JOURNAL OF CLINICAL ONCOLOGY

Molecular Determinants of Response to Anti–Programmed Cell Death (PD)-1 and Anti–Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non–Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing

Hira Rizvi, Francisco Sanchez-Vega, Konnor La, Walid Chatila, Philip Jonsson, Darragh Halpenny, Andrew Plodkowski, Niamh Long, Jennifer L. Sauter, Natasha Rekhtman, Travis Hollmann, Kurt A. Schalper, Justin F. Gainor, Ronglai Shen, Ai Ni, Kathryn C. Arbour, Taha Merghoub, Jedd Wolchok, Alexandra Snyder, Jamie E. Chaft, Mark G. Kris, Charles M. Rudin, Nicholas D. Socci, Michael F. Berger, Barry S. Taylor, Ahmet Zehir, David B. Solit, Maria E. Arcila, Marc Ladanyi, Gregory J. Riely, Nikolaus Schultz, and Matthew D. Hellmann

A R

Author affiliations and support information (if applicable) appear at the end of this article.

Published at jco.org on January 16, 2018.

H.R. and F.S.-V. contributed equally to this work.

Corresponding author: Matthew D. Hellmann, MD, Memorial Sloan Kettering Cancer Center, 885 2nd Ave, New York, NY 10017; e-mail: hellmanm@mskcc.org.

© 2018 by American Society of Clinical Oncology

0732-183X/18/3607w-633w/\$20.00

ASSOCIATED CONTENT

See accompanying Editorial on page 631

Appendix DOI: http

DOI: https://doi.org/10.1200/JCO. 2017.75.3384

DOI: https://doi.org/10.1200/JCO.2017. 75.3384

Purpose

Treatment of advanced non–small-cell lung cancer with immune checkpoint inhibitors (ICIs) is characterized by durable responses and improved survival in a subset of patients. Clinically available tools to optimize use of ICIs and understand the molecular determinants of response are needed. Targeted next-generation sequencing (NGS) is increasingly routine, but its role in identifying predictors of response to ICIs is not known.

R A C

т

S T

Methods

Detailed clinical annotation and response data were collected for patients with advanced non–smallcell lung cancer treated with anti–programmed death-1 or anti–programmed death-ligand 1 [antiprogrammed cell death (PD)-1] therapy and profiled by targeted NGS (MSK-IMPACT; n = 240). Efficacy was assessed by Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1, and durable clinical benefit (DCB) was defined as partial response/stable disease that lasted > 6 months. Tumor mutation burden (TMB), fraction of copy number–altered genome, and gene alterations were compared among patients with DCB and no durable benefit (NDB). Whole-exome sequencing (WES) was performed for 49 patients to compare quantification of TMB by targeted NGS versus WES.

Results

Estimates of TMB by targeted NGS correlated well with WES ($\rho = 0.86$; P < .001). TMB was greater in patients with DCB than with NDB (P = .006). DCB was more common, and progression-free survival was longer in patients at increasing thresholds above versus below the 50th percentile of TMB (38.6% v 25.1%; P < .001; hazard ratio, 1.38; P = .024). The fraction of copy number–altered genome was highest in those with NDB. Variants in *EGFR* and *STK11* associated with a lack of benefit. TMB and PD-L1 expression were independent variables, and a composite of TMB plus PD-L1 further enriched for benefit to ICIs.

Conclusion

Targeted NGS accurately estimates TMB and elevated TMB further improved likelihood of benefit to ICIs. TMB did not correlate with PD-L1 expression; both variables had similar predictive capacity. The incorporation of both TMB and PD-L1 expression into multivariable predictive models should result in greater predictive power.

J Clin Oncol 36:633-641. © 2018 by American Society of Clinical Oncology

INTRODUCTION

Immune checkpoint inhibitors (ICIs) have dramatically changed the therapeutic landscape for patients with a multitude of advanced cancers, including non–small-cell lung cancer (NSCLC).¹⁻⁶ Because only a subset of patients with lung cancer respond to ICIs, an urgent need exists to develop clinically practical tools to identify the subset of patients most likely to derive clinical benefit.

To date, the only Food and Drug Administration–approved predictive biomarkers are mismatch repair deficiency,⁷ and specifically in NSCLC, programmed death-ligand 1 (PD-L1) expression.⁶ Most trials in NSCLC have demonstrated increased response rates in tumors with greater PD-L1 expression, but enrichment of responses is incomplete.^{1,6} Our group and others have demonstrated that a greater somatic mutation burden is associated with a greater likelihood of response to immunotherapy in several tumor types, including melanoma,^{8,9} bladder cancer,¹⁰ NSCLC,^{11,12} and mismatch repair-deficient tumors.^{7,13} These studies established the importance of tumor mutation burden (TMB) as a biomarker that may be relevant across tumor types. However, most studies have used wholeexome sequencing (WES) to quantify TMB, a methodology that is not currently feasible or expedient at the scale of a clinical setting. By contrast, genomic profiling of tumors by using targeted nextgeneration sequencing (NGS) is increasingly routine. At Memorial Sloan Kettering Cancer Center (MSKCC), a custom hybridization capture-based NGS assay (Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets [MSK-IMPACT])¹⁴ has been used to analyze > 10,000 tumors.¹⁵

We hypothesized that TMB determined by targeted NGS may associate with response to immunotherapy in patients with NSCLC. To address this hypothesis, we examined 240 patients with NSCLC profiled by targeted NGS and who were treated with anti–PD-1 or anti–PD-L1 [anti–PD-(L)1]–based therapy. A subset of tumors from these patients also were analyzed by WES to examine the correlation of TMB derived by both methods. Secondary analyses included an examination of associations of other molecular features obtained from targeted NGS, such as copy number alterations and specific genes, with response or resistance to ICIs as well as the relationship between TMB and PD-L1 expression.

METHODS

Patients

After MSKCC institutional review board approval, patients with advanced NSCLC treated with anti-PD-(L)1 monotherapy or in combination with anti-cytotoxic T-cell lymphocyte-4 (anti-CTLA-4) between April 2011 (the first date on which a patient with NSCLC was treated with ICI at our center) and January 2017 (the last date to have begun therapy to permit enough time for at least one response assessment before database lock in May 2017) were identified. Patients with tumors molecularly profiled by MSK-IMPACT were included. A prespecified sample size was not determined. Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 was used to assess efficacy; scans were reviewed by a thoracic radiologist (D.H., A.P., or N.L.) prospectively in patients treated as part of clinical trials or retrospectively in patients treated outside a clinical trial (Appendix Fig A1, online only). Patients who were not evaluable radiologically were excluded. Progression-free survival (PFS) was assessed from the date the patient began immunotherapy to the date of progression. Patients who had not progressed were censored at the date of their last scan; cases retrospectively adjudicated to not be progressive disease (PD) per RECIST but determined in real-time by the treating clinician as PD were considered as events. In addition to response defined by RECIST, efficacy also was defined as durable clinical benefit (DCB; complete response [CR]/partial response [PR] or stable disease [SD] that lasted > 6 months) or no durable benefit (NDB, PD or SD that lasted ≤ 6 months¹²; Appendix Fig A2, online only). Patients who had not progressed and were censored before 6 months of follow-up were considered not evaluable. Overall survival (OS) was calculated from treatment start date. Patients who did not die were censored at the date of last contact.

To provide a comparison cohort, patients with NSCLC who had undergone MSK-IMPACT testing between January 2014 and March 2017 and were not treated with any immunotherapy (non-ICI NSCLC; n = 1,836) were identified. For comparisons specifically related to OS, which was calculated from the date of recurrent or metastatic disease, a subset of these patients with non-ICI NSCLC with advanced-stage lung adenocarcinoma (non-ICI advanced stage; $n = 608^{16}$) were used (Appendix Fig A1).

MSK-IMPACT Sequencing

The MSK-IMPACT assay was performed as previously described.¹⁴ Briefly, DNA was extracted from tumors and patient-matched blood samples. Bar-coded libraries were generated and sequenced and targeted all exons and select introns of a custom gene panel of 341 (56 patients; version 1), 410 (164 patients; version 2), or 468 (20 patients, version 3) genes (Appendix Table A1, online only). Mean sequencing coverage across all tumor samples was 744×, with minimum depth of coverage of 91×. Samples were run through a custom pipeline¹⁴ to identify somatic alterations, including mutations and copy number alterations. Data are available through the cBioPortal for Cancer Genomics.¹⁷ To normalize somatic nonsynonymous TMB across panels of various sizes, the total number of mutations was divided by the coding region captured in each panel, which covered 0.98, 1.06, and 1.22 megabases (Mb) in the 341-, 410-, and 468-gene panels, respectively (Appendix Fig A3, online only). The fraction of copy number-altered genome (FGA) was defined as the fraction of genome with $\log_2 \operatorname{copy} number \operatorname{gain} > 0.2$ or $\log < -0.2$ relative to the size of the genome with copy number profiled. Tumor samples used for MSK-IMPACT were collected before immunotherapy treatment in 204 patients (85%; Appendix Table A2, online only).

Gene and Pathway Analysis

Individual genes were queried for enrichment among groups of DCB, NDB, and non-ICI NSCLC. Analysis included both previously described oncogenic or likely oncogenic variants as reported by OncoKB¹⁸ and variants of unknown significance. Reported percentages include all variants unless otherwise noted. Slides for one patient were stained for immunohistochemistry (IHC) with β 2 microglobulin (B2M; polyclonal, 1 µg/mL; DAKO, Copenhagen, Denmark) on a BOND RX (Leica Biosystems, Wetzlar, Germany) after 30 minutes of antigen retrieval in Leica ER2 buffer by Bond Polymer Refine Detection.

WES

A subset of patients (n = 49) had tumor/normal tissue profiled by both MSK-IMPACT and WES. The same tissue sample was used for both analyses in 40 patients; 36 were from the same DNA aliquot. Enriched exome libraries were sequenced on a HiSeq platform (Illumina, San Diego, CA) to generate paired-end reads (2 \times 76 base pairs) to a target of 150 \times mean coverage (44 sequenced at Broad Institute, Cambridge, MA; five sequenced at MSKCC). The mean target coverage was 232× in tumor and $125 \times$ in normal sequences; mean target coverage $< 60 \times$ in tumor or $< 30 \times$ in normal sequences were excluded. For each patient, a binary alignment map file was produced by aligning tumor and normal sequences to the b37 human genome build with decoy contigs added. Additional indel realignment, base-quality score recalibration, and duplicate-read removal were performed by using the Genome Analysis Toolkit.¹⁹ MuTect was used to generate single-nucleotide variant (SNV) calls by using slightly modified default parameters²⁰ (Appendix Table A3, online only). The complete listing of the source code for the variant detection pipeline is available online.²¹ The Genome Analysis Toolkit HaplotypeCaller was used to detect indels.²²

PD-L1 Testing

Eighty-four tumors had tissue evaluated for PD-L1 expression, which was reported as the percentage of tumor cells with membranous staining. Several antibodies, which have largely been shown to be similar,²³ were used, including 22C3 (n = 24; DAKO), 28-8 (n = 10; DAKO), and E1L3N (n = 50; Cell Signaling, Danvers, MA).

Statistical Analysis

Differences in TMB and FGA were examined by using the Mann-Whitney U test for two-group comparisons or the Kruskal-Wallis exact test for three-group comparisons. The Fisher's exact test was used to compare proportions. For survival analyses, Kaplan-Meier curves were compared by using the log-rank test, and hazard ratios (HRs) were calculated by using the Mantel-Haenszel test. Correlations were examined by the Spearman rank correlation coefficients. Receiver operating characteristic curves that plotted sensitivity and 1-specificity of continuous variables and rate of DCB were assessed by generating the area under the curve (AUC). An unbiased analysis of enrichment in frequency of altered genes within individual groups were examined by plotting the log₂(odds ratio) versus log₂(Fisher's exact test P value). The top 50 genes ordered by increasing P values were reported, with significant associations after correcting for the false discovery rate (FDR) highlighted. All reported *P* values are two-sided. All statistical analyses were performed with R version 3.3.3 software (www. r-project.org).

RESULTS

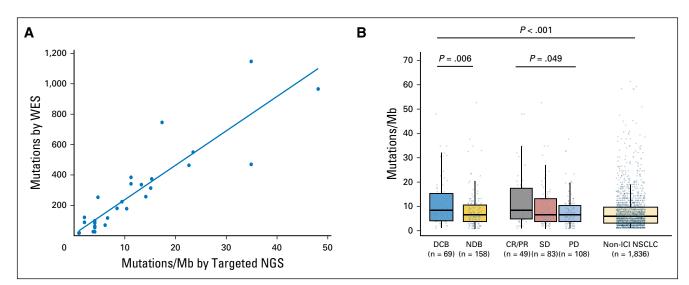
Mutation Burden and Somatic Molecular Features Associated With Immunotherapy Benefit

Since 2011, 759 patients with NSCLC have been treated with anti–PD-(L)1 therapy alone or in combination with anti–CTLA-4 therapy at MSKCC, of whom 398 (52%) have been profiled by MSK-IMPACT. Of these, 240 (60% of those molecularly profiled, 32% of all patients treated) were radiologically evaluable for response and are included in this analysis. Demographic features of the current patient cohort (Table 1) are similar to the overall group of patients treated with anti–PD-(L)1 therapy (Appendix Table A4, online only). Forty-nine patients (20%) had CR/PR; 69 (29%) had DCB. The median TMB was 7.4 SNVs/Mb (range, 0.8 to 91.8 SNVs/Mb).

To determine whether targeted NGS could accurately quantitate TMB in NSCLC, we compared TMB quantified by MSK-IMPACT and WES in a subset of patients. In patients profiled with both targeted NGS and WES (n = 49), TMB assessed by targeted NGS was highly correlated with TMB assessed by WES (Spearman $\rho = 0.86; P < .001;$ Fig 1A). By using data from targeted NGS, TMB was greater in patients with DCB than with NDB (median, 8.5 v 6.6 SNVs/Mb; P = .0062) and in patients with CR/PR versus SD versus PD (median, 8.5 v 6.6 v 6.6 SNVs/Mb; P = .0151; Fig 1B).

We examined how increasing cut points of TMB affected rates of DCB and PFS to ICI treatment. When TMB was stratified into increasing quartiles, rates of DCB and PFS improved with increasing TMB (Figs 1C and 1D); improved DCB rate and PFS were seen in those with TMB above versus below the 50th percentile (DCB rate, 38.6% ν 25.1%; P = .009 [Appendix Fig A4, online only]; PFS HR, 1.38; P = .024 [Appendix Fig A5, online only]). The rate of DCB and PFS were also improved among those in the top decile of TMB in the cohort (Figs 1C and 1D). By contrast, survival outcomes among patients with advanced NSCLC not treated with immunotherapy¹⁶ did not correlate with increasing TMB; in fact, an inverse relationship between TMB and survival was identified (Appendix Fig A6, online only).

In addition, FGA was lowest in patients with DCB and significantly higher in those with NDB than in those with non-ICI NSCLC (median, 0.16 ν 0.11; P = .007; Fig 1E). Of note, despite a negative association with response to ICIs, FGA had a modest but significantly positive association with TMB (Appendix Fig A7, online only).


Table 1. Patient Characteristics	
Characteristic	No. (%)
No. of patients	240
Median age, years (range)	66 (22-92)
Sex Male Female	118 (49) 122 (51)
Histology Adenocarcinoma Squamous Other	186 (78) 34 (14) 20 (8)
Smoking status Ever Never	193 (80) 47 (20)
Line of therapy First Second Third or more	51 (21) 127 (53) 62 (26)
Treatment PD-(L)1, monotherapy PD-(L)1 + CTLA-4 combination therapy	206 (86) 34 (14)
Treatment setting Clinical trial Standard of care	54 (23) 186 (78)
Best overall response CR/PR SD PD	49 (20) 83 (35) 108 (45)
Clinical benefit DCB NDB	69 (29) 158 (66)
Not evaluable (< 6 months follow-up) Actionable mutations <i>EGFR</i> <i>ALK</i> <i>BRAF</i> <i>ROS1</i> <i>RET</i>	13 (5) 17 (7) 2 (1) 5 (2) 7 (3) 2 (1)
	7 (3)

Abbreviations: CR, complete response; CTLA-4, cytotoxic T-cell lymphocyte-4; DCB, durable clinical benefit; NDB, no durable benefit; PD, progressive disease; PD-(L)1, programmed cell death-1 or programmed death-ligand 1; PR, partial response; SD, stable disease.

Gene Alterations Associated With Response and Resistance to Immunotherapy

We next assessed whether mutations in individual genes were associated with response or resistance to ICI treatment. First, we examined the frequency of common oncogenic driver mutations found in NSCLC and their association with clinical benefit from ICI treatment.²⁴ Mutations in *KRAS* were common (n = 83), and the rate of DCB was similar in this group compared with the overall study cohort (36%; Fig 2). Those with *EGFR* mutations rarely experienced DCB (7%) and were significantly underrepresented in the DCB group compared with the non-ICI NSCLC group (FDR-adjusted P = .013 Appendix Fig A8, online only). *STK11* was significantly enriched in the NDB group compared with the non-ICI NSCLC group (FDR-adjusted P = .007).

We also examined the prevalence and impact of alterations in genes associated with antigen presentation on response to immunotherapy (Fig 2; Appendix Fig A9, online only). Truncating mutations in the gene encoding B2M and deleterious mutations in *JAK1* and *JAK2* have recently been identified as mechanisms that lead to primary and acquired resistance to anti–PD-1 treatment in

Fig 1. Somatic molecular features associated with response to immunotherapy. (A) Tumor mutation burden (TMB) assessed by targeted next-generation sequencing (NGS) correlates with TMB assessed by whole-exome sequencing (WES; n = 49, Spearman $\rho = 0.86$; *P*, 001). Individual tumors are shown as dots. The line depicts the best fit. (B) Somatic nonsynonymous TMB is greater in durable clinical benefit (DCB) versus no durable benefit (NDB; median, 8.5 v 6.6 single-nucleotide variants/ megabase [Mb]; *P* = .006) and is significantly different in those with complete response (CR)/partial response (PR) versus stable disease (SD) versus progressive disease (PD; median, 8.5 v 6.6 v 6.6 single-nucleotide variants/Mb; *P* = .049). The distribution of TMB in patients with non–immune checkpoint inhibitor (ICI)-treated non–small-cell lung cancer (NSCLC) are shown for reference. TMB in patients with DCB was similar to those with CR/PR (*P* = .85) and greater in those with non-ICI NSCLC (*P* .001). Box plots represent medians, interquartile ranges, and vertical lines extend to the 95th percentiles. TMB of individual patients are represented with light dots. (C) Odds ratio (OR) of DCB with increasing cut points of TMB.25th (OR, 1.75), 50th (OR, 2.02), 75th (OR, 2.06), and 90th (OR, 3.24) percentiles. The 0 percentile (white bar) is shown for reference of all patients (default OR, 1). The odds of DCB increase significantly above the 50th percentile of TMB. (D) Individual Kaplan-Meier curves of progressionfree survival (PFS) above each percentile at increasing thresholds of TMB. PFS in patients with NSCLC treated with anti-programmed cell death-1- or anti-programmed deathligand 1-based therapy increases sint TMB. (E) Fraction of copy number-altered genome (FGA) inDCBversusNDB(median, 0.08 v 0.15; *P* = .129) and PR/CR versus SD versus PD (median, 0.09 v 0.11 v 0.16; *P* = .479). FGA is enriched among those with PD or NDB compared with non-ICI NSCLC (*P* = .004 and .002, respectively).

melanoma.^{7,25,26} In the current cohort, likely deleterious *B2M* mutations were rare, occurring in only one patient who had an S40* mutation in *trans* with a Q28L mutation of uncertain significance and loss of B2M expression in tumor cells by IHC (Appendix Fig A10, online only). As of August 2017, this patient has achieved an early response to PD-1 therapy that has been ongoing for 8.9 months. Mutations in *JAK2* also were uncommon (n = 2), with only one tumor having a homozygous deleterious mutation (a loss-of-function splice mutation on one allele paired with loss of heterozygosity; Appendix Fig A11, online only); this patient had PD.

Recently, hyperprogression with anti–PD-1 therapy²⁷ has been reported in patients treated with ICI and was associated with MDM2/MDM4 amplifications.²⁸ In the current series, MDM2/MDM4 amplifications were identified in eight patients (Appendix Fig A12, online only), and PFS was not substantially different in this group compared with the overall patient cohort (HR, 1.4; P = .44).

PD-L1 Expression and TMB

PD-L1 expression was available for 84 patients, of whom 43 (51%) had \geq 1% expression. Consistent with prior reports, PD-L1 expression was associated with improved PFS (PD-L1, 0% $\nu \geq$ 1%; HR, 0.526; *P* = .011; Appendix Fig A13, online only). No correlation was found between PD-L1 and TMB (Spearman ρ = 0.1915; *P* = .08; Fig 3A) or PD-L1 and FGA (Spearman ρ = -0.1273; *P* = .25; Fig 3B). Considered as continuous variables, PD-L1 and TMB had a similar predictive impact on the likelihood of DCB (TMB AUC, 0.601; PD-L1 AUC, 0.646; Fig 3C). When considered as

group median) and PD-L1 positivity ($\geq 1\%$ expression) had a 50% rate of DCB, whereas the presence of only one or neither variable was associated with a lower rate of DCB (Fig 3D). We also evaluated whether mutations in individual altered genes were associated with PD-L1 expression (stratified as $\geq 1\% v < 1\%$; Appendix Fig A14, online only). *SKT11* was the most enriched gene in the PD-L1–negative cohort, but this association was not statistically significant (FDR-adjusted P = .27).

a composite variable, patients with high TMB (greater than the

DISCUSSION

To our knowledge, we describe the largest series to date to explore the molecular determinants of response to ICIs and the first series to evaluate the role of molecular features derived from targeted NGS in determining response or resistance to anti–PD-(L)1–based therapy in patients with advanced NSCLC. TMB assessed by targeted NGS was significantly associated with improved benefit among patients with NSCLC treated with ICIs, with the odds of DCB improving with increasing thresholds. Because there was no positive correlation between increasing TMB and survival in a cohort of patients not treated with ICIs, we demonstrate that the effect of TMB is predictive rather than prognostic. In fact, survival among patients with high TMB is worse in the absence of ICI, which also highlights the clinical value of ICI to improve survival and overcome naturally poor prognostic features.

Although TMB has been a major focus of biomarker studies, other molecular features also have been hypothesized to influence

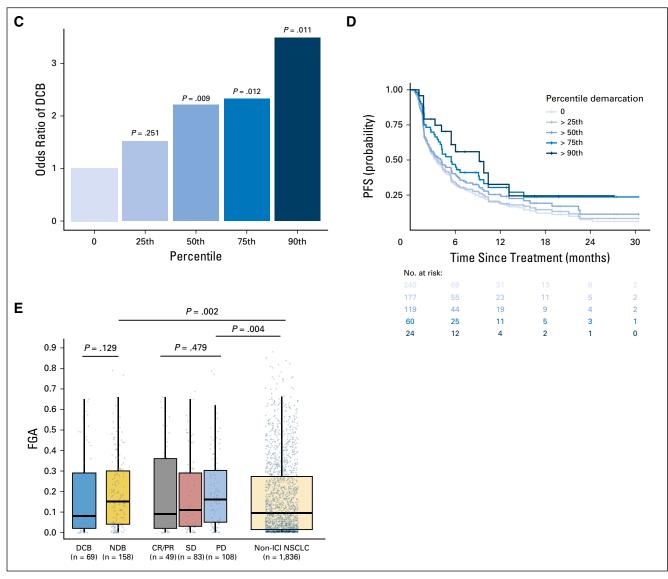


Fig 1. (Continued).

the likelihood of clinical benefit from ICIs. Aneuploidy was shown recently to reduce response to immunotherapy in patients with melanoma.^{29,30} These reports largely focused on patients treated with CTLA-4 therapy and hypothesized that aneuploidy negatively correlates with the presence of cytotoxic immune infiltrates that may subsequently lead to poor survival outcomes in these patients. Similarly, we found that the FGA was highest among patients who derived the least benefit from ICIs. Despite this inverse association, FGA and TMB were modestly but positively associated with each other, consistent with a previous report.²⁹ Given the growing concordance of data that support aneuploidy and lack of response to ICIs, additional work is needed to explore the underlying mechanism and impact of its interaction with TMB.

Beyond summary metrics, such as TMB and FGA, we also examined the impact of specific gene alterations on benefit from ICI. In an unbiased analysis, few additional genes were significantly associated with DCB and NDB. Mutations in *EGFR* were underrepresented among patients with DCB, which is likely related to the association of *EGFR* mutations with never smokers³¹ and resulting low TMB. Other actionable mutations in lung cancer also were found in low frequency in the current data set (Table 1). Future analysis is needed to clarify the activity of immunotherapy and whether TMB is similarly relevant in these patients. Alterations in *STK11* also were associated with lack of benefit, which is consistent with recent reports that described low tumor inflammation in murine models and human tumors with STK11 alterations.^{32,33}

We also explored specific alterations that have been previously purported to affect response to ICI. For example, amplifications in *MDM2* and *MDM4* have been associated with hyperprogression,²⁷ although this was not seen in the current cohort. Separately, alterations in *B2M* and *JAK2* have been described as mediating acquired resistance in patients with melanoma treated with PD-1 blockade.²⁶ Although our study was not designed to examine acquired resistance (where selective pressure from ICI may increase the frequency of these variants), we identified one patient with a deleterious homozygous *JAK2* mutation in a setting of primary

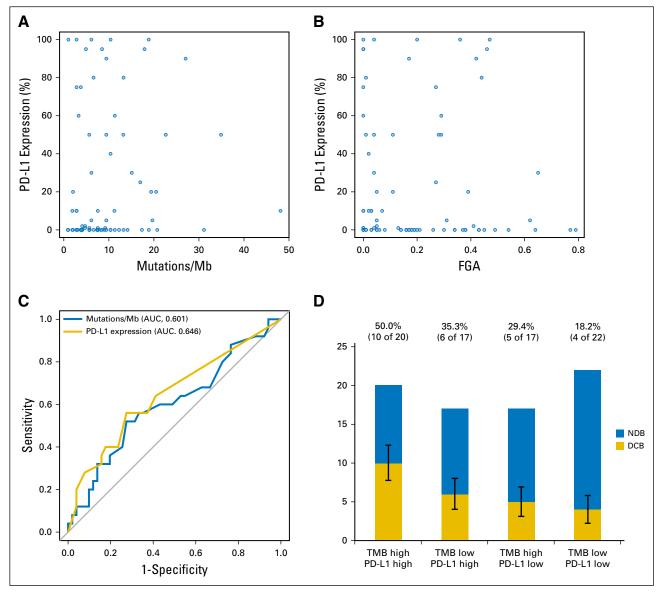

			DCB								NDB			
Pre/Posttreatmen														
Mutations/Mb	9.2 ⁸⁰ 40 0	սհհետ		lanea la desta de la	6.6	ita bii	a. Lacha		1.10		har a tataan			
Indels/Mb	2.0 15 - 2.0 5 - 0 -	ւ հետեւու ս	ատեսո		1.9	لساليين	mandata	սեստեստ	վուս	tanlar tala	li ata mani	tated and an add		
FGA	0.17				0.19								1111011	
Smoking status	87%				78%									
Mutation spectru	ım	يبا دينار ا	والمتحد والم			1.46				الم العاد		1.1.1.1		t M
7050	67%			-	54%									
TP53 KRAS	39%		_		36%	_					_		_	
STK11	19%		-		27%			-			-	_	_	
EGFR	7%		•		16%				i b			1	8 -	
ALK	9%				6%		1				1	1	- - -	
BRAF	6%				4%	1			1				- i	
ERBB2	2.9%				6%									
RET	6%	1		1	2.5%				1		1		1	
ROS1	7%		01		4%			1						I
B2M	1.4%		1.0		0.6%					1.1				
HLA-A	1.9%	1.1			0.8%					•				
POLE	6%	1.1.1	1		2.5%		1.1	- 11				1.1		
JAK1	0%				1.9%		1	•						
JAK2	1.4%		1		2.5%	1.1					1	1.1		
JAK3	4%	1.1		1	1.3%		1	1						
CD274	1.4%				1.9%									
PTEN	6%	•	-		2.5%									•
MDM2	2.9%	1			3%		1							
MDM4	0%				1.9%	_				_				
ATR	6%				2.5%	•				1.1				1
	G	enetic alteratio				Fusion				coKB driver)	Truncating m	_		
			Inframe m	utation (OncoKB dri	ver)	Missens	e mutation	1 (OncoKE	3 driver)	Missense i	nutation (VUS)	Not sequent	ced	
Mutation spect	rum C>	A C>G	C>T T>A	T>C T>G	٦	lissue coll	lection	Pretreatm	ent	Posttreatment	s	moking status	Ever Nev	/er

Fig 2. Genes associated with response and resistance to immunotherapy. OncoPrint that depicts alterations in preselected genes of interest in durable clinical benefit (DCB) and no durable benefit (NDB) groups. Reported frequencies include a composite of all alterations for each gene across all groups (single-nucleotide variants, indels, fusions, amplifications, deletions). Predicted functional impact of genetic alterations are described as known in OncoKB or variants of unknown significance (VUSs). Summary rows of each case at top include annotation for whether samples were obtained before or after initiation of immune checkpoint inhibitor (ICI) therapy, mutations/ megabase (Mb; histogram), indels/Mb (histogram), frequencies of fraction of copy number–altered genome (FGA; lowest to highest FGA, white to dark red), smoking, and mutation spectrum. Events where information is unknown (eg, gene not covered in panel tested) are depicted in light gray on the OncoPrint.

resistance, consistent with cases of acquired resistance mediated through defective interferon gamma signaling.^{25,34} Of note, the one patient with two *trans* mutations in *B2M* and loss-of-protein expression confirmed by IHC has an ongoing PR to therapy and a mutation rate of 48 SNVs/Mb.

Overall, although MSK-IMPACT examines several hundred cancer-associated genes, we did not observe novel associations between mutation in individual genes and response or resistance to ICI, which may reflect that current targeted NGS panels were constructed for the purpose of identifying targetable oncogenes and, thus, may not include the key genetic determinants of immunotherapy response. However, because these panels can be readily amended to include additional probes to expand the genetic landscape surveyed (eg, the MSK-IMPACT panel has increased from 341 genes at inception to currently 468 genes), a future effort to include genes specifically related to immunogenomics is likely to be fruitful. In addition, continued emphasis on approaches such as WES and whole-genome sequencing for ongoing discovery is important.

One of the critiques of WES as a prospective tool for examining predictors of response to ICI to aid in clinical decision making is that it is not optimized for use in routine clinical practice. By contrast, the use of targeted NGS to guide treatment

Fig 3. Comparison of programmed death-ligand 1 (PD-L1) expression with tumor mutation burden (TMB) and fraction of copy number–alteration genome (FGA). (A) Scatter plot of TMB and PD-L1 expression. TMB does not correlate with percent PD-L1 expression (n = 84; Spearman ρ = 0.192; *P* = .081). Dots represent individual tumors, and the line represents the best fit. (B) Scatter plot of FGA versus percent PD-L1 expression. No correlation exists between FGA and PD-L1 expression (n = 84; Spearman ρ = 0.127; *P* = .051. Dots represent individual tumors. (C) Receiver operating characteristic curve of sensitivity versus 1-specificity of durable clinical benefit (DCB) at varying levels of TMB (area under the curve [AUC], 0.601; *P* = .078) and PD-L1 expression (AUC, 0.646; *P* = .014). Results depict only those patients with available data for both TMB and PD-L1 (n = 84). (D) A histogram depicts the proportion of DCB among patients in groups defined by a composite variable of TMB (stratified above and below the median as low *v*high) and PD-L1 expression (stratified into 0% or ≥ 1% groups as low *v*high). Rate of DCB is lowest in patients low for both variables (18%), intermediate in patients high for one variable (29% to 35%), and highest in patients high for both variables (50%). Error bars show the SE of the percentage. Mb, megabase.

has become increasingly routine, particularly in patients with lung cancer.^{15,16,35} Furthermore, consistent with recent reports that analyzed the same patient tumors for targeted NGS and WES,^{15,35} we found that TMB quantified by targeted NGS closely correlated with TMB as quantified by WES. However, not all NGS panels may be well suited to estimate TMB; in particular, caution may be needed when using smaller panels. A recent report described that in panels with genomic coverage < 0.5 Mb, the accuracy of TMB determined by targeted NGS diminishes.³⁵

Despite the consistent relevance of TMB and PD-L1 as predictive biomarkers of response to ICI across series, neither is fully sensitive or specific. We found that TMB and PD-L1 expression were independent variables that both associated with benefit as previously seen.¹¹ It seems that TMB is similarly meaningful as PD-L1 expression, but a composite of both variables may be most helpful in identifying with precision patients most likely to benefit.

The current study had a moderate sample size, which may limit the power of conclusions, especially when considering multiple variables and subgroup analyses. Nonetheless, this analyzed cohort is representative of the overall patient population treated with ICI at our institution (Appendix Table A4). Although clinical outcomes were derived retrospectively in some patients, inclusion of both the clinical trial and the real-world clinical experience of patients who receive ICI makes results generalizable

across various treatment settings. Finally, because this study used a single targeted NGS panel at our institution, the analysis does not attempt to specify a universally applicable cut point of TMB for derived benefit and instead highlights a trend that demonstrates an increase in benefit with increasing TMB. As a result of variations in panels as well as of differences in informatics methods, a relevant numerical cut point would need to be assay specific and distinct to specific clinical situations.

In conclusion, given the remarkable antitumor activity of ICIs coupled with advances in targeted sequencing approaches to routinely molecularly profile tumors, we determined the utility of targeted NGS in identifying patients who most benefit from ICI. We found that TMB determined by targeted NGS strongly correlates with TMB as determined by WES, is associated with clinical benefit, and is independent of PD-L1 expression with similar predictive capacity. Other molecular features derived from targeted NGS may also refine the predictive capacity of these tools. Moving forward, multiple orthogonal biomarkers, integrating DNA sequencing, transcriptomics,³⁶ multiplexed protein expression,³⁷ T-cell receptor clonality,³⁸ and others will need to be considered together to realize more fully the potential for precision immunotherapy.

REFERENCES

1. Garon EB, Rizvi NA, Hui R, et al: Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018-2028, 2015

2. Borghaei H, Paz-Ares L, Horn L, et al: Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373: 1627-1639, 2015

 Brahmer J, Reckamp KL, Baas P, et al: Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373: 123-135, 2015

4. Fehrenbacher L, Spira A, Ballinger M, et al: Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POP-LAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet 387:1837-1846, 2016

5. Herbst RS, Baas P, Kim DW, et al: Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 387:1540-1550, 2016

6. Reck M, Rodríguez-Abreu D, Robinson AG, et al: Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375:1823-1833, 2016

7. Le DT, Durham JN, Smith KN, et al: Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:409-413, 2017

 Snyder A, Makarov V, Merghoub T, et al: Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189-2199, 2014

9. Van Allen EM, Miao D, Schilling B, et al: Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350: 207-211, 2015

10. Rosenberg JE, Hoffman-Censits J, Powles T, et al: Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet 387:1909-1920, 2016

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Disclosures provided by the authors are available with this article at jco.org.

AUTHOR CONTRIBUTIONS

Conception and design: Hira Rizvi, Francisco Sanchez-Vega, Nikolaus Schultz, Matthew D. Hellmann

Financial support: David B. Solit, Matthew D. Hellmann Administrative support: David B. Solit, Matthew D. Hellmann Provision of study materials or patients: David B. Solit, Matthew D. Hellmann Collection and assembly of data: Hira Rizvi, Francisco Sanchez-Vega, Konnor La, Philip Jonsson, Darragh Halpenny, Andrew Plodkowski, Niamh Long, Natasha Rekhtman, Travis Hollmann, Taha Merghoub, David B. Solit, Matthew D. Hellmann Data analysis and interpretation: All authors Manuscript writing: All authors Final approval of manuscript: All authors Accountable for all aspects of the work: All authors

11. Carbone DP, Reck M, Paz-Ares L, et al: Firstline nivolumab in stage IV or recurrent non-smallcell lung cancer. N Engl J Med 376:2415-2426, 2017

12. Rizvi NA, Hellmann MD, Snyder A, et al: Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124-128, 2015

13. Le DT, Uram JN, Wang H, et al: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509-2520, 2015

14. Cheng DT, Mitchell TN, Zehir A, et al: Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): A hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J Mol Diagn 17:251-264, 2015

15. Zehir A, Benayed R, Shah RH, et al: Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 23:703-713, 2017

16. Jordan EJ, Kim HR, Arcila ME, et al: Prospective comprehensive molecular characterization of lung adenocarcinomas for efficient patient matching to approved and emerging therapies. Cancer Discov 7: 596-609, 2017

17. CBioPortal for Cancer Genomics: Non-small-cell lung cancer (MSK, JCO 2018). http://www.cbioportal. org/study?id=nsclc_pd1_msk_2018

18. Chakravarty D, Gao J, Phillips SM, et al: OncoKB: A precision oncology knowledge base. Precision Oncol 2017:1-16, 2017

19. Cibulskis K, McKenna A, Fennell T, et al: ContEst: Estimating cross-contamination of human samples in next-generation sequencing data. Bioinformatics 27:2601-2602, 2011

20. Cibulskis K, Lawrence MS, Carter SL, et al: Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31:213-219, 2013

21. GitHub: soccin/BIC-variants_pipeline. https://github.com/soccin/BIC-variants_pipeline

 ${\ensuremath{\textbf{22}}}.$ Van der Auwera GA, Carneiro MO, Hartl C, et al: From FastQ data to high confidence variant

calls: The Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10.1-11.10.33, 2013

23. Rimm DL, Han G, Taube JM, et al: A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 expression in non-small cell lung cancer. JAMA Oncol 3:1051-1058, 2017

24. Kris MG, Johnson BE, Berry LD, et al: Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 311: 1998-2006, 2014

25. Shin DS, Zaretsky JM, Escuin-Ordinas H, et al: Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov 7:188-201, 2017

26. Zaretsky JM, Garcia-Diaz A, Shin DS, et al: Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375:819-829, 2016

27. Champiat S, Dercle L, Ammari S, et al: Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin Cancer Res 23:1920-1928, 2017

28. Kato S, Goodman A, Walavalkar V, et al: Hyperprogressors after immunotherapy: Analysis of genomic alterations associated with accelerated growth rate. Clin Cancer Res 23:4242-4250, 2017

29. Davoli T, Uno H, Wooten EC, et al: Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355:355, 2017

30. Roh W, Chen PL, Reuben A, et al: Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med 9:9, 2017

31. Govindan R, Ding L, Griffith M, et al: Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150:1121-1134, 2012

32. Koyama S, Akbay EA, Li YY, et al: STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment. Cancer Res 76:999-1008, 2016

33. Skoulidis F, Byers LA, Diao L, et al: Co-occurring genomic alterations define major subsets of KRASmutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov 5:860-877, 2015

34. Garcia-Diaz A, Shin DS, Moreno BH, et al: Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Reports 19:1189-1201, 2017 **35.** Chalmers ZR, Connelly CF, Fabrizio D, et al: Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9:34, 2017

36. Ayers M, Lunceford J, Nebozhyn M, et al: IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127:2930-2940, 2017 **37.** Nghiem PT, Bhatia S, Lipson EJ, et al: PD-1 Blockade with pembrolizumab in advanced Merkel-cell carcinoma. N Engl J Med 374:2542-2552, 2016

38. Tumeh PC, Harview CL, Yearley JH, et al: PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568-571, 2014

Affiliations

Hira Rizvi, Francisco Sanchez-Vega, Konnor La, Walid Chatila, Philip Jonsson, Darragh Halpenny, Andrew Plodkowski, Niamh Long, Jennifer L. Sauter, Natasha Rekhtman, Travis Hollmann, Ronglai Shen, Ai Ni, Kathryn C. Arbour, Taha Merghoub, Jedd Wolchok, Jamie E. Chaft, Mark G. Kris, Charles M. Rudin, Nicholas D. Socci, Michael F. Berger, Barry S. Taylor, Ahmet Zehir, David B. Solit, Maria E. Arcila, Marc Ladanyi, Gregory J. Riely, Nikolaus Schultz, and Matthew D. Hellmann, Memorial Sloan Kettering Cancer Center; Taha Merghoub, Jedd Wolchok, Alexandra Snyder, Jamie E. Chaft, Mark G. Kris, Charles M. Rudin, Gregory J. Riely, and Matthew D. Hellmann, Weill Cornell Medical College, New York, NY; Kurt A. Schalper, Yale School of Medicine, New Haven, CT; Justin F. Gainor, Massachusetts General Hospital, Boston, MA; and Alexandra Snyder, Adaptive Biotechnologies, Seattle, WA.

Support

Supported by a Memorial Sloan Kettering Cancer Center Support grant/core grant (P30 CA008748); a Conquer Cancer Foundation of ASCO Career Development Award; a Geoffrey Beene Cancer Research Center grant; a Society for Memorial Sloan Kettering Cancer Center grant; the Center for Metastasis Research of the Sloan Kettering Institute; Swim Across America; Ludwig Institute for Cancer Research; Parker Institute for Cancer Immunotherapy; and Druckenmiller Center for Lung Cancer Research at MSKCC. These investigators (TH, TM, JDW, MDH) are members of the Parker Institute for Cancer Immunotherapy. Research supported by a Stand Up to Cancer (SU2C)-American Cancer Society Lung Cancer Dream Team Translational research grant (SU2C-AACR-DT17-15). SU2C is a program of the Entertainment Industry Foundation. Research grants are administered by the American Association for Cancer Research, the scientific partner of SU2C. Any opinions, findings, and conclusions expressed in this material are those of the authors and do not necessarily reflect those of ASCO or the Conquer Cancer Foundation.

Prior Presentation

Presented in part at the American Society of Clinical Oncology 2017 Annual Meeting, Chicago, IL, June 2-6, 2017.

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Molecular Determinants of Response to Anti–Programmed Cell Death (PD)-1 and Anti–Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non–Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/site/ifc.

Hira Rizvi No relationship to disclose

Francisco Sanchez-Vega No relationship to disclose

Konnor La No relationship to disclose

Walid Chatila No relationship to disclose

Philip Jonsson No relationship to disclose

Darragh Halpenny No relationship to disclose

Andrew Plodkowski No relationship to disclose

Niamh Long No relationship to disclose

Jennifer L. Sauter

Stock or Other Ownership: Allergan, Celgene, Chemed, Express Scripts, Gilead Sciences, GlaxoSmithKline, Johnson & Johnson, Merck, Mylan, Owens & Minor, Pfizer, Stryker, Thermo Fisher Scientific, iShares Nasdaq Biotech

Natasha Rekhtman No relationship to disclose

Travis Hollmann

Research Funding: General Electric **Travel, Accommodations, Expenses:** Leica Biosystems, Indica Laboratories, PerkinElmer

Kurt A. Schalper

Honoraria: Takeda Pharmaceuticals Consulting or Advisory Role: Celgene, Shattuck Labs Speakers' Bureau: Merck Research Funding: Vasculox, Tesaro, Onkaido Therapeutics, Genoptix, Takeda Pharmaceuticals, Surface Oncology Travel, Accommodations, Expenses: Fluidigm

Justin F. Gainor

Honoraria: Merck, Incyte, ARIAD Pharmaceuticals, Pfizer, Novartis, Roche, Genentech
Consulting or Advisory Role: Clovis Oncology, Genentech, Bristol-Myers Squibb, Theravance, Loxo, Takeda Pharmaceuticals
Research Funding: Merck, Novartis, Genentech, Bristol-Myers Squibb, Adaptimmune, AstraZeneca, ARIAD Pharmaceuticals, Jounce Therapeutics, Array BioPharma, Moderna Therapeutics
Travel, Accommodations, Expenses: Affymetrix

Ronglai Shen No relationship to disclose

Ai Ni No relationship to disclose

Kathryn C. Arbour No relationship to disclose Taha Merghoub No relationship to disclose

Jedd Wolchok

Stock or Other Ownership: Potenza Therapeutics, Tizona Therapeutics, Serametrix, Adaptive Biotechnologies, Trieza Therapeutics, BeiGene Consulting or Advisory Role: Bristol-Myers Squibb, Merck, MedImmune, Polynoma, Polaris Pharmaceuticals, Genentech, F-Star, BeiGene, SELLAS Life Sciences, Eli Lilly, Tizona Therapeutics, Amgen, Chugai Pharmaceutical, Adaptive Biotechnologies, Ascentage Pharma, Janssen Pharmaceuticals

Research Funding: Bristol-Myers Squibb (Inst), Genentech (Inst), Roche (Inst)

Patents, Royalties, Other Intellectual Property: Co-inventor on an issued patent for DNA vaccines for treatment of cancer in companion animals, co-inventor on a patent for use of oncolytic Newcastle disease virus **Travel, Accommodations, Expenses:** Bristol-Myers Squibb, Chugai Pharmaceutical, Roche, Janssen Pharmaceuticals, Kadmon

Alexandra Snyder

No relationship to disclose

Jamie E. Chaft

Honoraria: AstraZeneca, MedImmune Consulting or Advisory Role: Genentech, Roche, AstraZeneca, MedImmune, Merck, Bristol-Myers Squibb Research Funding: Genentech (Inst), Roche (Inst), Bristol-Myers Squibb (Inst), AstraZeneca (Inst), MedImmune (Inst)

Mark G. Kris

Honoraria: AstraZeneca Consulting or Advisory Role: AstraZeneca Research Funding: Puma Biotechnology (Inst), Genentech (Inst), Roche (Inst)

Charles M. Rudin

Consulting or Advisory Role: Merck, Bristol-Myers Squibb, AstraZeneca, Elucida Oncology, Harpoon Therapeutics **Research Funding:** BioMarin Pharmaceutical

Nicholas D. Socci No relationship to disclose

Michael F. Berger No relationship to disclose

Barry S. Taylor No relationship to disclose

Ahmet Zehir No relationship to disclose

David B. Solit Honoraria: Loxo, Pfizer Consulting or Advisory Role: Pfizer, Loxo

Maria E. Arcila Honoraria: Invivoscribe Travel, Accommodations, Expenses: Invivoscribe

Marc Ladanyi

Honoraria: Merck (I)

Consulting or Advisory Role: National Comprehensive Cancer Network/ Boehringer Ingelheim Afatinib Targeted Therapy Advisory Committee, National Comprehensive Cancer Network/AstraZeneca Tagrisso Request for Proposals Advisory Committee **Research Funding:** Loxo (Inst)

Long. Long

Gregory J. Riely

Consulting or Advisory Role: Genentech **Research Funding:** Novartis (Inst), Roche (Inst), Genentech (Inst), Takeda Pharmaceuticals (Inst), GlaxoSmithKline (Inst), Pfizer (Inst), ARIAD Pharmaceuticals (Inst)

Patents, Royalties, Other Intellectual Property: Patent application submitted covering pulsatile use of erlotinib to treat or prevent brain metastases (Inst)

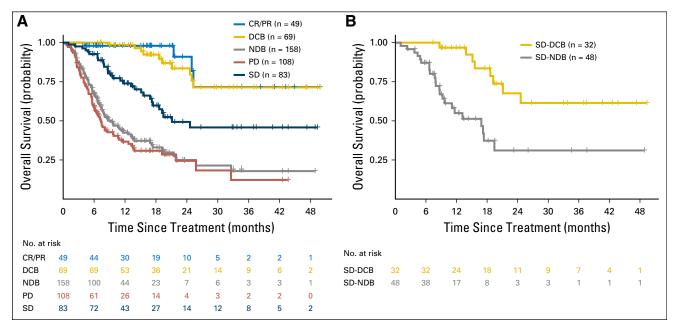
Travel, Accommodations, Expenses: Novartis, Merck Sharp & Dohme

Nikolaus Schultz

No relationship to disclose

Matthew D. Hellmann

Consulting or Advisory Role: Bristol-Myers Squibb, Merck, Genentech, AstraZeneca, MedImmune, Novartis, Janssen Pharmaceuticals, Mirati Therapeutics, Shattuck Labs


Research Funding: Bristol-Myers Squibb

Patents, Royalties, Other Intellectual Property: Patent filed by MSK related to the use of tumor mutation burden to predict response to immunotherapy (PCT/US2015/062208).

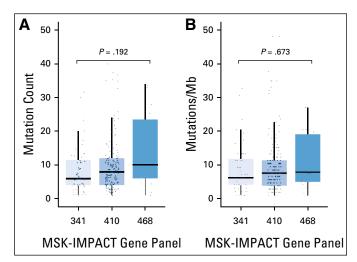


Fig A1. Flow of patients with non-small-cell lung cancer (NSCLC). These patients were treated with anti-programmed cell death-1 or anti-programmed death-ligand 1 [PD-(L)1] therapy from April 2011 through January 2017 and profiled with Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) panels are shown on the left. Patients with NSCLC profiled with MSK-IMPACT who have not been treated with immunotherapy (non-immune checkpoint inhibitors [ICIs]) are shown on the right. BOR, best overall response; RECIST, Response Evaluation Criteria in Solid Tumors; WES, whole-exome sequencing.

Fig A2. Durable clinical benefit (DCB)/no durable benefit (NDB) compared with Response Evaluation Criteria in Solid Tumors (RECIST)–defined benefit. DCB and NDB are clinically useful, simple, binary outcomes to categorize those who benefit or not from immunotherapy. These groups have survival outcomes similar to RECIST-defined complete response (CR)/partial response (PR) or progressive disease (PD) while also incorporating meaningful distinction of those with stable disease (SD) who are benefiters or not. (A) Overall survival of patients with DCB/NDB or CR/PR, SD, or PD. Survival of DCB closely mirrors that of CR/PR, and NDB mirrors patients with PD. (B) A focus just on patients with SD shows a significant difference in overall survival stratified by DCB and NDB (P < .001). RECIST-defined SD, therefore, is an intermediate group that is comprised by a "true" benefit (progression-free survival [PFS] > 6 months) and not a "true" benefit more explicitly captures the major contribution of benefit from immunotherapy (durability), removes patients with necommon short-lived responses, and improves adjudication of those with RECIST-defined SD, a heterogeneous group that comprises true benefit or not of immunotherapy.

Predictors of Immunotherapy Response Derived From Targeted NGS

Fig A3. Range of mutation burden across varying sizes of targeted next-generation sequencing panels. (A) Absolute nonsynonymous missense mutation count reported for tumors assessed by using the Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) 341-, 410-, and 486-gene panels. Increasing absolute mutation burden is seen with increasing numbers of genes tested (median of six, eight, and nine and a half mutations in the 341-, 410-, and 486-gene panels, respectively; *P* = .192). (B) The mutation rate normalized by the size of the coding region covered. This correction results in similar mutation rates across each panel (median, 6.1, 7.5, and 7.8 per megabase [Mb] in the 341-, 410-, and 486-gene panels, respectively; *P* = .673).

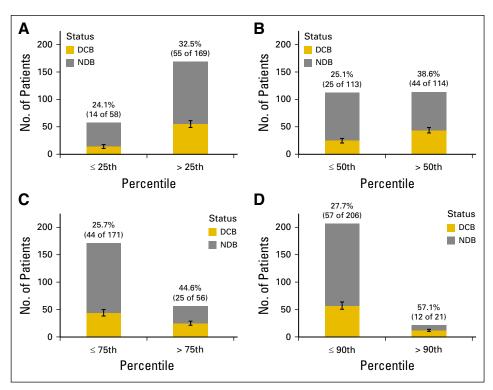


Fig A4. Proportion of durable clinical benefit (DCB) above or below the (A) 25th, (B) 50th, (C) 75th, and (D) 90th percentiles of tumor mutation burden. Percentages of DCB in each group are reported above each bar. Error bars show the SE of the percentage. NDB, no durable response.

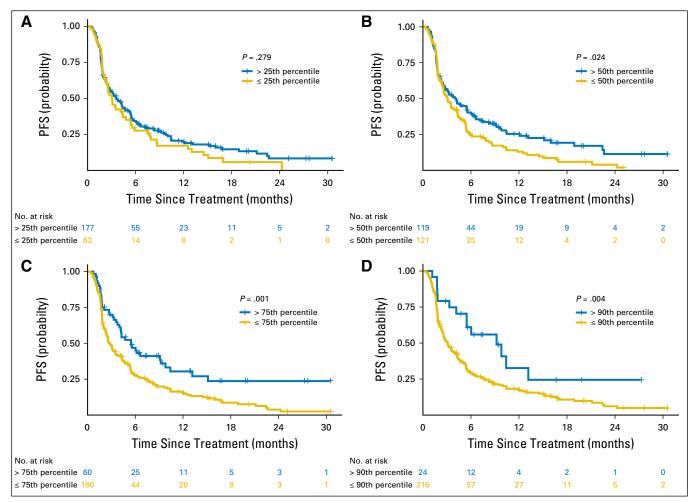
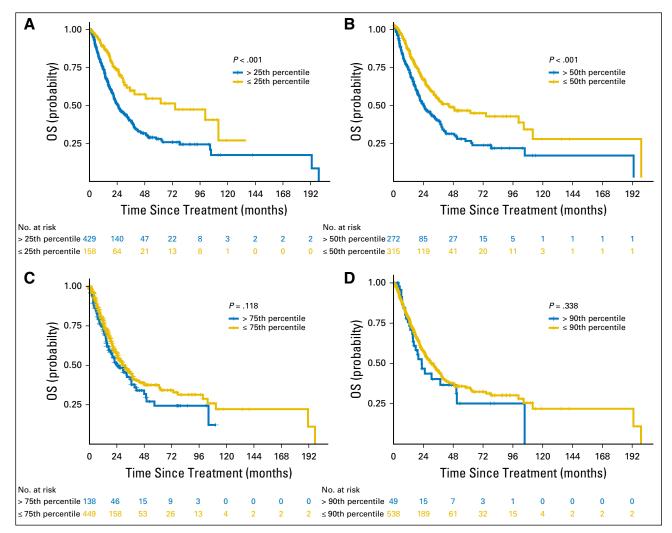
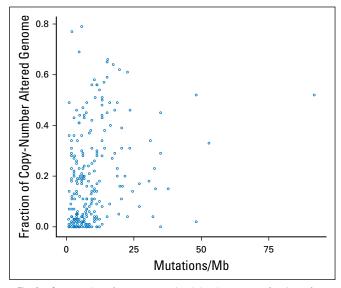
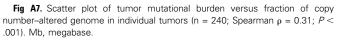





Fig A5. Progression-free survival (PFS) of patients with tumor mutation burden above or below the (A) 25th, (B) 50th, (C) 75th, and (D) 90th percentiles. The hazard ratios for PFS at each cut point were as follows: 25th percentile, 1.19 (*P* = .279); 50th percentile, 1.38 (*P* = .024); 75th percentile, 1.74 (*P* = .001); 90th percentile, 2.05 (*P* = .004).

Fig A6. Overall survival (OS) of patients with advanced-stage lung adenocarcinoma not treated with immunotherapy. Survival is shown on the basis of tumor mutation burden above or below the (A) 25th, (B) 50th, (C) 75th, and (D) 90th percentiles within the non–immune checkpoint inhibitor non–small-cell lung cancer advanced-stage cohort (n = 609). The hazard ratios for OS at each cut point were as follows: 25th percentile, 0.49 (P < .001); 50th percentile, 0.58 (P < .001); 75th percentile, 0.81 (P = .118); and 90th percentile, 0.82 (P = .338).

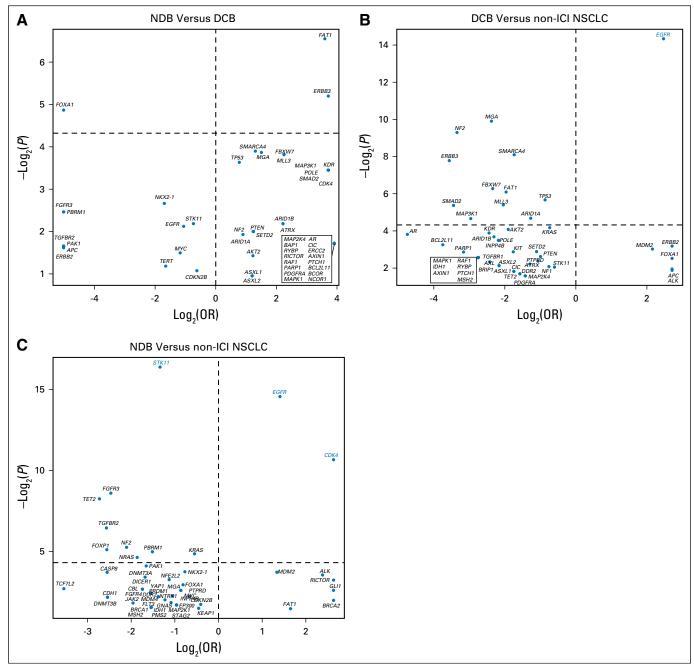


Fig A8. Log₂(odds ratio [OR]) and –log₂(*P* value) for enrichment of individual altered genes deemed oncogenic or likely oncogenic by OncoKB in group comparisons of (A) durable clinical benefit (DCB) versus no durable benefit (NDB), (B) DCB versus non–immune checkpoint inhibitor (ICI) non–small-cell lung cancer (NSCLC), and (C) NDB versus non-ICI NSCLC. The top 50 genes in each comparison are depicted, with adjusted *P* values used. Genes labeled in red were significantly enriched after correcting for the false discovery rate.

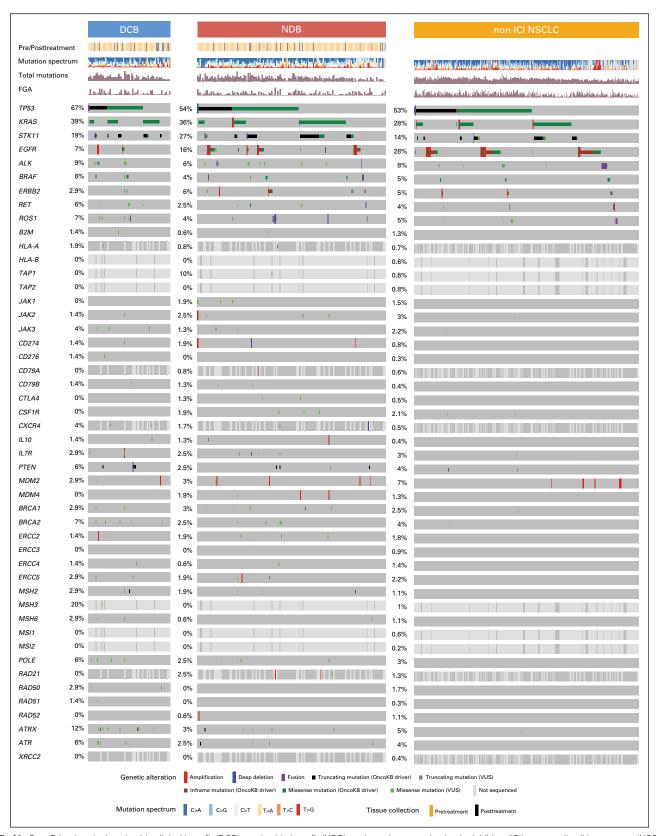
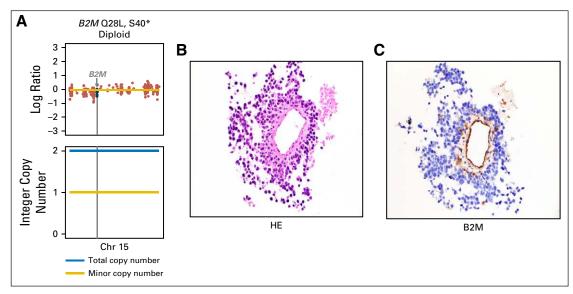
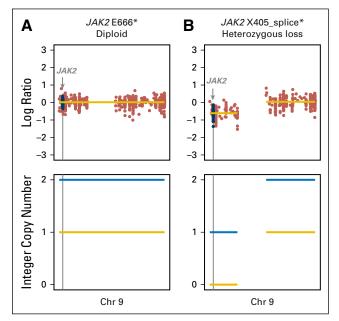
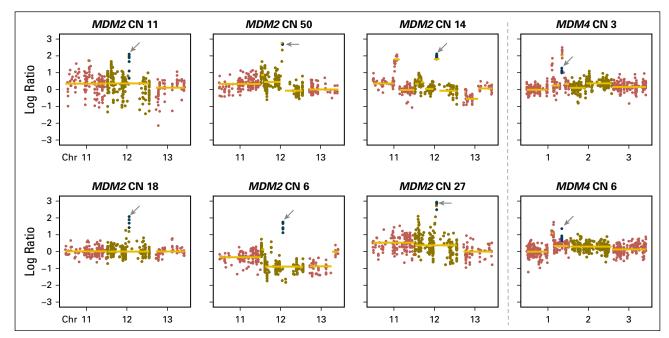




Fig A9. OncoPrint that depicts durable clinical benefit (DCB), no durable benefit (NDB), and non-immune checkpoint inhibitor (ICI) non-small-cell lung cancer (NSCLC) with an expanded list of preselected genes of interest, including oncogenic drivers in NSCLC, genes involved in antigen presentation, genes involved in modulating immune responses to cancer, genes previously reported to associate with response/resistance to programmed death-1 blockade, and genes involved in DNA repair. Genes shown in light gray were not sequenced as part of the MSK-IMPACT (Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets) panel. VUS, variant of unknown significance.


Predictors of Immunotherapy Response Derived From Targeted NGS

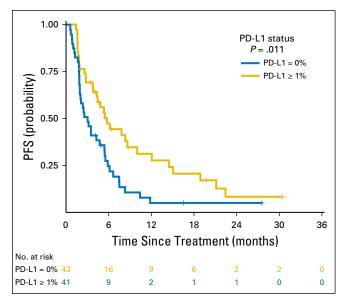
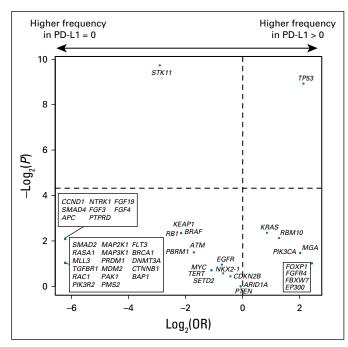

Fig A10. β2 microglobulin (*B2M*) mutation found in one patient that occurred in *trans* with one mutation on each allele. (A) The top plot shows overall copy number segmentations across the chromosome (Chr), with the vertical line highlighting the *B2M* gene position. The bottom plot shows the integer copy number, with the black line depicting the total integer copy number and the red line depicting minor copy number. (B) The hematoxylin and eosin (HE) stain (magnification, ×40) shows large tumor cells circumferentially around a central vessel. (C) B2M immunohistochemistry (magnification, ×40) shows selective loss of expression in tumor cells with retention of expression in normal endothelium and within scattered lymphocytes and histiocytes.

Fig A11. *JAK2* mutations were found in two patients. (A) A heterozygous mutation in *JAK2* with the wild-type allele retained. (B) A homozygous loss-of-function mutation in *JAK2* with loss of the wild-type allele occurring in a patient with primary progression to programmed death-1 blockade. Chr, chromosome.



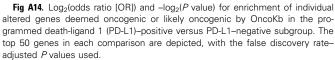

Fig A12. Amplifications in *MDM2* or *MDM4* were found in eight patients. Each plot shows the copy number (CN) log ratio of the overall CN segmentations across chromosomes (Chr). Estimated integer CNs are reported for each patient and calculated by FACETS. One patient had durable clinical benefit and five of eight patients had > 2 months progression-free survival. The patient with the greatest amplification had rapid progression. The progression-free survival curve of patients with *MDM2* or *MDM4* amplifications are compared with those with *MDM2/MDM4* wild type (hazard ratio, 1.4; P = .44).

Fig A13. Progression-free survival (PFS) curve of patients with a programmed death-ligand 1 (PD-L1) expression of 0% compared with a PD-L1 expression \ge 1% (hazard ratio, 0.53; *P* = .01).

Predictors of Immunotherapy Response Derived From Targeted NGS

Gene Symbol	Gene Description	Version of Panel First Include
ABL1	c-Abl oncogene 1, nonreceptor tyrosine kinase	Version 1
ACVR1	Activin A receptor, type I	Version 2
AGO2	Eukaryotic translation initiation factor 2C, 2	Version 3
AKT1	v-Akt murine thymoma viral oncogene homolog 1	Version 1
KT2	v-Akt murine thymoma viral oncogene homolog 2	Version 1
AKT3	v-Akt murine thymoma viral oncogene homolog 3 (protein	Version 1
	kinase B, gamma)	
ALK	Anaplastic lymphoma receptor tyrosine kinase	Version 1
ALOX12B	Arachidonate 12-lipoxygenase, 12R type	Version 1
ANKRD11	Ankyrin repeat domain 11	Version 2
NPC	Adenomatous polyposis coli	Version 1
4 <i>R</i>	Androgen receptor	Version 1
ARAF	v-Raf murine sarcoma 3611 viral oncogene homolog	Version 1
ARID1A	AT-rich interactive domain 1A (SWI-like)	Version 1
ARID1B	AT-rich interactive domain 1B (SWI1-like)	Version 1
ARID2	AT-rich interactive domain 2 (ARID, RFX-like)	Version 1
ARID5B	AT-rich interactive domain 5B (MRF1-like)	Version 1
ASXL1	Additional sex combs like 1 (<i>Drosophila</i>)	Version 1
ISXL2	Additional sex combs like 2 (<i>Drosophila</i>)	Version 1
ATM	Ataxia telangiectasia mutated	Version 1
TR	Ataxia telangiectasia and Rad3 related	Version 1
ATRX	Alpha thalassemia/mental retardation syndrome X-linked	Version 1
NURKA	Aurora kinase A	Version 1
NURKB	Aurora kinase B	Version 1
XXIN1 XXIN2	Axin 1 Axin 2	Version 1
XXL	AXIN 2 AXL receptor tyrosine kinase	Version 1 Version 1
32M	Beta-2 microglobulin	Version 1
BABAM1	Chromosome 19 open reading frame 62	Version 3
BAP1	BRCA1 associated protein-1 (ubiquitin carboxy-terminal	Version 1
	hydrolase)	Version
BARD1	BRCA1 associated RING domain 1	Version 1
3BC3	BCL2 binding component 3	Version 1
BCL10	B-cell CLL/lymphoma 10	Version 2
3CL2	B-cell CLL/lymphoma 2	Version 1
BCL2L1	BCL2-like 1	Version 1
BCL2L11	BCL2-like 11 (apoptosis facilitator)	Version 1
BCL6	B-cell CLL/lymphoma 6	Version 1
BCOR	BCL6 corepressor	Version 1
BIRC3	Baculoviral IAP repeat-containing 3	Version 2
3LM	Bloom syndrome, RecQ helicase-like	Version 1
3MPR1A	Bone morphogenetic protein receptor, type IA	Version 1
BRAF	v-Raf murine sarcoma viral oncogene homolog B1	Version 1
BRCA1	Breast cancer 1, early onset	Version 1
BRCA2	Breast cancer 2, early onset	Version 1
SRD4	Bromodomain containing 4	Version 1
BRIP1	BRCA1 interacting protein C-terminal helicase 1	Version 1
3TK	Bruton agammaglobulinemia tyrosine kinase	Version 1
CALR	Calreticulin	Version 2
CARD11	Caspase recruitment domain family, member 11	Version 1
CARM1	Coactivator-associated arginine methyltransferase 1	Version 3
CASP8	Caspase 8, apoptosis-related cysteine peptidase	Version 1
CBFB	Core-binding factor, beta subunit	Version 1
CBL	Cas-Br-M (murine) ecotropic retroviral transforming sequence	Version 1
CCND1	Cyclin D1	Version 1
CCND2	Cyclin D2	Version 1
CCND3	Cyclin D3	Version 1
CCNE1	Cyclin E1	Version 1
CD274	CD274 molecule	Version 1
D276	CD276 molecule	Version 1
CD79A	CD79a molecule, immunoglobulin-associated alpha	Version 2
CD79B	CD79b molecule, immunoglobulin-associated beta	Version 1
CDC42	Cell division cycle 42 (GTP binding protein, 25 kDa)	Version 3
CDC73	Cell division cycle 73, Paf1/RNA polymerase II complex	Version 1
20//4	component, homolog (<i>Saccharomyces cerevisiae</i>)	
CDH1	Cadherin 1, type 1, E-cadherin (epithelial)	Version 1
CDK12	Cyclin-dependent kinase 12	Version 1
CDK4	Cyclin-dependent kinase 4	Version 1

Gene Symbol	Gene Description	Version of Panel First Include
CDK6	Cyclin-dependent kinase 6	Version 1
CDK8	Cyclin-dependent kinase 8	Version 1
CDKN1A	Cyclin-dependent kinase inhibitor 1A (p21, Cip1)	Version 1
CDKN1B	Cyclin-dependent kinase inhibitor 1B (p27, Kip1)	Version 1
CDKN2A	Cyclin-dependent kinase inhibitor 2A (melanoma, p16,	Version 1
	inhibits CDK4)	
CDKN2B	Cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4)	Version 1
CDKN2C	Cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)	Version 1
CEBPA	CCAAT/enhancer binding protein (C/EBP), alpha	Version 2
CENPA	Centromere protein A	Version 2
CHEK1	CHK1 checkpoint homolog (<i>Schizosaccharomyces pombe</i>)	Version 1
CHEK2	CHK2 checkpoint homolog (<i>Spombe</i>)	Version 1
CIC		
	Capicua homolog (<i>Drosophila</i>)	Version 1
CREBBP	CREB binding protein	Version 1
CRKL	v-Crk sarcoma virus CT10 oncogene homolog (avian)-like	Version 1
CRLF2	Cytokine receptor-like factor 2	Version 1
CSDE1	Cold shock domain containing E1, RNA-binding	Version 3
CSF1R	Colony-stimulating factor 1 receptor	Version 1
CSF3R	Colony-stimulating factor 3 receptor (granulocyte)	Version 2
CTCF	CCCTC-binding factor (zinc finger protein)	Version 1
TLA4	Cytotoxic T-lymphocyte-associated protein 4	Version 1
CTNNB1	Catenin (cadherin-associated protein), beta 1, 88 kDa	Version 1
CUL3	Cullin 3	Version 1
CXCR4	Chemokine (C-X-C motif) receptor 4	Version 2
CYLD	Cylindromatosis (turban tumor syndrome)	Version 3
CYSLTR2	Cysteinyl leukotriene receptor 2	Version 3
DAXX		Version 1
	Death domain-associated protein	
DCUN1D1	DCN1, defective in cullin neddylation 1, domain containing 1 (<i>S cerevisiae</i>)	Version 1
DDR2	Discoidin domain receptor tyrosine kinase 2	Version 1
	. ,	
DICER1	Dicer 1, ribonuclease type III	Version 1
DIS3	DIS3 mitotic control homolog (S cerevisiae)	Version 1
DNAJB1	DnaJ (Hsp40) homolog, subfamily B, member 1	Version 2
ONMT1	DNA (cytosine-5-)-methyltransferase 1	Version 1
DNMT3A	DNA (cytosine-5-)-methyltransferase 3 alpha	Version 1
DNMT3B	DNA (cytosine-5-)-methyltransferase 3 beta	Version 1
DOT1L	DOT1-like, histone H3 methyltransferase (S cerevisiae)	Version 1
DROSHA	Drosha, ribonuclease type III	Version 3
DUSP4	Dual specificity phosphatase 4	Version 3
E2F3	E2F transcription factor 3	Version 1
ED	Embryonic ectoderm development	Version 1
GFL7	EGF-like domain, multiple 7	Version 1
EGFR	Epidermal growth factor receptor	Version 1
EIF1AX	Eukaryotic translation initiation factor 1A, X-linked	Version 1
EIF4A2	Eukaryotic translation initiation factor 4A2	Version 2
EIF4E	Eukaryotic translation initiation factor 4E	Version 2
ELF3	E74-like factor 3 (ets domain transcription factor,	Version 3
	epithelial-specific)	
P300	E1A binding protein p300	Version 1
PAS1	Endothelial PAS domain protein 1	Version 3
EPCAM	Epithelial cell adhesion molecule	Version 1
EPHA3	EPH receptor A3	Version 1
EPHA5	EPH receptor A5	Version 1
PHA7	EPH receptor A7	Version 2
PHB1	EPH receptor B1	Version 1
RBB2	v-Erb-b2 erythroblastic leukemia viral oncogene homolog 2,	Version 1
	neuro/glioblastoma derived oncogene homolog (avian)	
ERBB3	v-Erb-b2 erythroblastic leukemia viral oncogene homolog 3 (avian)	Version 1
ERBB4	v-Erb-a erythroblastic leukemia viral oncogene homolog 4 (avian)	Version 1
ERCC2	Excision repair cross-complementing rodent repair deficiency, complementation group 2	Version 1
ERCC3	Excision repair cross-complementing rodent repair deficiency, complementation group 3 (xeroderma pigmentosum group B complementing)	Version 1
ERCC4	Excision repair cross-complementing rodent repair deficiency, complementation group 4	Version 1

Gene Symbol	Gene Description	Version of Panel First Includ
ERCC5	Excision repair cross-complementing rodent repair deficiency, complementation group 5	Version 1
ERF	Ets2 repressor factor	Version 3
ERG	v-Ets erythroblastosis virus E26 oncogene homolog (avian)	Version 1
RRFI1	ERBB receptor feedback inhibitor 1	Version 2
SR1	Estrogen receptor 1	Version 1
TV1	Ets variant 1	Version 1
TV6	Ets variant 6	Version 1
ZH1	Enhancer of zeste homolog 1 (Drosophila)	Version 3
ZH2	Enhancer of zeste homolog 2 (Drosophila)	Version 1
AM123B	Family with sequence similarity 123B	Version 1
AM175A	Family with sequence similarity 175, member A	Version 1
AM46C	Family with sequence similarity 46, member C	Version 1
AM58A	Family with sequence similarity 58, member A	Version 3
ANCA	Fanconi anemia, complementation group A	Version 1
ANCC	Fanconi anemia, complementation group C	Version 1
AT1	FAT tumor suppressor homolog 1 (Drosophila)	Version 1
BXW7	F-box and WD repeat domain containing 7	Version 1
GF19	Fibroblast growth factor 19	Version 1
GF3	Fibroblast growth factor 3	Version 1
GF4	Fibroblast growth factor 4	Version 1
GFR1	Fibroblast growth factor receptor 1	Version 1
GFR2	Fibroblast growth factor receptor 2	Version 1
GFR3	Fibroblast growth factor receptor 3	Version 1
GFR4	Fibroblast growth factor receptor 4	Version 1
H	Fumarate hydratase	Version 1
LCN	Folliculin	Version 1
LT1	Fms-related tyrosine kinase 1 (vascular endothelial growth	Version 1
	factor/vascular permeability factor receptor)	Version 1
LT3	Fms-related tyrosine kinase 3	Version 1
ET3 ET4	Fms-related tyrosine kinase 3	Version 1
OXA1	Forkhead box A1	Version 1
OXL2	Forkhead box A1	Version 1
OXC1	Forkhead box C2	Version 2
OXP1	Forkhead box P1	Version 1
UBP1	Far upstream element (FUSE)–binding protein 1	Version 1
YN	FYN oncogene related to SRC, FGR, YES	Version 2
GATA1	GATA binding protein 1 (globin transcription factor 1)	Version 1
GATA2	GATA binding protein 2	Version 1
GATA3	GATA binding protein 3	Version 1
GLI1	GLI family zinc finger 1	Version 2
SNA11	Guanine nucleotide binding protein (G protein), alpha 11 (Gq class)	Version 1
<i>SNAQ</i>	Guanine nucleotide binding protein (G protein), q polypeptide	Version 1
INAS	GNAS complex locus	Version 1
iPS2	G protein pathway suppressor 2	Version 2
GREM1	Gremlin 1	Version 1
RIN2A	Glutamate receptor, ionotropic, N-methyl D-aspartate 2A	Version 1
iskab	Glycogen synthase kinase 3 beta	Version 1
13F3A	H3 histone, family 3A	Version 2
I3F3B	H3 histone, family 3B (H3.3B)	Version 2
I3F3C	H3 histone, family 3C	Version 1
IGF	Hepatocyte growth factor (hepapoietin A; scatter factor)	Version 1
IIST1H1C	Histone cluster 1, H1c	Version 1
IIST1H2BD	Histone cluster 1, H2bd	Version 1
IIST1H3A	Histone cluster 1, H3a	Version 2
IIST1H3B	Histone cluster 1, H3b	Version 1
IST1H3C	Histone cluster 1, H3c	Version 2
IST1H3D	Histone cluster 1, H3d	Version 2
IST1H3D IIST1H3E	,	
	Histone cluster 1, H3e	Version 2
IIST1H3F	Histone cluster 1, H3f	Version 2
HIST1H3G	Histone cluster 1, H3g	Version 2
HST1H3H	Histone cluster 1, H3h	Version 2
HIST1H3I	Histone cluster 1, H3i	Version 2
HIST1H3J	Histone cluster 1, H3j	Version 2
HIST2H3C	Histone cluster 2, H3c	Version 2
IIST2H3D	Histone cluster 2, H3d	Version 2

Gene Symbol	Gene Description	Version of Panel First Include
HIST3H3	Histone cluster 3, H3	Version 2
HLA-A	Major histocompatibility complex, class I, A	Version 2
HLA-B	Major histocompatibility complex, class I, B	Version 3
HNF1A	HNF1 homeobox A	Version 1
НОХВ13	Homeobox B13	Version 2
HRAS	v-Ha-ras Harvey rat sarcoma viral oncogene homolog	Version 1
COSLG	Inducible T-cell costimulator ligand	Version 1
ID3	Inhibitor of DNA binding 3, dominant negative helix-loop-helix protein	Version 2
DH1	Isocitrate dehydrogenase 1 (NADP+), soluble	Version 1
DH2	Isocitrate dehydrogenase 2 (NADP+), mitochondrial	Version 1
FNGR1	Interferon gamma receptor 1	Version 1
GF1	Insulin-like growth factor 1 (somatomedin C)	Version 1
GF1R	Insulin-like growth factor 1 receptor	Version 1
GF2	Insulin-like growth factor 2 (somatomedin A)	Version 1
KBKE	Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase epsilon	Version 1
KZF1	IKAROS family zinc finger 1 (Ikaros)	Version 1
L10	Interleukin 10	Version 1
L7R	Interleukin 7 receptor	Version 1
NHA	Inhibin, alpha	Version 2
NHBA	Inhibin, beta A	Version 2
NPP4A	Inositol polyphosphate-4-phosphatase, type I, 107 kDa	Version 1
NPP4B	Inositol polyphosphate-4-phosphatase, type II, 105 kDa	Version 1
NPPL1	Inositol polyphosphate phosphatase-like 1	Version 3
NSR	Insulin receptor	Version 1
RF4	Interferon regulatory factor 4	Version 1
RS1	Insulin receptor substrate 1	Version 1
RS2	Insulin receptor substrate 2	Version 1
IAK1	Janus kinase 1	Version 1
IAK2	Janus kinase 2	Version 1
IAK3	Janus kinase 3	Version 1
JUN	Jun proto-oncogene	Version 1
KDM5A	Lysine (K)–specific demethylase 5A	Version 1
KDM5C	Lysine (K)–specific demethylase 5C	Version 1
KDM6A	Lysine (K)–specific demethylase 6A	Version 1
KDR	Kinase insert domain receptor (a type III receptor tyrosine kinase)	Version 1
KEAP1	Kelch-like ECH-associated protein 1	Version 1
KIT	v-Kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog	Version 1
KLF4	Kruppel-like factor 4 (gut)	Version 1
KMT2B	Myeloid/lymphoid or mixed-lineage leukemia 4	Version 3
KMT5A	SET domain containing (lysine methyltransferase) 8	Version 3
(NSTRN	Chromosome 15 open reading frame 23	Version 3
KRAS	v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog	Version 1
ATS1	LATS, large tumor suppressor, homolog 1 (<i>Drosophila</i>)	Version 1
ATS2	LATS, large tumor suppressor, homolog 2 (<i>Drosophila</i>)	Version 1
MO1	LIM domain only 1 (rhombotin 1)	Version 1
YN	v-Yes-1 Yamaguchi sarcoma viral related oncogene homolog	Version 3
MALT1	Mucosa associated lymphoid tissue lymphoma translocation gene 1	Version 2
MAP2K1	Mitogen-activated protein kinase kinase 1	Version 1
MAP2K2	Mitogen-activated protein kinase kinase 2	Version 1
MAP2K4	Mitogen-activated protein kinase kinase 4	Version 1
MAP3K1	Mitogen-activated protein kinase kinase kinase 1	Version 1
MAP3K13	Mitogen-activated protein kinase kinase kinase 13	Version 1
ЛАРЗК14 ЛЛРК1	Mitogen-activated protein kinase kinase kinase 14 Mitogen activated protein kinase 1	Version 2
ΛΑΡΚΊ ΛΛΡΚ2	Mitogen-activated protein kinase 1	Version 1 Version 2
ЛАРКЗ ЛАРКАР1	Mitogen-activated protein kinase 3	
	Mitogen-activated protein kinase–associated protein 1	Version 3
MAX	MyC-associated factor X	Version 1
MCL1	Myeloid cell leukemia sequence 1 (BCL2-related)	Version 1
MDC1	Mediator of DNA-damage checkpoint 1	Version 1
MDM2	Mdm2 p53 binding protein homolog (mouse)	Version 1
MDM4	Mdm4 p53 binding protein homolog (mouse)	Version 1
MED12	Mediator complex subunit 12	Version 1

Gene Symbol	Gene Description	Version of Panel First Include
MEF2B	Myocyte enhancer factor 2B	Version 1
MEN1	Multiple endocrine neoplasia I	Version 1
ЛЕТ	Met proto-oncogene (hepatocyte growth factor receptor)	Version 1
NGA	MAX gene associated	Version 2
MITF	Microphthalmia-associated transcription factor	Version 1
MLH1	MutL homolog 1, colon cancer, nonpolyposis type 2 (<i>Escherichia coli</i>)	Version 1
MLL	Myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, <i>Drosophila</i>)	Version 1
MLL2	Myeloid/lymphoid or mixed-lineage leukemia 2	Version 1
ALL3	Myeloid/lymphoid or mixed-lineage leukemia 3	Version 1
NPL	Myeloproliferative leukemia virus oncogene	Version 1
MRE11A	MRE11 meiotic recombination 11 homolog A (S cerevisiae)	Version 1
NSH2	MutS homolog 2, colon cancer, nonpolyposis type 1 (<i>E coli</i>)	Version 1
NSH3	MutS homolog 3 (<i>E coli</i>)	Version 3
NSH6	MutS homolog 6 (<i>E coli</i>)	Version 1
MSI1	Musashi homolog 1 (<i>Drosophila</i>)	Version 3
ASI2	Musashi homolog 2 (<i>Drosophila</i>)	Version 3
IST1	Macrophage stimulating 1 (hepatocyte growth factor-like)	Version 2
MST1R	Macrophage stimulating 1 receptor (c-met-related tyrosine	Version 2
NTOR	kinase) Mechanistic target of ranamycin (serine/threonine kinase)	Version 1
MUTYH	Mechanistic target of rapamycin (serine/threonine kinase)	Version 1 Version 1
MYC	Muty homolog (<i>E coli</i>)	
MYCL1	v-Myc myelocytomatosis viral oncogene homolog (avian) v-Myc myelocytomatosis viral oncogene homolog 1, lung	Version 1 Version 1
MYCN	carcinoma derived (avian) v-Myc myelocytomatosis viral related oncogene,	Version 1
	neuroblastoma derived (avian)	
MYD88	Myeloid differentiation primary response gene (88)	Version 1
MYOD1	Myogenic differentiation 1	Version 1
VBN	Nibrin	Version 1
VCOA3	Nuclear receptor coactivator 3	Version 2
NCOR1	Nuclear receptor corepressor 1	Version 1
VEGR1	Neuronal growth regulator 1	Version 2
NF1	Neurofibromin 1	Version 1
NF2	Neurofibromin 2 (merlin)	Version 1
NFE2L2	Nuclear factor (erythroid-derived 2)-like 2	Version 1
NFKBIA	Nuclear factor of kappa light polypeptide gene enhancer in B- cells inhibitor, alpha	Version 2
NKX2-1	NK2 homeobox 1	Version 1
VKX3-1	NK3 homeobox 1	Version 1
NOTCH1	Notch 1	Version 1
VOTCH2	Notch 2	Version 1
VOTCH3	Notch 3	Version 1
VOTCH4	Notch 4	Version 1
VPM1	Nucleophosmin (nucleolar phosphoprotein B23, numatrin)	Version 1
VRAS	Neuroblastoma RAS viral (v-ras) oncogene homolog	Version 1
NSD1	Nuclear receptor binding SET domain protein 1	Version 1
NTHL1	nth endonuclease III-like 1 (<i>E coli</i>)	Version 3
VTRK1	Neurotrophic tyrosine kinase, receptor, type 1	Version 1
VTRK2	Neurotrophic tyrosine kinase, receptor, type 2	Version 1
NTRK3	Neurotrophic tyrosine kinase, receptor, type 3	Version 1
NUF2	NUF2, NDC80 kinetochore complex component, homolog (<i>S</i> cerevisiae)	Version 3
NUP93	Nucleoporin 93 kDa	Version 2
PAK1	p21 protein (Cdc42/Rac)-activated kinase 1	Version 1
PAK7	p21 protein (Cdc42/Rac)-activated kinase 7	Version 1
PALB2	Partner and localizer of BRCA2	Version 1
PARK2	Parkinson protein 2, E3 ubiquitin protein ligase (parkin)	Version 1
PARP1	Poly (ADP-ribose) polymerase 1	Version 1
PAX5	Paired box 5	Version 1
PBRM1	Polybromo 1	Version 1
PDCD1	Programmed cell death-1	Version 1
PDCD1LG2	Programmed cell death-1 ligand 2	Version 3
PDGFRA	Platelet-derived growth factor receptor, alpha polypeptide	Version 1
PDGFRB	Platelet-derived growth factor receptor, beta polypeptide	Version 1
PDPK1	3-Phosphoinositide-dependent protein kinase-1	Version 1

ene Symbol	Gene Description	Version of Panel First Include
PGR	Progesterone receptor	Version 2
PHOX2B	Paired-like homeobox 2b	Version 1
PIK3C2G	Phosphoinositide-3-kinase, class 2, gamma polypeptide	Version 1
IK3C3	Phosphoinositide-3-kinase, class 3	Version 1
IK3CA	Phosphoinositide-3-kinase, catalytic, alpha polypeptide	Version 1
IK3CB	Phosphoinositide-3-kinase, catalytic, beta polypeptide	Version 1
IK3CD	Phosphoinositide-3-kinase, catalytic, delta polypeptide	Version 1
IK3CG	Phosphoinositide-3-kinase, catalytic, gamma polypeptide	Version 1
IK3R1	Phosphoinositide-3-kinase, regulatory subunit 1 (alpha)	Version 1
IK3R2	Phosphoinositide-3-kinase, regulatory subunit 2 (beta)	Version 1
IK3R3	Phosphoinositide-3-kinase, regulatory subunit 3 (gamma)	Version 1
PIM1	Pim-1 oncogene	Version 1
LCG2	Phospholipase C, gamma 2 (phosphatidylinositol-specific)	Version 2
LK2	Polo-like kinase 2	Version 1
MAIP1	Phorbol-12-myristate-13-acetate-induced protein 1	Version 1
MS1	PMS1 postmeiotic segregation increased 1 (S cerevisiae)	Version 1
MS2	PMS2 postmeiotic segregation increased 2 (S cerevisiae)	Version 1
NRC1	Proline-rich nuclear receptor coactivator 1	Version 1
OLD1	Polymerase (DNA directed), delta 1, catalytic subunit 125 kDa	Version 2
OLE	Polymerase (DNA directed), epsilon	Version 1
PARG	Peroxisome proliferator-activated receptor gamma	Version 3
PM1D	Protein phosphatase, Mg2+/Mn2+ dependent, 1D	Version 2
PP2R1A	Protein phosphatase 2, regulatory subunit A, alpha	Version 1
PP4R2	Protein phosphatase 4, regulatory subunit 2	Version 3
PP6C	Protein phosphatase 6, catalytic subunit	Version 2
RDM1	PR domain containing 1, with ZNF domain	Version 1
RDM14	PR domain containing 14	Version 3
REX2	Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2	Version 3
RKAR1A	Protein kinase, cAMP-dependent, regulatory, type I, alpha (tissue specific extinguisher 1)	Version 1
RKCI	Protein kinase C, iota	Version 3
RKD1	Protein kinase D1	Version 3
TCH1	Patched 1	Version 1
TEN	Phosphatase and tensin homolog	Version 1
TP4A1	Protein tyrosine phosphatase type IVA, member 1	Version 3
TPN11	Protein tyrosine phosphatase, nonreceptor type 11	Version 1
TPRD	Protein tyrosine phosphatase, receptor type, D	Version 1
TPRS	Protein tyrosine phosphatase, receptor type, S	Version 1
TPRT	Protein tyrosine phosphatase, receptor type, T	Version 1
AB35	RAB35, member RAS oncogene family	Version 2
AC1	Ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1)	Version 1
AC2	Ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2)	Version 3
AD21	RAD21 homolog (<i>S pombe</i>)	Version 2
AD50	RAD50 homolog (<i>S cerevisiae</i>)	Version 1
AD51	RAD51 homolog (RecA homolog, <i>E coli</i>) (<i>S cerevisiae</i>)	Version 1
AD51C	RAD51 homolog C (<i>S cerevisiae</i>)	Version 1
AD51L1	RAD51-like 1 (<i>S cerevisiae</i>)	Version 1
AD51L3	RAD51-like 3 (<i>S cerevisiae</i>)	Version 1
4 <i>D52</i>	RAD52 homolog (S cerevisiae)	Version 1
AD54L	RAD54-like (<i>S cerevisiae</i>)	Version 1
4 <i>F1</i>	v-Raf-1 murine leukemia viral oncogene homolog 1	Version 1
ARA	Retinoic acid receptor, alpha	Version 1
4 <i>SA1</i>	RAS p21 protein activator (GTPase activating protein) 1	Version 1
81	Retinoblastoma 1	Version 1
BM10	RNA binding motif protein 10	Version 1
ECOL	RecQ protein-like (DNA helicase Q1-like)	Version 3
ECQL4	RecQ protein-like 4	Version 1
EL	v-Rel reticuloendotheliosis viral oncogene homolog (avian)	Version 1
ET	Ret proto-oncogene	Version 1
FWD2	Ring finger and WD repeat domain 2	Version 1
HEB	Ras homolog enriched in brain	Version 2
HOA	Ras homolog gene family, member A	Version 1
ICTOR	RPTOR independent companion of MTOR, complex 2	Version 1
IT1	Ras-like without CAAX 1	Version 1

Gene Symbol	Gene Description	Version of Panel First Include
RNF43	Ring finger protein 43	Version 1
ROS1	c-Ros oncogene 1, receptor tyrosine kinase	Version 1
RPS6KA4	Ribosomal protein S6 kinase, 90 kDa, polypeptide 4	Version 1
RPS6KB2	Ribosomal protein S6 kinase, 70 kDa, polypeptide 2	Version 1
RPTOR	Regulatory associated protein of MTOR, complex 1	Version 1
RRAGC	Ras-related GTP binding C	Version 3
RAS	Related RAS viral (r-ras) oncogene homolog	Version 3
RRAS2	Related RAS viral (r-ras) oncogene homolog 2	Version 3
RTEL1	Regulator of telomere elongation helicase 1	Version 3
RUNX1		
	Runt-related transcription factor 1	Version 1
RXRA	Retinoid X receptor, alpha	Version 3
RYBP	RING1 and YY1 binding protein	Version 1
SDHA	Succinate dehydrogenase complex, subunit A, flavoprotein (Fp)	Version 1
SDHAF2	Succinate dehydrogenase complex assembly factor 2	Version 1
SDHB	Succinate dehydrogenase complex, subunit B, iron sulfur (lp)	Version 1
SDHC	Succinate dehydrogenase complex, subunit C, integral membrane protein, 15 kDa	Version 1
SDHD	Succinate dehydrogenase complex, subunit D, integral membrane protein	Version 1
SESN1	Sestrin 1	Version 3
SESN2	Sestrin 2	Version 3
ESN3	Sestrin 3	Version 3
SETD2	SET domain containing 2	Version 1
SF3B1	Splicing factor 3b, subunit 1, 155 kDa	Version 1
SH2B3	Shicing ractor sb, subunit 1, 199 Kba	Version 2
SH2D1A	SH2 domain containing 1A	Version 1
SHOC2	Soc-2 suppressor of clear homolog (<i>Caenorhabditis elegans</i>)	Version 3
SHQ1	SHQ1 homolog (S cerevisiae)	Version 1
SLX4	SLX4 structure-specific endonuclease subunit homolog (<i>S cerevisiae</i>)	Version 3
SMAD2	SMAD family member 2	Version 1
SMAD3	SMAD family member 3	Version 1
SMAD4	SMAD family member 4	Version 1
SMARCA4	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4	Version 1
SMARCB1	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily b, member 1	Version 1
SMARCD1	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 1	Version 1
SMO	Smoothened homolog (<i>Drosophila</i>)	Version 1
SMYD3	SET and MYND domain containing 3	Version 3
SOCS1	Suppressor of cytokine signaling 1	Version 1
5OS1	Son of sevenless homolog 1 (Drosophila)	Version 3
SOX17	SRY (sex determining region Y)-box 17	Version 1
SOX2	SRY (sex determining region Y)-box 2	Version 1
SOX9	SRY (sex determining region Y)-box 9	Version 1
SPEN	Spen homolog, transcriptional regulator (<i>Drosophila</i>)	Version 1
SPOP	Speckle-type POZ protein	Version 1
SPRED1	Sprouty-related, EVH1 domain containing 1	Version 3
SRC	v-Src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog	Version 1
SAC	(avian)	version i
SRSF2	Serine/arginine-rich splicing factor 2	Version 2
STAG2	Stromal antigen 2	Version 1
STAT3	Signal transducer and activator of transcription 3 (acute-phase	Version 2
	response factor)	
STAT5A	Signal transducer and activator of transcription 5A	Version 2
STAT5B	Signal transducer and activator of transcription 5B	Version 2
STK11	Serine/threonine kinase 11	Version 1
STK19	Serine/threonine kinase 19	Version 3
STK40	Serine/threonine kinase 40	Version 1
SUFU	Suppressor of fused homolog (Drosophila)	Version 1
SUZ12	Suppressor of zeste 12 homolog (Drosophila)	Version 1
SYK	Spleen tyrosine kinase	Version 1
AP1	Transporter 1, ATP-binding cassette, subfamily B (MDR/TAP)	Version 3
AP2	Transporter 2, ATP-binding cassette, subfamily B (MDI/TAP)	Version 3
	· · · · · · · · · · · · · · · · · · ·	
TBX3 TCEB1	T-box 3 Transcription elongation factor B (SIII), polypeptide 1 (15 kDa, elongin C)	Version 1 Version 2
	elongin C) (continued on following page)	

Gene Symbol	Gene Description	Version of Panel First Include
TCF3	Transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47)	Version 2
TCF7L2	Transcription factor 7-like 2 (T-cell specific, HMG-box)	Version 2
TEK	TEK tyrosine kinase, endothelial	Version 3
TERT	Telomerase reverse transcription	Version 1
TET1	Tet oncogene 1	Version 1
TET2	Tet oncogene family member 2	Version 1
TGFBR1	Transforming growth factor, beta receptor 1	Version 1
TGFBR2	Transforming growth factor, beta receptor II (70/80 kDa)	Version 1
TMEM127	Transmembrane protein 127	Version 1
TMPRSS2	Transmembrane protease, serine 2	Version 1
TNFAIP3	Tumor necrosis factor, alpha-induced protein 3	Version 1
TNFRSF14	Tumor necrosis factor receptor superfamily, member 14 (herpesvirus entry mediator)	Version 1
TOP1	Topoisomerase (DNA) I	Version 1
TP53	Tumor protein p53	Version 1
FP53BP1	Tumor protein p53-binding protein 1	Version 3
TP63	Tumor protein p63	Version 1
TRAF2	TNF receptor-associated factor 2	Version 2
TRAF7	TNF receptor-associated factor 7	Version 1
FSC1	Tuberous sclerosis 1	Version 1
TSC2	Tuberous sclerosis 2	Version 1
TSHR	Thyroid-stimulating hormone receptor	Version 1
J2AF1	U2 small nuclear RNA auxiliary factor 1	Version 1
JPF1	UPF1 regulator of nonsense transcripts homolog (yeast)	Version 3
/EGFA	Vascular endothelial growth factor A	Version 2
/HL	von Hippel-Lindau tumor suppressor	Version 1
/TCN1	V-set domain containing T-cell activation inhibitor 1	Version 1
NHSC1	Wolf-Hirschhorn syndrome candidate 1	Version 3
NHSC1L1	Wolf-Hirschhorn syndrome candidate 1-like 1	Version 3
NT1	Wilms tumor 1	Version 1
NWTR1	WW domain-containing transcription regulator 1	Version 3
KIAP	X-linked inhibitor of apoptosis	Version 1
KPO1	Exportin 1 (CRM1 homolog, yeast)	Version 1
KRCC2	X-ray repair complementing defective repair in Chinese hamster cells 2	Version 2
(AP1	Yes-associated protein 1	Version 1
YES1	v-Yes-1 Yamaguchi sarcoma viral oncogene homolog 1	Version 1
ZFHX3	Zinc finger homeobox 3	Version 2
ZRSR2	Zinc finger (CCCH type), RNA-binding motif and serine/arginine rich 2	Version 2

atient ID	Gene Panel	Mean Tumor Coverage	Tissue Sample Taken Pre- or Posttreatment	Histology	Sex	Age	Smoking Status*	Prior Lines of Therapy†	Treatment‡	PFS (months)	Event§	BOR∥	DC
	IMPACT341	428	Pre	ADC	F	58	Ever	1	Combo	27.20	0	CR	DC
	IMPACT341	905	Pre	ADC	Μ	60	Ever	4	Mono	14.50	1	PR	DC
	IMPACT341	1,346	Pre	ADC	F	68	Ever	1	Mono	4.17	1	SD	ND
	IMPACT341	618	Pre	SQCLC	Μ	77	Ever	3	Mono	0.60	1	PD	ND
	IMPACT341	699	Pre	LC-NE	Μ	66	Ever	2	Combo	1.63	1	PD	ND
	IMPACT468	486	Pre	SQCLC	Μ	67	Ever	3	Mono	4.93	0	PR	NE
	IMPACT341	418	Pre	SQCLC	Μ	71	Never	2	Mono	1.20	1	PD	NE
	IMPACT341	1,201	Pre	ADC	Μ	66	Ever	6	Mono	1.73	1	PD	N
	IMPACT341	369	Pre	ADC	Μ	42	Never	1	Mono	1.50	1	PD	N
)	IMPACT341	990	Post	ADC	Μ	57	Never	1	Combo	11.83	1	SD	D
	IMPACT341	438	Post	ADC	F	49	Ever	1	Combo	2.33	1	SD	N
2	IMPACT410	817	Pre	ADC	F	68	Ever	3	Mono	5.47	1	SD	N
3	IMPACT410	966	Pre	ADC	Μ	58	Ever	6	Mono	2.57	1	PD	N
1	IMPACT341	549	Pre	ADC	F	73	Ever	1	Mono	10.00	1	SD	D
5	IMPACT341	433	Post	SQCLC	Μ	64	Ever	1	Combo	3.80	1	SD	NI
5	IMPACT341	532	Post	ADC	Μ	79	Never	3	Mono	5.27	1	SD	Ν
7	IMPACT410	979	Pre	ADC	F	58	Never	7	Mono	3.50	1	PD	NI
8	IMPACT410	839	Pre	ADC	F	59	Never	3	Mono	2.10	1	PD	Ν
)	IMPACT341	540	Pre	ADC	Μ	65	Ever	1	Combo	22.43	1	SD	D
)	IMPACT341	728	Post	LC-NE	F	44	Ever	2	Mono	1.17	1	PD	Ν
	IMPACT341	1,189	Pre	ADC	Μ	53	Ever	2	Mono	13.17	1	PR	D
1	IMPACT341	861	Pre	NOS	Μ	62	Ever	3	Mono	5.33	1	SD	Ν
	IMPACT341	534	Pre	ADC	Μ	71	Ever	3	Mono	1.87	1	PD	Ν
	IMPACT341	580	Pre	ADC	F	50	Ever	1	Combo	30.43	0	CR	D
,	IMPACT341	758	Pre	ADC	F	55	Never	3	Mono	0.67	1	PD	Ν
	IMPACT341	551	Pre	ADC	F	48	Never	6	Mono	3.07	1	PD	Ν
	IMPACT341	722	Pre	ADC	F	74	Ever	2	Combo	4.63	1	PR	N
	IMPACT341	748	Pre	ADC	F	60	Ever	2	Mono	1.77	1	PD	N
	IMPACT341	439	Pre	ADC	Μ	70	Ever	3	Mono	4.20	1	SD	N
	IMPACT341	358	Pre	ADC	F	31	Never	3	Mono	3.03	1	PD	N
	IMPACT341	159	Pre	ADC	M	80	Ever	2	Mono	1.30	1	PD	N
	IMPACT341	623	Pre	SQCLC	F	64	Ever	3	Mono	25.03	0	PR	D
	IMPACT341	819	Pre	ADC	F	71	Ever	3	Mono	9.60	1	PR	D
	IMPACT341	690	Pre	ADC	M	66	Ever	3	Mono	1.27	1	PD	N
	IMPACT410	1,232	Pre	SQCLC	M	71	Never	2	Mono	2.57	1	SD	N
, ;	IMPACT341	628	Pre	ADC	F	69	Ever	3	Mono	2.77	1	PD	N
	IMPACT341	342	Pre	SQCLC	F	73	Ever	2	Mono	4.27	1	PR	N
	IMPACT341	892	Post	ADC	F	75	Never	7	Mono	1.93	1	PD	N
1	IMPACT341	1,494	Pre	ADC	M	57	Never	2	Mono	1.77	1	SD	N
	IMPACT341	692	Pre	SQCLC	F	74	Ever	3	Mono	5.37	1	SD	N
	IMPACT341	737	Pre	ADC	M	66	Ever	3	Mono	2.10	1	PD	N
	IMPACT341 IMPACT341	608	Post	SQCLC	M	43	Ever	1	Mono	7.50	1	SD	D
	IMPACT341	282	Pre	ADC	M	43 67	Ever	1	Combo	7.90	1	PR	D
		727		ADC	F	37		1			1	PD	
	IMPACT341 IMPACT341	1,086	Post Pre	LC-NE	M	53	Never Ever	1	Mono Combo	1.07 27.60	0	CR	N
													D
	IMPACT341	760	Pre	ADC	F	67 64	Ever	2	Mono	8.10	0	PR	D
	IMPACT410	776	Pre	ADC	F	64 68	Ever		Mono	15.03	0	PR	D
	IMPACT341	91	Pre	ADC	F	68 62	Ever	1	Mono	4.43	1	SD PD	N
	IMPACT341	112	Pre	NOS	M	62	Ever	3	Mono	1.80	1		N
	IMPACT341	757	Pre	ADC	F	66	Ever	2	Mono	1.57	1	PD	N
	IMPACT410	738	Pre	ADC	F	61	Ever	2	Mono	15.97	1	PR	D
	IMPACT341	613	Pre	ADC	M	80	Ever	1	Mono	8.30	1	PR	D
	IMPACT341	777	Pre	ADC	F	61	Ever	3	Mono	1.57	1	PD	N
	IMPACT341	1,045	Pre	ADC	F	55	Ever	4	Mono	1.03	1	PD	N
	IMPACT341	678	Pre	ADC	F	40	Never	4	Mono	0.37	1	PD	N
	IMPACT341	430	Pre	ADC	M	73	Ever	3	Mono	1.63	1	PD	N
	IMPACT341	509	Pre	ADC	M	22	Never	3	Combo	4.33	1	SD	N
	IMPACT341	200	Pre	ADC	F	51	Ever	2	Mono	2.57	1	PD	N
	IMPACT341	438	Pre	ADC	F	73	Ever	2	Mono	6.63	1	SD	D
	IMPACT341	970	Pre	SQCLC	M	56	Ever	1	Mono	1.17	1	PD	N
	IMPACT341	462	Pre	ADC	Μ	56	Ever	4	Mono	0.73	1	PD	N
	IMPACT341	839	Pre	ADC	F	81	Never	5	Mono	6.13	1	SD	D
}	IMPACT410	1,021	Pre	ADC	Μ	80	Ever	4	Mono	3.60	1	SD	Ν
ŀ	IMPACT410	951	Pre	ADC	Μ	53	Ever	5	Mono	5.57	1	SD	Ν
5	IMPACT410	620	Pre	SQCLC	F	67	Ever	2	Mono	1.83	1	SD	Ν
	IMPACT410	765	Pre	SQCLC	Μ	63	Never	2	Mono	0.77	1	PD	Ν
				(continued	on fr	مانمرمالم							

Predictors of Immunotherapy Response Derived From Targeted NGS

, ; ;		Coverage	Pre- or Posttreatment	Histology	Sex	Age	Smoking Status*	Prior Lines of Therapy†	Treatment‡	PFS (months)	Event§	BOR∥	D
)	IMPACT410	550	Pre	ADC	Μ	60	Ever	6	Mono	19.77	0	PR	D
	IMPACT410	689	Pre	ADC	Μ	69	Ever	2	Mono	5.53	1	SD	N
	IMPACT410	745	Pre	ADC	F	73	Never	4	Combo	4.23	0	SD	Ν
)	IMPACT410	684	Post	SQCLC	Μ	58	Ever	2	Mono	6.17	1	SD	D
	IMPACT410	743	Pre	ADC	F	57	Ever	1	Combo	30.47	0	PR	D
	IMPACT410	530	Pre	ADC	F	92	Never	5	Mono	8.67	1	SD	D
;	IMPACT410	1,018	Pre	ADC	F	60	Ever	1	Mono	9.20	1	SD	C
-	IMPACT410	513	Post	ADC	Μ	59	Ever	1	Mono	8.33	1	SD	C
,	IMPACT410	429	Pre	ADC	F	68	Ever	3	Mono	0.87	1	PD	Ν
;	IMPACT410	859	Post	ADC	F	57	Never	2	Mono	10.40	1	PR	D
	IMPACT410	708	Pre	ADC	Μ	58	Ever	2	Mono	3.10	1	SD	1
8	IMPACT410	643	Post	ADC	F	66	Ever	1	Mono	5.47	1	SD	1
)	IMPACT341	818	Pre	ADC	F	44	Never	5	Mono	0.40	1	PD	1
	IMPACT341	654	Pre	ADC	Μ	73	Ever	3	Mono	2.80	1	PD	1
	IMPACT410	866	Pre	ADC	F	47	Never	5	Mono	5.83	0	PR	1
	IMPACT410	693	Pre	ADC	F	58	Ever	1	Combo	5.13	1	SD	1
	IMPACT410	437	Pre	ADC	Μ	61	Ever	2	Mono	3.17	1	SD	1
	IMPACT410	496	Pre	ADC	Μ	75	Ever	5	Mono	4.63	1	PD	1
	IMPACT410	544	Pre	ADC	F	59	Never	3	Mono	1.80	1	PD	1
	IMPACT410	836	Pre	ADC	Μ	75	Ever	2	Mono	1.83	1	PD	1
	IMPACT410	305	Pre	ADC	Μ	62	Ever	1	Mono	3.30	1	PD	1
	IMPACT410	566	Pre	ADC	Μ	82	Never	2	Mono	1.57	1	PD	1
	IMPACT410	201	Pre	ADC	F	62	Ever	2	Mono	4.00	1	SD	
	IMPACT410	959	Pre	SQCLC	М	40	Ever	2	Mono	1.07	1	PD	1
	IMPACT410	726	Pre	SQCLC	Μ	67	Never	2	Mono	1.67	1	PD	
	IMPACT410	756	Pre	ADC	M	73	Ever	3	Mono	20.20	0	PR	1
	IMPACT410	595	Pre	NOS	F	52	Ever	2	Mono	20.00	0	PR	1
	IMPACT410	580	Pre	ADC	M	86	Never	3	Mono	1.8	1	PD	1
	IMPACT410	677	Pre	ADC	F	63	Ever	2	Mono	0.67	1	PD	l
	IMPACT410	662	Pre	SQCLC	M	58	Ever	1	Mono	10.47	1	SD	l
	IMPACT410	515	Pre	ADC	F	69	Ever	2	Mono	1.83	1	PD	l
	IMPACT410	1,049	Pre	ADC	F	69	Ever	3	Mono	4.37	1	SD	1
	IMPACT410	1,223	Post	SQCLC	M	54	Never	1	Combo	1.83	1	PD	1
0	IMPACT410	965	Post	ADC	F	68	Never	1	Combo	15.07	1	SD	
	IMPACT410	539	Pre	SQCLC	M	55	Ever	2	Mono	1.83	1	PD	1
1 2	IMPACT410 IMPACT410	202	Pre	ADC	M	55 67	Ever	3	Mono	1.83	1	PD	Ì
	IMPACT410	839						3				SD	
3			Pre	ADC	M	73	Ever		Mono	16.90	1		[
4 5	IMPACT410	709	Pre	ADC	M	47	Ever	2	Mono	6.57	1	SD)
5	IMPACT410	1,384	Post	ADC	M	67	Ever	4	Mono	21.13	1	PR	
6	IMPACT410	472	Pre	ADC	F	81	Ever	2	Mono	1.73	1	PD	1
7	IMPACT410	622	Pre	ADC	M	79	Ever	2	Mono	10.43	1	SD	1
8	IMPACT410	846	Post	ADC	M	64	Ever	5	Mono	1.80	1	PD	1
9	IMPACT410	1,406	Pre	SQCLC	Μ	59	Ever	2	Mono	3.23	1	PD	
0	IMPACT410	248	Pre	ADC	F	81	Ever	2	Mono	8.63	0	SD	1
1	IMPACT410	921	Pre	SQCLC	F	71	Never	2	Mono	12.53	1	SD	1
2	IMPACT410	742	Pre	ADC	F	81	Ever	2	Mono	1.17	1	PD	1
3	IMPACT410	1,121	Post	ADC	M	60	Ever	1	Mono	18.90	1	SD	1
4	IMPACT410	1,146	Post	ADC	F	62	Never	2	Mono	7.80	1	PR	1
5	IMPACT410	752	Pre	ADC	F	53	Ever	2	Mono	4.73	1	SD	
6	IMPACT410	885	Pre	ADC	M	62	Never	1	Mono	3.50	1	SD	I
7	IMPACT410	661	Pre	ADC	F	55	Never	3	Mono	1.80	1	PD	
8	IMPACT410	586	Pre	ADC	F	63	Ever	2	Mono	0.73	1	SD	1
9	IMPACT410	923	Pre	ADC	F	51	Never	2	Combo	15.30	0	PR	
0	IMPACT410	178	Pre	ADC	Μ	45	Never	2	Mono	5.40	1	SD	1
1	IMPACT410	747	Pre	ADC	F	60	Ever	2	Mono	1.60	1	PD	1
2	IMPACT410	1,288	Pre	ADC	Μ	63	Ever	2	Mono	4.33	1	SD	1
3	IMPACT410	301	Pre	ADC	Μ	86	Ever	2	Mono	1.97	1	PD	I
4	IMPACT410	483	Pre	SQCLC	Μ	70	Ever	1	Combo	1.67	1	PD	1
5	IMPACT410	1,100	Pre	ADC	F	68	Ever	2	Mono	2.70	1	PD	I
6	IMPACT410	704	Pre	NOS	F	48	Ever	2	Mono	7.37	0	PR	1
7	IMPACT410	901	Pre	ADC	Μ	66	Ever	1	Mono	4.27	1	SD	1
8	IMPACT410	882	Pre	ADC	Μ	65	Ever	2	Mono	9.37	0	PR	[
9	IMPACT410	691	Pre	ADC	F	66	Ever	3	Mono	1.63	1	PD	1
0	IMPACT410	597	Pre	ADC	M	68	Ever	3	Mono	1.00	1	PD	1
1	IMPACT410	263	Pre	ADC	M	83	Ever	1	Combo	1.63	1	PD	l
2	IMPACT410	919	Post	ADC	F	42	Ever	2	Mono	1.87	1	PD	I

Patient ID	Gene Panel	Mean Tumor Coverage	Tissue Sample Taken Pre- or Posttreatment	Histology	Sex	Age	Smoking Status*	Prior Lines of Therapy†	Treatment‡	PFS (months)	Event§	BOR∥	DC
33	IMPACT410	513	Pre	ADC	Μ	76	Ever	2	Mono	1.70	1	PD	ND
34	IMPACT410	851	Pre	ADC	F	58	Ever	1	Mono	8.77	0	PR	DC
35	IMPACT410	861	Pre	ADC	F	66	Ever	2	Mono	15.90	0	PR	DC
36	IMPACT410	760	Pre	LC-NE	F	55	Ever	3	Mono	2.57	1	PD	ND
37	IMPACT410	519	Pre	ADC	F	56	Ever	2	Mono	12.87	0	SD	DC
38	IMPACT410	673	Pre	ADC	F	85	Ever	2	Mono	2.37	1	SD	NE
39	IMPACT410	902	Pre	ADC	M	76	Ever	2	Mono	2.07	0	PR	NE
40	IMPACT410 IMPACT410	780 744	Pre Pre	ADC ADC	M F	82 69	Ever	2	Mono Mono	1.03	1	PD PD	NE NE
41 42	IMPACT410 IMPACT410	1,213	Pre	ADC	г М	69 73	Ever Ever	2	Mono	1.63 1.17	1	PD PD	NE
43	IMPACT410	785	Post	ADC	M	77	Ever	2	Mono	1.17	1	PD	NE
44	IMPACT410	719	Post	ADC	M	76	Never	1	Combo	24.27	1	SD	DO
45	IMPACT410	1,219	Post	NOS	F	37	Ever	2	Combo	6.33	1	SD	DC
46	IMPACT410	712	Pre	ADC	F	76	Never	3	Mono	2.60	1	PD	NE
47	IMPACT410	827	Pre	ADC	F	68	Ever	2	Mono	12.07	1	PR	DC
48	IMPACT410	420	Pre	NOS	F	69	Ever	2	Mono	1.63	1	PD	NE
49	IMPACT410	707	Pre	ADC	F	50	Ever	2	Mono	2.50	1	PD	NE
50	IMPACT410	698	Pre	ADC	F	71	Never	1	Mono	1.93	1	PD	NE
51	IMPACT410	465	Pre	SQCLC	F	74	Ever	2	Mono	15.13	1	SD	DC
52	IMPACT410	1,118	Pre	ADC	Μ	57	Ever	1	Mono	3.17	1	PD	NE
53	IMPACT410	788	Post	ADC	Μ	66	Ever	2	Mono	2.10	0	SD	NE
54	IMPACT410	876	Pre	ADC	F	77	Ever	2	Mono	0.90	1	PD	NE
55	IMPACT410	989	Post	ADC	F	67	Ever	4	Mono	1.17	1	PD	NE
56	IMPACT410	1,022	Pre	ADC	F	65	Never	2	Mono	1.40	1	PD	NE
57	IMPACT410	636	Post	ADC	M	73	Ever	1	Combo	9.10	1	SD	DO
58	IMPACT410	1,174	Pre	ADC	M	64	Never	2	Mono	1.87	0	SD	NE
59	IMPACT410	1,029	Pre	LC-NE	M	76	Ever	2	Mono	1.33	1	PD	NE
60	IMPACT410 IMPACT410	1,102 543	Pre Pre	NOS	M F	63	Ever	1 3	Mono Mono	1.40	1	PD PD	NE NE
61	IMPACT410	543 718		ADC ADC	F	74 46	Ever Ever			3.07		PD PD	NE
62 63	IMPACT410 IMPACT410	209	Pre Post	ADC	M	46 83	Ever	1	Mono Combo	1.60 22.63	1	PD	D
64	IMPACT410	973	Pre	SQCLC	M	83 74	Ever	2	Mono	1.87	1	SD	NE
65	IMPACT410	649	Pre	SQCLC	M	66	Ever	2	Mono	3.47	0	PR	NE
166	IMPACT410	828	Pre	ADC	F	75	Ever	2	Mono	7.47	1	SD	DC
67	IMPACT410	1,002	Pre	ADC	F	76	Ever	2	Combo	1.00	1	PD	NE
68	IMPACT410	558	Pre	ADC	F	80	Ever	2	Mono	16.57	0	PR	DC
69	IMPACT410	919	Post	ADC	M	62	Ever	1	Combo	13.00	1	SD	DC
70	IMPACT410	1,224	Pre	ADC	M	69	Ever	3	Mono	1.03	1	SD	NE
71	IMPACT410	606	Pre	ADC	Μ	60	Ever	2	Mono	1.73	1	PD	NE
172	IMPACT410	227	Pre	ADC	F	64	Ever	6	Mono	5.53	1	SD	NE
73	IMPACT410	696	Pre	ADC	F	32	Never	2	Mono	2.73	1	PD	NE
74	IMPACT410	709	Pre	ADC	Μ	79	Ever	2	Mono	11.97	0	PR	DC
75	IMPACT410	777	Pre	SQCLC	Μ	72	Ever	2	Mono	2.60	1	PD	NE
76	IMPACT410	1,088	Post	ADC	F	62	Ever	1	Mono	2.20	1	PD	NE
77	IMPACT410	403	Pre	NOS	F	74	Ever	2	Mono	2.47	1	PD	NE
78	IMPACT410	1,196	Pre	ADC	F	55	Ever	2	Mono	7.17	1	SD	DC
79	IMPACT410	948	Post	ADC	F	68	Ever	1	Combo	8.63	1	SD	DO
80	IMPACT410	448	Pre	ADC	F	59	Ever	5	Mono	5.40	1	SD	NE
81	IMPACT410	803	Pre	ADC	F	48	Ever	2	Combo	1.57	1	PD	NE
82	IMPACT410	893	Pre	ADC	F	50	Ever	2	Mono	6.30	0	SD	D
83	IMPACT410	972	Pre	ADC	F	54	Ever	2	Mono	10.40	1	SD	DO
84	IMPACT410	1,367	Pre	ADC	M	66	Ever	2	Mono	5.87	1	SD	N
85	IMPACT410	1,238	Pre	SQCLC	M	80	Ever	2	Mono	16.73	0	PR	D
86	IMPACT410	1,025	Pre	ADC	F	58	Ever	2	Mono	1.63	1	PD	N
87	IMPACT410	589	Pre	ADC	M	39	Ever	2	Mono	7.53	0	PR	DO
88	IMPACT410	631	Pre	ADC	F	50	Ever	2	Mono	16.80	0	PR	DO
89	IMPACT410	556	Pre	ADC	F	72	Ever	2	Mono	3.10	1	PD	N
90 91	IMPACT410 IMPACT410	1,073 553	Pre Pre	SQCLC ADC	M	68 73	Ever Ever	2	Mono Mono	5.77 2.03	1	SD PD	NI NI
91 92	IMPACT410 IMPACT410	553 1,357	Pre	LC-NE	M	73 67	Ever	2	Combo	2.03	0	PD PR	NE NE
92 93	IMPACT410 IMPACT410	733	Pre	ADC	M	78	Ever	1	Mono	9.80	1	SD	D
93 94	IMPACT410 IMPACT410	1,001	Pre	ADC	M	78 51	Ever	2	Mono	9.80 5.43	1	SD PD	N
94 95	IMPACT410 IMPACT410	313	Pre	ADC	F	55	Ever	2	Mono	0.83	1	PD	N
95 96	IMPACT410	881	Pre	ADC	F	42	Never	3	Combo	1.27	1	PD	NE
97	IMPACT410	1,215	Pre	ADC	F	55	Ever	2	Mono	2.30	1	SD	N
98	IMPACT410	806	Pre	ADC	F	62	Never	2	Mono	1.70	1	PD	N
		000	110	(continued				2				. 0	

Predictors of Immunotherapy Response Derived From Targeted NGS

						1011011		ts (continued)					
Patient ID	Gene Panel	Mean Tumor Coverage	Tissue Sample Taken Pre- or Posttreatment	Histology	Sex	Age	Smoking Status*	Prior Lines of Therapy†	Treatment‡	PFS (months)	Event§	BOR∥	DCB
199	IMPACT410	1,170	Pre	LC-NE	Μ	55	Ever	2	Mono	1.80	1	PD	NDB
200	IMPACT410	732	Pre	ADC	F	58	Ever	2	Mono	2.47	1	PD	NDB
201	IMPACT410	913	Post	ADC	F	60	Never	3	Mono	1.83	1	PD	NDB
202	IMPACT410	920	Post	ADC	F	74	Ever	2	Mono	2.27	1	PD	NDB
203	IMPACT410	1,071	Pre	SQCLC	Μ	76	Ever	2	Mono	2.10	1	PD	NDB
204	IMPACT410	1,053	Pre	ADC	F	56	Ever	2	Combo	1.53	1	PD	NDB
205	IMPACT410	884	Pre	ADC	F	71	Ever	1	Mono	2.27	1	PD	NDB
206	IMPACT410	353	Pre	ADC	F	77	Ever	3	Mono	4.20	0	PR	NE
207	IMPACT410	883	Pre	ADC	Μ	72	Ever	2	Mono	5.37	1	SD	NDB
208	IMPACT410	1,021	Pre	ADC	Μ	72	Never	2	Combo	3.50	1	SD_	NDB
209	IMPACT410	811	Pre	ADC	F	72	Ever	2	Combo	12.80	0	PR	DCB
210	IMPACT410	634	Post	ADC	Μ	68	Ever	2	Mono	1.77	1	PD	NDB
211	IMPACT410	456	Pre	ADC	Μ	66	Ever	2	Mono	1.70	1	PD	NDB
212	IMPACT410	734	Pre	NOS	М	81	Ever	2	Mono	4.80	1	SD	NDB
213	IMPACT410	906	Pre	ADC	Μ	69	Ever	2	Mono	4.27	1	SD	NDB
214	IMPACT410	977	Pre	ADC	М	54	Ever	2	Mono	7.20	0	PR	DCB
215	IMPACT410	682	Pre	ADC	F	59	Ever	1	Mono	11.30	0	PR	DCB
216	IMPACT410	918	Pre	ADC	М	57	Ever	2	Mono	1.70	1	PD	NDB
217	IMPACT410	802	Pre	ADC	F	50	Never	3	Mono	2.90	1	PD	NDB
218	IMPACT410	1,007	Post	ADC	M	79	Never	2	Mono	3.60	1	SD	NDB
219	IMPACT410	765	Pre	SQCLC	M	71	Ever	2	Mono	2.00	1	SD	NDB
220	IMPACT410	1,071	Pre	ADC	F	69	Ever	2	Combo	5.43	1	SD	NDB
221	IMPACT410	365	Pre	ADC	M	83	Ever	1	Mono	3.77	1	SD	NDB
222	IMPACT468	655	Pre	SQCLC	M	74	Ever	2	Mono	1.70	1	SD	NDB
223	IMPACT468	375	Pre	ADC	F	64	Ever	2	Mono	0.60	1	PD	NDB
224	IMPACT468	1,150	Pre	SQCLC	F	65	Ever	1	Mono	4.67	0	PR	NE
225	IMPACT468	540	Pre	SQCLC	M	63	Ever	2	Mono	8.83	0	SD	DCB
226	IMPACT468	446	Pre	NOS	F	65	Ever	2	Mono	1.87	1	PD	NDB
227	IMPACT468	1.048	Pre	ADC	M	83	Ever	1	Mono	6.03	1	SD	DCB
228	IMPACT468	809	Post	ADC	F	69	Ever	2	Mono	2.37	1	PD	NDB
229	IMPACT468	893	Pre	NOS	M	67	Ever	1	Mono	6.43	0	PR	DCB
230	IMPACT468	786	Pre	SQCLC	F	53	Ever	2	Mono	7.10	0	PR	DCB
231	IMPACT468	749	Pre	ADC	M	64	Ever	2	Mono	16.73	1	PR	DCB
232	IMPACT468	942	Pre	NOS	F	88	Ever	1	Mono	4.07	0	PR	NE
232	IMPACT468	231	Pre	ADC	M	62	Ever	2	Combo	3.43	1	SD	NDB
233	IMPACT468	994	Post	ADC	M	51	Ever	2	Mono	1.83	1	PD	NDB
234	IMPACT468	1,215	Pre	ADC	F	56	Ever	2	Mono	4.17	1	SD	NDB
235	IMPACT468	737	Post	SQCLC	F	50 66	Ever	2	Mono	1.63	1	PD	NDB
230	IMPACT468	813	Post Pre	ADC	M	72	Ever	2	Mono	5.50	0	PD	NE
237	IMPACT468	874	Pre	ADC	F	68	Never	2	Mono	2.67	1	PD	NDB
230	IMPACT468	1,126	Pre	ADC	M	76	Ever	2	Mono	1.87	1	SD	NDB
239	IMPACT468	725	Pre	NOS	F	88	Ever	1	Mono	4.13	0	PR	NE

Abbreviations: ADC, adenocarcinoma; BOR, best overall response; CR, complete response; DCB, durable clinical benefit; F, female; IMPACT, Memorial Sloan Kettering Integrated Mutation Profiling of Actionable Cancer Targets panel; LC-NE, large-cell neuroendocrine carcinoma; M, male; NOS, non-small-cell lung cancer not otherwise specified; NCB, no clinical benefit; NE, not evaluable for benefit posttreatment (samples taken after beginning of treatment); PD, progressive disease; PFS, progressionfree survival; PR, partial response; SD, stable disease; SQCLC, squamous cell carcinoma. *Patient-reported smoking status. †Prior courses of cytotoxic chemotherapy.

#Mono, anti-programmed death-1 or anti-programmed death-ligand 1 [anti-PD-(L)1] monotherapy; combo, anti-PD-(L)1 + anti-cytotoxic T-cell lymphocyte-4 combination therapy.

§Event (1) or censor (0) for PFS.

||By Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1.

Table A3. WES Metrics and Comparison With Targeted Next-Generation Sequencing								
Patient ID	Time Point of Tissue Sample Used	Same Tissue Sample Used for WES and MSK-IMPACT?*	Same DNA Aliquot Used for WES and MSK-IMPACT?*	Mean Tumor Coverage (WES)	Mean Normal Coverage (WES)	TMB† (WES)	TMB† (MSK-IMPACT)	
2	Pretreatment	1	0	206	76	19	1.020408163	
10	Pretreatment	0	0	267	102	98	4.081632653	
12	Pretreatment	1	1	212	97	464	22.641509430	
19	Pretreatment	1	1	308	238	342	11.224489800	
24	Pretreatment	1	1	193	126	337	13.265306120	
25	Pretreatment	1	1	223	96	64	4.081632653	
28	Pretreatment	1	1	309	102	550	23.469387760	
30	Pretreatment	1	1	216	98	89	2.040816327	
37	Pretreatment	1	1	263	148	374	15.306122450	
38	Pretreatment	0	0	139	126	54	4.081632653	
43	Pretreatment	1	1	198	154	121	2.040816327	
45	Pretreatment	1	0	209	126	746	17.346938780	
46	Pretreatment	1	1	309	162	385	11.224489800	
47	Pretreatment	1	1	475	179	224	9.433962264	
50	Pretreatment	1	1	278	94	70	6.122448980	
52	Pretreatment	1	0	196	120	27	4.081632653	
62	Pretreatment	1	1	274	124	85	4.081632653	
65	Pretreatment	1	1	198	122	470	34.905660380	
67	Pretreatment	1	1	373	89	966	48.113207550	
70	Pretreatment	0	0	230	132	314	15.094339620	
71	Pretreatment	1	1	380	146	181	8.490566038	
72	Pretreatment	1	1	204	108	28	3.773584906	
73	Pretreatment	1	0	246	137	1147	34.905660380	
74	Pretreatment	0	0	165	65	179	10.377358490	
82	Pretreatment	1	1	191	103	254	4.716981132	
84	Pretreatment	1	1	233	162	117	6.603773585	
91	Pretreatment	1	1	400	121	258	14.150943400	
91 94	Pretreatment	1	1	400 86	84	18	0.943396226	
94 100		0	1	203	133	1	3.773584906	
	Pretreatment	0	0	173	133	228		
105	Pretreatment		1				5.660377358	
109	Pretreatment	1		224	75	334	10.377358490	
113	Pretreatment	0	0	210	141	124	9.433962264	
116	Pretreatment	÷		238	168	48	6.603773585	
121	Pretreatment	1	1	228	153	227	5.660377358	
122	Pretreatment	1	1	309	92	91	4.716981132	
132	Pretreatment	0	0	104	92	51	4.716981132	
136	Pretreatment	1	1	349	127	165	7.547169811	
141	Pretreatment	1	1	77	140	135	13.207547170	
142	Pretreatment	1	1	79	137	296	15.094339620	
144	Pretreatment	0	0	295	112	30	2.830188679	
146	Pretreatment	1	1	291	142	57	2.830188679	
152	Pretreatment	1	1	90	119	226	5.660377358	
155	Pretreatment	1	1	317	104	751	23.584905660	
159	Pretreatment	1	1	92	125	170	5.660377358	
163	Pretreatment	1	1	219	188	207	7.547169811	
174	Pretreatment	1	1	722	151	171	8.490566038	
176	Pretreatment	1	1	84	94	124	2.830188679	
179	Pretreatment	0	0	204	142	67	2.830188679	
190	Pretreatment	1	1	93	86	227	6.603773585	

Abbreviations: MSK-IMPACT, Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets; TMB, tumor mutation burden; WES, whole-exome sequencing. *1 = yes; 0 = no.

†Nonsynonymous mutation burden rate normalized by megabase covered.

Predictors of Immunotherapy Response Derived From Targeted NGS

Patient Characteristic	MSK-IMPACT, No. (%)	All NSCLC, No. (%)	P
No. of patients	240	759	
Median age, years (range)	66 (22-92)	66 (22-93)	.32
Sex			.85
Male	118 (49)	368 (48)	
Female	122 (51)	391 (52)	
Histology			.98
Adenocarcinoma	186 (78)	586 (77)	
Squamous	34 (14)	121 (16)	
Other	20 (8)	52 (7)	
Smoking status			.41
Ever	193 (80)	629 (83)	
Never	47 (20)	131 (17)	
Line of therapy			.78
First	51 (21)	183 (24)	
Second	127 (53)	351 (46)	
Third or more	62 (26)	225 (30)	
Treatment			.54
PD-(L)1, monotherapy	206 (86)	663 (87)	
PD-(L)1 + CTLA-4, combination therapy	34 (14)	96 (13)	

Abbreviations: CTLA-4, cytotoxic T-cell lymphocyte-4; MSK-IMPACT, Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets; NSCLC, non-small-cell lung cancer; PD-(L)1, programmed death-1 or programmed death-ligand 1.