehydrogenase 
(ubiquinone) 1 beta subcomplex 4 
(K03960)

Oxidative phosphorylation (ko00190)
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cation of existing protein folds in these proteins during
nematode evolution.

Energy generation in nematodes

Energy generation mechanisms are extremely complicated
in nematodes. Free-living nematodes, such as C. elegans,
rely on mammalian-type aerobic electron transfer for the
generation of ATP. However, this oxygen-based energy
generation mechanism is thought to be unlikely for many
parasites because of the low levels of oxygen in their par-
asitic environments and the lack of an efficient circulatory
system and respiratory organs in nematodes. Instead, an
anaerobic energy generation independent of oxygen has
been suggested. Studies of the clade III intestinal parasite
Ascaris suum have revealed that a developmental switch
around stage L3, wherein an anaerobic pathway in adults,
named the malate dismutation pathway or the PEPCK-
succinate pathway, replaces the mammalian-type aerobic
energy generation found in embryos and larvae [44-47].
Our previous investigation of the adult transcriptome
from another clade III parasite Dirofilaria immitis has sug-
gested a similar mechanism [28].

With KEGG mapping, we identified a total of six compo-
nents of the well-defined energy-generating electron
transfer complexes among NFn families, each with rela-
tively weak yet clear homology to the canonical enzymes.
Based on this, and the finding that five NFa families con-
served in only nematodes and arthropods were also
mapped to the same pathway [see Additional file 4], we
propose that the early common ancestors of nematodes
may have obtained a series of novel features in their
energy generation to collectively and cooperatively
accommodate the severe challenges imposed by the differ-
ent life styles found in complex parasitism, and that those
NFa families may have represented an intermediate evolu-
tionary path, which would have emerged in the common
ancestors of Ecdysozoa, that leads to unique features spe-
cific to Nematoda. This phyla-specific energy generation
mechanism, significantly distinct from the canonical
pathway of oxidative phosphorylation used by mamma-
lian hosts, offers a prime target for the development of
next generation parasite control strategies with potentially
high specificity and minimal toxicity.

Nematode-specific sequence features in the NF familiesFigure 4
Nematode-specific sequence features in the NF families. Insertions specific to nematodes were evident in the global 
multiple alignment among members of NF_0313_0956 and orthologous proteins from non-nematode species. NF_0313_0956 
included SS00822 (Strongyloides stercoralis), 14968.m01483 (Brugia malayi), F45H10.3 (Caenorhabditis elegans), gi-39591288-emb-
CAE73341.1-(Caenorhabditis briggsae), cr01.Contig9.wum.334.1 (Caenorhabditis remanei), AE04133 (Ancylostoma ceylanicum), 
HC05738 (Haemonchus contortus), NB03814 (Nippostrongylus brasiliensis), OS04039 (Ostertagia ostertagi), PT04092 (Parastrongy-
loides trichosuri), and MH00982 (Meloidogyne hapla). Non-nematode orthologous proteins were those annotated as the NADH 
dehydrogenase (ubiquinone) 1 alpha subcomplex 7 (KO: K03951) from fly, bovine, mouse, rat, and human.
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NF families with distant sequence homology

To offer further characterization, NF families were
scanned against the InterPro database [48] for generic
sequence features [see Additional files 4 and 5]. Not sur-
prisingly, even with both KEGG and InterPro mappings,
we were able to obtain information for only 30 NFp and
124 NFn families, leaving the majority of the NF families
(~80%, 606/758) completely un-annotated.

Protein structure diverges more slowly than primary
sequence [49], therefore fold similarity and structure-
based alignments were used for the detection of distant
homology of the 606 NF families with no KEGG or Inter-
Pro annotation. Firstly, we generated predictions of basic
structural information for each, including secondary
structure, domain architecture, and flexible/dynamic
regions. These predictions are integrated and displayed
within a customized genome browser [50] for easy navi-
gation [26]. Secondly, structural homology to previously
defined protein folds in Protein Data Bank (PDB) [51] or
Pfam [19,20] were searched for using a newly improved
version of the meta-predictor, Meta-BASIC [52], which
combines sequence profile, secondary structure, and pre-
diction of the burial states of individual amino acid with
various scoring systems and meta profile alignment algo-
rithms. The putative matches with a confident 3D-Jury
cutoff score of 50, which corresponds to a false positive
rate of less than 5% [49], are available online via graphic
display [26]. Of the 3,926 sequences from the 606 fami-
lies, we were able to identify putative homology for 56
polypeptides from 9 families to known protein folds in
PDB, and 14 in 11 families to those in Pfam [see Addi-
tional files 4 and 5]. Close investigation of such distant
homology can help to elucidate potential function (as
described below).

An example is family NF_0103_0974 with a domain of
136 amino acids conserved in all the five members. Sev-
eral structure prediction methods included in Meta-
BASIC, such as the homology modeling tool FFAS3 [53]
and threading algorithms 3D-PSSM [54] and INUB [55],
all assigned this conserved domain as a match to the PDB
entry 1buqa, which was classified as the structure signa-
ture for a group of nuclear transport factor 2 (NTF2) like
proteins. Further structural modeling using Modeller [56]
showed that the nematode domain contained all the
major components of this fold. The NTF2-like super-
family contains members with diverse functions, includ-
ing enzymes such as enscytalone dehydratase, delta-5-3-
ketosteroid isomerase, and limonene-1,2-epoxide hydro-
lase, and non-enzymatic homologues such as NTF2 [57].
Even though none of these functions could be clearly
assigned to NF_0103_0974, the presence of a cysteine
cluster might suggest the existence of zinc binding site in
these nematode proteins (Figure 5).

NF families on accessible surfaces

Proteins secreted or expressed at surfaces are essential
components of the cellular regulatory networks that
ensure proper interactions with the environment for sur-
vival. Thus far, all the commercially available
anthelmintics have a gain-of-function mode of action tar-
geting channels and receptors associated with membranes
[58]. In addition, nematode antigens are believed to be
most effective when secreted from glands [59] or
expressed on exposed surfaces such as the intestinal
lumen in hookworm [60], where they come into contact
with and are therefore targeted by effector molecules from
the host immune system. Among the NFn and NFp fami-
lies, there were 45% and 27%, respectively, having signal
peptide for secretion predicted in their sequences, and
26% and 21%, respectively, containing members pre-
dicted to have both signal peptide and transmembrane
domains. With the caution that some of these predictions
might be putative targeting signals for transport to intrac-
ellular compartments such as mitochondria or peroxi-
somes, we were able to identify 149 NF families, from the
total of 758, as candidates for expression at accessible sur-
faces [see Additional files 4 and 5].

The intestine has been our focus in other studies [61],
because it is one of the major organs in nematodes creat-
ing a key surface at the intestinal apical membrane to
interact with the environment. The easy accessibility of
the nematode intestine has made it an attractive target for
immune or chemical control of parasitic species [62-67].
Comparative studies among intestinal transcriptomes
from the free-living C. elegans and parasites A. suum and

Structural simulation of a conserved domain in NF_0103_0974Figure 5
Structural simulation of a conserved domain in 
NF_0103_0974. The structure of a domain of 136 amino 
acids, conserved in all the five members of NF_0103_0974, 
were computationally simulated based on its distant homol-
ogy to the PDB entry 1buqa. All the major components of 
1buqa were preserved in this nematode domain, and the 
presence of a cysteine cluster might suggest a zinc-binding 
site.
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H. contortus identified a group of 241 protein families
(IntFam-241) expressed in the intestine of all three nema-
todes. This group was further proposed to represent an
ancient group of intestinal proteins responsible for the
core intestinal functions in many nematode species [61].
There were 12 NFn families from this study overlapping
with the IntFam-241. Majority of them (11/12) spanned
three or more nematode clades, and eleven had predic-
tions of either signal peptides or transmembrane
sequences [see Additional files 4 and 5]. In addition, all of
the 12 NFn families had C. elegans members with RNAi
information available, and all but two of them had
observable RNAi phenotypes [see Additional file 5 and
Additional file 6], suggesting that they warrant further
investigation.

Conclusion
Genomics studies of parasites from the phylum Nema-
toda have been mainly restricted to EST-based surveys of
transcriptomes [23]. Beyond C. elegans, more than
520,000 ESTs have been generated from more than 40
species. As next-generation sequencing technologies drive
cost down significantly, the sequencing of complete
genomes of many eukaryotic species, including parasitic
nematodes, can be foreseen in the near future. Nematolo-
gists currently have genome sequences available from
nine nematode species including three parasites. The first
annotated genome of a parasitic nematode, Brugia malayi,
contained over 11,000 genes [68]. Recently the genome of
plant parasite Meloidogyne incognita became available with
over 19,000 genes [69]. New anti-parasitic drug targets
were identified through investigations of both genomes.
The human parasite T. spiralis is a significant food safety
concern and an evolutionary out-group to many other
nematodes [70]. The annotation of its genome has been
completed and extensive comparative studies are cur-
rently underway (Mitreva, unpublished). In the next five
years, collaborative projects at the Genome Center at
Washington University and the Wellcome Trust Sanger
Institute will increase the available parasitic nematode
sequences by another order of magnitude, adding a total
of 25 draft genomes supplemented by numerous cDNA
reads with pyrosequencing. However, we anticipate that
their complete annotated genomes are still 2–4 years
away. Until then, transcriptomic data will remain the
main source of information for the investigation of nem-
atodes at the molecular level.

Currently, the primary control of parasitic nematode
infection is based upon chemical treatments
(anthelmintics). However, the incomplete protective
response of the host and the acquisition of anthelmintic
resistance by an increasing number of parasitic nematodes
have hampered what used to be effective control strate-
gies. Moreover, the use of drugs poses the risk of residue
problems in meat, milk, and the environment. With

minor exceptions, vaccines do not exist against parasitic
nematodes of mammals, although immunity can develop
against many of these pathogens. Hence, better under-
standing of the unique molecular characteristics in nema-
todes and a way of target prioritization is essential.

The pan-phylum analyses presented here demonstrate
how genomics-based methods can offer a growing and
fundamental information base, which, when coupled
with extensive functional and structural annotations, can
improve our understanding of the protein evolution in
the phylum Nematoda through identification and charac-
terization of the unique molecular features, and provide
useful information in the identification and characteriza-
tion of target proteins for the development of vaccines
and next-generation anthelmintic drugs with a broad
application.

Methods
Partial and complete genomes

Detailed information on genetic materials and cDNA
library construction are available online [23,26]. ESTs
were processed and clustered as described earlier [28-31].
EST contig sequences were translated individually by
Prot4EST, a 6-tier translation pipeline combining both
similarity-based methods and de novo predictions [71,72].
Only one translation was accepted to represent each EST
contig, during which false translation was likely reduced
by retaining preferably the longest open reading frame
with strong supporting evidence, if available, in the form
of similarities to known or predicted proteins. The gene-
sets from the genomic sequencing projects were: C. elegans
(Wormbase v158; 23,162 proteins), C. briggsae (down-
loaded June, 2006; 19,723 proteins), C. remanei (prelimi-
nary set, October, 2005; 25,775 proteins), B. malayi
(11,750 proteins), and A. caninum (preliminary set; 4,038
proteins).

Sequence comparison

WU-BLASTP (wordmask = seg postsw) was used to query
the translated sequences against protein databases, and
WU-TBLASTN (wordmask = seg lcmask) for searching
against nucleotide databases [73]. Databases used for
sequence comparisons were: i) NR-noNema, containing
all sequences from the non-redundant protein database
NR except those from nematodes (downloaded 06/06/
2007), ii) NR-noNema-noArthropoda, NR sequences
with those originated from nematode and arthropod spe-
cies removed (downloaded 06/06/2007), iii) Free-living,
all the 71,496 protein sequences from the free living spe-
cies C. elegans, C. briggsae, C. remanei, P. pacificus, and Z.
punctata.

Building nematode protein families using MCL clustering

An all-against-all WU-BLASTP was performed on the total
of 214,159 translated sequences from the 32 nematode
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species. Raw BLAST results were fed to a C-language
implementation of Markov cluster algorithm [74], a fast
and scalable unsupervised clustering algorithm based on
simulation of flow in graphs [27]. MCL simulates flow in
a protein similarity graph, assigning complete protein
sequences into families based on density and strength
between them. It makes no attempt to decompose the
sequences into their component domains, but rather pro-
duces protein clusters that correlate well with the overall
domain architecture. The tightness of MCL clustering is
determined by a user-defined parameter, the inflation fac-
tor. A larger inflation factor leads to a higher granularity of
clustering, resulting in the generation of protein families
based more likely on local domains and less likely on glo-
bal similarities. To avoid such high granularity, we vali-
dated the clustering with three inflation factors, 1.6, 1.8,
and 2.0, respectively. With them, the numbers of protein
families differed by only 5% (data not shown). After man-
ual inspection, the inflation factor of 1.8 was chosen to
generate 54,036 protein families for further screening and
downstream analysis. HMM screening against Pfam-A
entries (v20; 8,296 entries) [19,20] were performed using
hmmpfam in HMMER v2.1 at a p-value cut-off 1.0e-05. To
remove sequence redundancy, an automatic screening
pipeline was implemented to: i) generate multiple align-
ments for each family with MUSCLE v3.52 [75], ii) build
a HMM from the multiple alignment using hmmbuild
from HMMER v2.1, iii) calculate a matching score for each
member of the family based on the HMM using
hmmsearch from HMMER v2.1, and iv) retain only one
EST contig assigned with the best matching score for an
EST cluster, each of which can be approximated as the col-
lection of EST contigs originated from a single genomic
locus.

Prediction of signal peptide and transmembrane domain

A hidden Markov modeling-based algorithm, Phobius
[76], was used with default settings. Each query sequence
was further annotated as SP for containing signal peptide,
TM for containing transmembrane region, or intracellular,
based on raw Phobius outputs.

KEGG and InterPro mappings

The E-value cut-off of 1.0e-10 reported by WU-BLASTP
against the Genes Database Release 43.0 from Kyoto Ency-
clopedia of Genes and Genomes (KEGG) was used for
pathway mappings. For each query, the top match and all
the matches within a range of 30% of the top BLAST score,
if meeting the cut-off, were accepted for valid KEGG asso-
ciations [35-37]. Default parameters for InterProScan
v16.1 [77] were used to search against the InterPro data-
base [48].

Protein structural analysis

The following structural information was predicted for the
NF family members: secondary structure prediction by

PsiPred [78], domain architecture with SSEP-Domain
[79], detection of flexible and dynamic regions using
DISOPRED2 [80]. To investigate distant homology, query
sequences were submitted to Meta-BASIC [52] against
data sets of meta-profiles derived from PDB [51] and
Pfam [19,20]. For the proteins identified as putative
matches by Meta-BABIC, potential globular regions were
identified with GlobPlot [81], and were subsequently sub-
mitted to the Structure Prediction Meta Server [82] for
additional analyses. Secondary structure prediction was
performed with PsiPred and ProfSec via the meta server,
collected models were screened with 3D-Jury [83], a con-
sensus fold recognition prediction method, for final pre-
dictions. Homology models were further obtained with
Modeller version 6.2 [56] with additional refinement of
structural alignments performed according to the
Verify3D results as previously described [84].
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