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Abstract

Background: Current diagnostic tests for hereditary spherocytosis (HS) focus on the detection of hemolysis or indirectly
assessing defects of membrane protein, whereas direct methods to detect protein defects are complicated and difficult
to implement. In the present study, we investigated the patterns of genetic variation associated with HS among patients
clinically diagnosed with HS.

Methods: Multi-gene targeted sequencing of 43 genes (17 RBC membrane protein-encoding genes, 20 RBC enzyme-
encoding genes, and six additional genes for the differential diagnosis) was performed using the Illumina HiSeq platform.

Results: Among 59 patients with HS, 50 (84.7%) had one or more significant variants in a RBC membrane protein-
encoding genes. A total of 54 significant variants including 46 novel mutations were detected in six RBC membrane
protein-encoding genes, with the highest number of variants found in SPTB (n = 28), and followed by ANK1 (n = 19),
SLC4A1 (n = 3), SPTA1 (n = 2), EPB41 (n= 1), and EPB42 (n = 1). Concurrent mutations of genes encoding RBC enzymes
(ALDOB, GAPDH, and GSR) were detected in three patients. UGT1A1 mutations were present in 24 patients (40.7%). Positive
rate of osmotic fragility test was 86.8% among patients harboring HS-related gene mutations.
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Conclusions: This constitutes the first large-scaled genetic study of Korean patients with HS. We demonstrated that
multi-gene target sequencing is sensitive and feasible that can be used as a powerful tool for diagnosing HS. Considering
the discrepancies of clinical and molecular diagnoses of HS, our findings suggest that molecular genetic analysis is
required for accurate diagnosis of HS.
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Background

Hereditary spherocytosis (HS) is the most common

cause of hereditary hemolytic anemia (HHA) character-

ized by the presence of spherocytes in peripheral blood

smear (PBS) [1, 2]. HS occurs in 1 in 2000 Caucasians,

with less common frequency in Asians [1, 3, 4]. The

crude incidence of HS in Korea was reported as 1 in

every 5000 births [5]. Approximately 75% cases of HS

are inherited as autosomal dominant (AD) mutations,

whereas the remaining cases involve autosomal recessive

(AR) or de-novo mutations [1].

HS is caused by a deficiency in or dysfunction of mem-

brane proteins, including spectrin, ankyrin 1, band 3, and

protein 4.2, associated with the RBC cytoskeleton [3, 4, 6].

Defective membrane proteins disrupt the vertical linkage

between the RBC membrane cytoskeleton and the

phospholipid bilayer, causing RBCs to lose its biconcave

characteristics and become spherical in shape [3, 4, 6].

This abnormal RBC morphology leads to osmotically fra-

gile cells that are selectively trapped and destroyed in the

spleen [3, 4, 6]. A major clinical manifestation of HS is

hemolytic anemia, which exhibits a wide range of clinical

manifestations from asymptomatic to life-threatening

anemia requiring regular RBC transfusions [1, 2]. Other

clinical symptoms include splenomegaly, jaundice, and

gallstones, depending on disease severity [1, 2].

We have been operating the Korean Hereditary

Hemolytic Anemia Working Party (KHHAWP) of the Ko-

rean Society of Hematology for 7 years since 2010, which

name has been changed to RBC Disorder Working Party

since November 2016. From 2007 to 2011, 195 patients

(121 males and 74 females) diagnosed with HHA from 25

institutions were registered [7]. The KHHAWP presented

standard operating procedure (SOP) for the diagnosis of

HHA (Fig. 1) [5], which is similar to ICSH (International

Council for Standardization in Haematology) guideline [8]

except for excluding acid glycerol lysis time test as a

screening test. Instead of gel electrophoresis analysis of

erythrocyte membranes, the KHHAWP adopted mass

spectrometry method as a confirmatory test, which is per-

formed in one central laboratory in Korea.

The diagnosis of HS is based upon a combination of

positive family history, clinical features and presence of

spherocytes in PBS, which are detectable in 97% of

patients [9]. When the diagnosis of HS is equivocal,

additional laboratory tests are recommended such as os-

motic fragility test (OFT), autohemolysis test, flow cy-

tometry [OFT and eosin-5-maleimide (EMA) binding

test] for screening test, and protein analysis using gel

electrophoresis or mass spectrometry can be additionally

tested [10–16]. However, none of the current diagnostic

test can detect all patients with HS.

Considering the limitations of existing diagnostic tests,

development of a simple and direct method to measure

RBC membrane protein abnormalities to confirm HS is re-

quired. Analysis of RBC membrane protein-encoding genes

is expected that it can be used complementarily with the

conventional confirmatory tests [1, 11]. Multi-gene target

sequencing for RBC membrane protein-encoding genes is

feasible and reliable diagnostic method to detect mutations

in patients affected by various disorders of the RBC mem-

brane. Particularly, gene testing is important in young chil-

dren with congenital anemia, transfusion-dependent

patients, and in families with variable clinical expression or

complex inheritance patterns [17–19].

In the present study, we investigated the genetic vari-

ation of RBC membrane protein-encoding genes using

multi-gene target sequencing, comparing with clinical

features. A total of 43 genes was included; 17 RBC mem-

brane protein-encoding genes and 20 RBC enzyme-

encoding genes, in context with six additional candidate

genes for the purpose of differential diagnoses [thalas-

semia, congenital dyserythropoietic anemia (CDA),

paroxysmal nocturnal hemoglobinuria (PNH), and Gil-

bert syndrome].

Methods

Patients

A total of 59 patients with HS including 31 males and

28 females with a median age of 7 years (range: 1–81

years), were registered between July 2013 and July 2014

from the pediatrics and internal medicine departments

of 25 institutions in Korea. HS was diagnosed according

to the SOP recommended by the KHHAWP of the Ko-

rean Society of Hematology (Fig. 1) [5].

Along with clinical data including age, sex, symptoms

and family history, we collected the results of laboratory

tests including CBC with RBC index, reticulocyte count,

total and direct bilirubin concentration, lactate dehydro-

genase (LDH), iron, total iron-binding capacity (TIBC),

Choi et al. Orphanet Journal of Rare Diseases          (2019) 14:114 Page 2 of 13



ferritin, PBS, and OFT by reviewing medical records

(Table 1). Blood samples were collected from each

patient after obtaining their written consent.

Targeted sequencing

To gain insight into the genetic variations, we per-

formed targeted sequencing for 43 gene panel (Add-

itional file 1: Table S1). gDNA shearing to generate the

standard library and the hybridization step targeting

only exonic regions were performed by Celemics Inc.

(Seoul, Korea). The final quality was assessed using

the Agilent 2200 TapeStation System (Santa Clara,

CA, USA). We sequenced a total target length of

259-kb regions using the paired-end 150-bp rapid-run

sequencing mode on an Illumina HiSeq 2500 platform.

The mean sequencing depth for the targeted regions

(259-kb) was 231-fold (n = 59). Because a matched

control sample was not included in this study, we ap-

plied a stringent variant selection pipeline to prioritize

the high-confidence set of somatic mutations.

Variant calling

The filtration process was performed as follows. Variants

within non-exonic regions were removed. Variants that

do not have enough depth were also filtered out to re-

move false positives. Common variants on 1000 genome

projects with more than 5% of allele frequency were fil-

tered out. CADD score shows predictive pathogenicity

of variants. It considers diverse annotations from allelic

diversity to functionality, in order to estimate pathogenic

variants. In this study, CADD scores below 10 were

cut-off for filtration. After these filters, in-house variants

were also removed to make filtered variant lists. Valid-

ation of variant call was performed by target gene

sequencing of involved genes.

Simulation of the effect of mutated genes on protein

structure

To predict how gene mutation affect protein structure, we

visualized three-dimensional (3-D) spatial protein struc-

ture following acquisition of their structural information

(http://www.proteinmodelportal.org) (Additional file 1:

Fig. 1 Standard operating procedure for the diagnosis of hereditary hemolytic anemia (HHA) by HHA Working Party of Korean Society of
Hematology [5]
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Table 1 Clinical characteristics of patients with HS in Korea

Characteristics Total patients
(n = 59)

Patients with
gene mutation
(n = 50)

Patients without
gene mutation
(n = 9)

P value between group
with mutation vs.
without mutation

Sex, n (%) 0.597

Male 31 (52.0) 27 (54.0) 4 (44.4)

Female 28 (48.0) 23 (46.0) 5 (55.6)

Age (years) 0.566

Median 7 7 8

Range 1–81 1–81 2–17

Family history of HS, n (%) 0.139

Positive 20 (33.9) 16 (32.0) 4 (44.4)

Negative 39 (66.1) 34 (68.0) 5 (55.6)

Clinical symptoms, n (%)

Splenomegaly 38/59 (64.4) 31/50 (62.0) 7/9 (77.8) 0.363

Neontal jaundice 28/54 (51.9) 24/45 (53.3) 4/9 (44.4) 0.724

Hepatomegaly 9/53 (17.0) 9/44 (20.5) 1/9 (11.1) 1.000

Splenectomy 13/58 (22.4) 10/49 (20.4) 3/9 (40.0) 0.398

Aplastic crisis 14/56 (25.0) 11/47 (23.4) 3/9 (30.0) 0.676

Gallstones 10/57 (17.5) 9/48 (18.8) 1/9 (33.3) 1.000

Hematologic parameters, mean

Hemoglobin (g/dL) (range) 8.4 (3.6–13.6) 8.4 (3.6–13.6) 8.3 (5.8–12.1) 0.476

MCV (fL) (range) 80.9 (62.3–107.0) 80.6 (62.3–107.0) 85.3 (70.4–107.0) 0.209

MCHC (g/dL) (range) 35.3 (30.8–38.2) 35.2 (30.8–38.2) 35.2 (31.5–37.9) 0.279

Markers of hemolysis, mean

Reticulocyte count (%) (range) 7.5 (0.5–24.8) 7.4 (0.5–24.8) 7.2 (3.4–13.3) 0.461

Total bilirubin (mg/dL) (range) 4.1 (0.8–19.1) 4.0 (0.8–19.1) 4.3 (1.1–6.4) 0.320

Direct bilirubin (mg/dL) (range) 0.7 (0.2–1.3) 0.7 (0.3–1.3) 0.6 (0.4–0.8) 0.640

LDH (IU/L) (range) 508 (187–1557) 522 (187–1557) 448 (198–737) 0.843

Iron status parameters, mean

Iron (μr/dL) (range) 101 (26–245) 98 (26–159) 111 (51–245) 0.198

TIBC (μT/dL) (range) 266 (108–486) 269 (108–486) 241 (195–274) 0.769

Ferritin (ng/mL) (range) 342 (32–4671) 360 (32–4671) 339 (74–278) 0.657

Grading of peripheral spherocytes, n (%) 0.622

0 5 (8.5) 4 (8.0) 1 (11.1)

1+ or slight (2–5%), 18 (30.5) 15 (30.0) 3 (33.3)

2+ or moderate (6–15%), 20 (33.9) 16 (32.0) 4 (44.4)

3+ or marked (> 16%) 16 (27.1) 15 (30.0) 1 (11.1)

Sex, n (%) 0.597

Male 31 (52.0) 27 (54.0) 4 (44.4)

Female 28 (48.0) 23 (46.0) 5 (55.6)

Severity, n (%) 0.678

Mild 6 (10.2) 5 (10.0) 1 (11.1)

Moderate 27 (45.8) 24 (48.0) 3 (33.3)

Severe 26 (44.1) 21 (42.0) 5 (55.6)

Osmotic fragility tests, n (%) 0.614

Positive 41 (69.5) 33 (66.0) 8 (88.9)
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Table S2). We used PyMOL (http://www.pymol.org) to

visualize 3-D representations of the protein, modified pro-

tein structures based on genetic mutation profiles from

next-generation sequencing (NGS) results.

Statistical analyses

Stata/SE (v.14; StataCorp, College Station, TX, USA) was

used for data analyses. Statistical differences in terms of

continuous clinical characteristic variables were esti-

mated by two sample t test. The significance of differ-

ences in categorical variables between groups was

determined by the Pearson χ2 test or Fisher’s exact test.

The level of significance was set at P < 0.05.

Results

Clinical characteristics

Among 59 patients with HS, 20 (33.9%) had a family his-

tory of HS, whereas symptoms of splenomegaly, neo-

natal jaundice, and hepatomegaly were exhibited in 38 of

59 (64.4%), 28 of 54 (51.9%), and 10 of 59 (16.7%) pa-

tients, respectively. Mean values for laboratory tests were

as follows: hemoglobin concentration 8.4 g/dL (3.6–13.6

g/dL); corpuscular volume 80.9 fL (62.3–107.0 fL); cor-

puscular hemoglobin concentration 35.3 g/dL (30.8–

38.2 g/dL); reticulocyte count indicating hemolysis 7.5%

(0.5–24.8%); total bilirubin/direct bilirubin 4.1/0.7 mg/dL

(0.8–19.1/0.2–1.3 mg/dL); LDH 508 IU/L (187–1557 IU/

L); parameters representing iron profile, including iron

101 μg/dL (26–245 μg/dL), TIBC 266 μg/dL (108–

486 μg/dL); and ferritin concentration, 342 ng/mL (32–

4671 ng/mL). PBS was rated for spherocytes on a

four-point scale [20] from 0, 1+ or slight (2–5%), 2+ or

moderate (6–15%), and 3+ or marked (> 16%) and the

number of smears returning 0, 1+ or slight, 2+ or mod-

erate and 3+ or marked were 5 (8.5%), 18 (30.5%), 20

(33.9%), and 16 (27.1%) patients, respectively. According

to HS-severity criteria [11], severe, moderate, and mild

cases were 26 (44.1%), 27 (45.8%), and 6 (10.2%) pa-

tients, respectively (Table 1).

Variants profile of RBC membrane protein-encoding

genes

Among 17 RBC membrane protein-encoding genes

examined, significant disease-related mutations were ob-

served in six: SPTB (spectrin, beta), ANK1 (ankyrin 1),

SLC4A1 (solute carrier family 4, member 1), SPTA1

(spectrin, alpha 1), EPB41 (erythrocyte membrane pro-

tein band 4.1), and EPB42 (erythrocyte membrane pro-

tein band 4.2) (Fig. 2). A total of 54 significant

mutations were observed, of which eight were previously

reported as pathogenic in patients with HS and 46 vari-

ants were novel mutations (Additional file 1: Table S3).

The highest number of mutations were found in SPTB

(n = 28), and followed by ANK1 (n = 19), SLC4A1 (n = 3),

SPTA1 (n = 2), EPB41 (n = 1), and EPB42 (n = 1). Ac-

cording to the American College of Medical Genetics

and Genomics guidelines [21], 12 were pathogenic muta-

tions (including eight previously reported variants), 29

were likely pathogenic mutations, and 13 were classified

as having uncertain significance. All the variants have

been confirmed by Sanger sequencing using 35 primer

sets (Additional file 1: Table S4).

Variant characteristics in patients with HS

Among 59 patients with HS, 50 (84.7%) had at least one

mutation in a RBC membrane protein-encoding gene

(Fig. 3). Twenty eight patients carried mutations in the

SPTB gene, and 20 patients had mutations in the ANK1

gene. Forty patients (67.8%) carried a single mutation,

and 10 patients (16.9%) carried two mutations. Among

40 patients with a single mutation, the most frequently

mutated genes were SPTB and ANK1, which were mu-

tated in 21 and 17 patients, respectively. The SCL4A1

mutation was found in two patients. Among the 10 pa-

tients harboring two mutations, one carried two muta-

tions in a single gene (ANK1), and three patients carried

mutations in both SPTB and SPTA1. Combinations of

mutations in SPTB and ANK1, SPTB and EPB41, and

SPTB and EPB42 were detected in one patient each. In

addition, combination with RBC enzyme-encoding gene

mutations were found in three patients [SLC4A1 and

GAPDH (glyceraldehyde-3-phosphate dehydrogenase),

ANK1 and GSR (glutathione reductase), SPTB and

ALDOB (aldolase B)] (Additional file 1: Table S5).

Nine patients carried no mutation on the RBC mem-

brane protein- or enzyme-encoding genes. Coexisting mu-

tations of UGT1A1 (UDP glycosyltransferase 1 family,

polypeptide A1) gene were detected in 24 of 59 HS pa-

tients (40.7%), with UGT1A1 mutations combined with

other gene mutations in 20 patients and without other

gene mutation in four patients (Table 2, Additional file 1:

Table S6). Total bilirubin level or presence of neonatal

Table 1 Clinical characteristics of patients with HS in Korea (Continued)

Characteristics Total patients
(n = 59)

Patients with
gene mutation
(n = 50)

Patients without
gene mutation
(n = 9)

P value between group
with mutation vs.
without mutation

Negative 6 (10.2) 5 (10.0) 1 (11.1)

NA 12 (20.3) 12 (24.0) 0

Abbreviation: HS hereditary spherocytosis, NA not assessable

Choi et al. Orphanet Journal of Rare Diseases          (2019) 14:114 Page 5 of 13

http://www.pymol.org


Fig. 2 Characteristics of significant variants for RBC membrane protein-encoding genes; SPTB, ANK1, SLC4A1, SPTA1, EPB41, EPB42. Abbreviations: SPTB,
spectrin, beta; ANK1, ankyrin 1; SLC4A1, solute carrier family 4, member 1; SPTA1, spectrin, alpha 1; EPB41, erythrocyte membrane protein band 4.1; EPB42,
erythrocyte membrane protein band 4.2

Fig. 3 Number of patients with RBC membrane protein-encoding gene mutations. Abbreviations: SPTB, spectrin, beta; SPTA1, spectrin, alpha 1; EPB41,
erythrocyte membrane protein band 4.1; EPB42, erythrocyte membrane protein band 4.2; ALDOB, aldolase B; ANK1, ankyrin 1; GSR, glutathione reductase;
SLC4A1, solute carrier family 4, member 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase
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Table 2 Gene mutations, laboratory tests and clinical characteristics

Patient ID Membrane
gene mutation

Other mutation OFT PB spherocytes Splenectomy Family history
of HS

Severity
of HS

Additional tests
with positive results

1 SPTB, EPB41 UGT1A1 NA ♦ ▲▲▲ SDS-PAGE (Spectrin)

2 ANK1 + ♦♦♦ (HA, father) ▲▲

3 SPTB NA ♦♦ AD ▲▲▲ Flow cytometrya

4 SPTB UGT1A1 + ♦♦ ▲▲

5 + ♦♦ ● AD ▲▲▲ SDS-PAGE (Spectrin)

6 ANK1 – ♦♦ ● ▲▲▲ SDS-PAGE (Spectrin)

7 SPTB + ♦ ▲▲▲

8 SPTB, SPTA1 + ♦ AD ▲▲▲

9 SPTB, SPTA1 NA ♦ AD ▲▲▲ Flow cytometrya

10 + ♦♦ ● (HA, mother) ▲▲▲

11c SPTB UGT1A1 NA ♦♦♦ ▲▲▲

12 ANK1 + ♦♦ ● ▲▲▲

13 SPTB UGT1A1 + ♦ ▲▲

14 + ♦ ● AD ▲▲▲

15 ANK1
b NA ♦♦ AD ▲▲ SDS-PAGE (Spectrin)

16 ANK1
b

UGT1A1 NA ♦♦♦ AD ▲▲▲

17 UGT1A1 + ♦♦♦ ▲▲

18 ANK1 NA ♦♦♦ AD ▲▲▲

19 ANK1 UGT1A1, UGT1A1 + ♦♦ ▲▲

20 SPTB, SPTA1 UGT1A1 – ♦♦ AD ▲▲▲

21c SLC4A1
b

UGT1A1 NA – (HA, sibling) ▲▲

22 UGT1A1 + ♦ AD ▲▲▲

23 SPTB + ♦♦♦ AD ▲▲▲

24 UGT1A1 + ♦♦ (HA, mother) ▲▲▲

25c ANK1
b NA ♦♦♦ ▲▲

26 ANK1 + ♦♦♦ ● AD ▲▲

27 ANK1 + ♦ ▲▲▲

28 SPTB + ♦♦ ● AD ▲▲

29 ANK1
b

GSR + ♦♦ ▲▲

30 SPTB ALDOB + ♦♦♦ ▲▲

31c SPTB – NA ♦♦♦ ▲▲▲

32 SLC4A1
b

UGT1A1, UGT1A1 + ♦♦♦ ▲▲

33 SPTB UGT1A1 + ♦♦ ● ▲▲▲

34 SPTB – – ♦ AD ▲▲

35 SPTB
b
, EPB42 UGT1A1 + – ▲▲ Autohemolysis

36 SPTB + ♦♦ ● ▲▲

37 ANK1 + ♦♦ ● ▲▲

38 UGT1A1 + ♦ ▲ SDS-PAGE (Spectrin)

39c ANK1 UGT1A1 – ♦ ▲

40 SPTB + ♦♦ ● ▲▲▲

41 ANK1 + ♦♦♦ ▲

42 ANK1 + ♦♦ ▲▲▲

43c ANK1, ANK1 UGT1A1 NA ♦ ▲▲
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jaundice did not differ significantly from those without

UGT1A1 mutations.

Genotype and phenotype correlations in patients with HS

Comparisons of laboratory findings and clinical charac-

teristics showed no significant differences in hematologic

parameters, hemolysis markers, iron status parameters,

sex, family history of HS, number of splenectomized pa-

tients, and disease severity according to the gene muta-

tion type and number of mutation or presence of

UGT1A1 mutation (Table 1, Additional file 1: Table S6).

Among 59 patients with HS, nine patients (15.3%)

without mutation associated with RBC membrane pro-

tein-encoding genes showed similar baseline character-

istics in most aspects as compared with those with

mutations (Table 1). Median age of patients without

mutation was 8 years, and the proportion of family his-

tory, clinical symptoms, grading of peripheral sphero-

cytes, and OFT results did not differ significantly from

those with mutation.

Intercorrelations between gene mutations and laboratory

findings: OFT, the presence of spherocytes in PBS, and

gene mutations

The results of genetic test were matched with routine

diagnostic tests for HS including OFT and the presence

of spherocytes in PBS (Table 3, Fig. 4). Among 59 pa-

tients with clinical HS, results of NaCl induced OFT

(room temperature and/or 24 h incubated) was avail-

able in 47 patients and 41 of them (87.2%) showed posi-

tive results (Additional file 1: Figure S2). Thirty three of

47 patients (70.2%) showed positivity in both OFT and

gene test, while one patients (2.1%) showed negative re-

sults in both OFT and gene test. In six out of 47 pa-

tients (12.7%) with negative OFT, five carried mutations

in RBC membrane protein-encoding genes. Among 38

patients harboring HS-related gene mutations, 33

showed positive OFT (86.8%).

Spherocytes in PBS were present in 54 of 59 patients

(91.5%). Among five patients without spherocytes in

PBS, four carried mutations in RBC membrane protein-

encoding genes (Additional file 1: Table S7). One of 59

patients who had anemia and family history of HS

showed negative results on all three tests.

Discussion
Using multi-gene target sequencing, 50 of 59 patients

(84.7%) of clinically diagnosed HS proved to be molecu-

lar HS and three patients harbored coexisting gene mu-

tations of RBC enzymes (ALDOB, GAPDH, and GSR) in

this study. Mutations of six kinds of RBC membrane

Table 2 Gene mutations, laboratory tests and clinical characteristics (Continued)

Patient ID Membrane
gene mutation

Other mutation OFT PB spherocytes Splenectomy Family history
of HS

Severity
of HS

Additional tests
with positive results

44 SPTB,ANK1 UGT1A1 + ♦ ▲▲

45 ANK1 UGT1A1 + ♦♦♦ ▲▲

46 SPTB UGT1A1 + ♦♦♦ ▲▲

47 SPTB + ♦ (HA, sibling) ▲▲▲

48c SPTB
b NA ♦ ▲▲▲

49c SPTB UGT1A1 + – ▲▲

50 ANK1 + – AD ▲▲

51 SPTB UGT1A1 + ♦ AD ▲▲

52 + ♦♦ ▲▲

53 ANK1 + ♦ ▲

54 – – ● AD ▲▲▲

55 SPTB – ♦♦♦ AD ▲

56 SLC4A1 UGT1A1, GAPDH + ♦ ▲

57 SPTB + ♦♦♦ AD ▲▲▲

58 SPTB UGT1A1 + ♦♦ AD ▲▲

59 SPTB + ♦ ▲▲▲

aFlow cytometry (OFT and EMA binding test), bPreviously reported variants (see Additional file 1: Table S3), cEight patients who did not meet the diagnostic

criteria of HS without genetic testing

PB spherocytes [20] ♦, 1+; ♦♦, 2+; ♦♦♦, 3+, Severity of HS [8] ▲, mild; ▲▲, moderate; ▲▲▲, severe

Abbreviations: AD autosomal dominant, ALDOB aldolase B, ANK1 ankyrin 1, EPB41 erythrocyte membrane protein band 4.1, EPB42 erythrocyte membrane protein

band 4.2, GAPDH glyceraldehyde-3-phosphate dehydrogenase, GSR glutathione reductase, HA hemolytic anemia, SLC4A1 solute carrier family 4, member 1, SPTA1

spectrin, alpha 1, SPTB spectrin, beta, UGT1A1, UDP glycosyltransferase 1 family, polypeptide A1, OFT osmotic fragility test, NA not assessable
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protein-encoding genes (total 54 variants) were de-

tected in order of SPTB, ANK1, SLC4A1, SPTA1,

EPB41, and EPB42.

To find whether there is an ethnic difference in HS

related variants, we reviewed the literatures on the re-

ports of HS related mutations in comparison with the

results of the present study, although the methods are

different among reported mutations of HS. Table 4

shows summary of comparison among previous reports

by NGS [22–24]. With regards to the frequency of mu-

tated gene, the SPTA1 mutation was the most common

followed by the SPTB mutation in the reports from the

United States [22, 23]. Meanwhile, a study in Netherland

revealed that the ANK1 mutation was the most common

mutation followed by the SPTA1 mutation [24]. In the

present study, SPTB mutations was the most common

mutation, followed by ANK1 mutations. Particularly note-

worthy, SPTA1 mutations was rarely detected, compared

to that of the United States. Briefly, mutation frequency by

NGS study in Korean was different from those of Cauca-

sian. Korean patients with HS showed higher frequency of

ANK1 mutation. Consistent with our study, another study

in Korea reported that 25 patients with HS carried one

heterozygous mutation of ANK1 (n = 13) or SPTB (n = 12)

but none carried mutations in SPTA1, SLC4A1, or EPB42

by Sanger sequencing [25]. Previous molecular testing

demonstrated that mutations in the ANK1, SPTB,

SLC4A1, SPTA1, and EPB42 genes account for 60, 10, 15,

Table 3 Comparison of OFT, PBS and gene test results in patients with HS

RBC membrane protein-encoding genes

No. of patients with mutation (%) No. of patients without mutation (%)

OFT
(n = 47)

Positive 33 (70.2) 8 (17.0)

Negative 5 (10.6) 1 (2.1)

PBS
(n = 59)

Positive 46 (78.0) 8 (13.6)

Negative 4 (6.8) 1 (1.7)

Abbreviation: OFT osmotic fragility test, PBS peripheral blood cell smear

Fig. 4 A diagram showing the number of patients with positive results of gene mutation, osmotic fragility test, and peripheral blood (PB)
spherocytes in 58 of 59 patients with HS. One of 59 patients who had anemia and family history of HS showed negative result on all three tests
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10, and 5% cases of HS, respectively, in the United States

and Europe [26, 27].

Ethnic differences in RBC membrane protein defects

were also reported in previous studies according to sodium

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) analyses (Table 5) [9, 16, 28–32]. A Korean study in

2000 [28] reported that protein 4.2 defects were detected at

a higher frequency than those of band 3 in the United

States and Europe. That study also reported that most de-

fects were found in ankyrin 1 according to SDS-PAGE ana-

lysis, whereas most mutations were detected in the SPTB

followed by ANK1, according to our NGS results. Addition-

ally, protein defects were not observed was nine out of 27

patients (33.3%) [28]. Meanwhile, single defects in band 3

and spectrin constitute the primary variants reported in

Italy [9, 16], and a combined defect in spectrin/ankyrin is

frequently detected in patients in the United States and

Spain [6, 29, 30]. Regarding to the incidence of HS, an inci-

dence of Japan is highest among Asian countries, and the

defect in the 4.2 protein in Japan is more frequent as com-

pared to the United States and Europe [31, 32]. Those dif-

ferent profiles of HS among countries might be due to

complexity associated with SDS-PAGE methods and lack of

objectiveness in the interpretation of the results. The

interpretation of SDS-PAGE is based on the comparison

with normal healthy control. For that reason, the

standardization is not possible and the comparison of

SDS-PAGE results cannot give a meaningful conclusion. By

contrast, nucleotide sequence analysis gives us straightfor-

ward results, and the interpretation of results is objective.

Inherited pattern of HS differs depending on the gene.

In most HS patients, inheritance is AD and each of HS

patients has a unique mutation [11]. However, SPTA1 or

EPB42 mutation is inherited with AR pattern. Rarely,

double dominant HS due to defects in SLC4A1 or SPTB

are reported [33], which results in fetal death or severe

transfusion-dependent hemolytic anemia presenting in

the neonatal period. SPTB and SPTA1 mutations can be

AD or de novo, whereas ANK1mutation can be AD, AR,

or de novo. SLC4A1 mutation is AD and EPB42 is AR.

Inherited pattern is not clearly revealed in EPB41. Of

note, all the significant variants in RBC membrane

protein-encoding genes are heterozygous. Hence, muta-

tions of genes inherited in AR pattern such as EPB41

and EPB42 gene possibly cannot be a direct cause of HS,

requiring additional mutation to cause hemolytic pheno-

type. In the present study, two patients harboring EPB41

and EPB42 mutations also carried another mutation in

Table 4 NGS results of RBC membrane protein-encoding genes in patients with HS

RBC membrane-encoding gene USA 1 [22] USA 2 [23] Netherlands [24] Korea (this study)

No. of patients with mutation (%) 10/20a (50.0) 16 /19b (84.2) 52 /66 (78.9) 50/59 (84.7)

No. of total mutations 13 21 73 57

No. of different variants 11 15 53 54

ANK1 1 3 14 19

SPTA 6 5 25 2

SPTB 4 4 8 28

SCL4A1 0 3 4 3

EBP41 NA 0 1 1

EBP42 NA 0 1 1

aincluding 2 patients suspected having hereditary elliptocytosis
bincluding patients with diagnosed as HHA

Abbreviation; NA not assessable

Table 5 Literature review on SDS-PAGE results of RBC membrane protein abnormalities in patients with HS (%)

RBC membrane protein Italy2[16]
(n = 87)

Italy1[9]
(n = 300)

USA2[6]
(n = 55)

USA1[29]
(n = 166)

Spain[30]
(n = 62)

Japan2*[31]
(n = 60)

Japan1[32]
(n = 47)

Korea[28]
(n = 27)

Band 3 23 (26) 158 (53) 10 (18) 38 (23) 0 (20) 15 (32) 3 (11)

Spectrin only 36 (41) 98 (33) 7 (13) 0 19 (31) 0 8 (15) 2 (7)

Ankyrin only 0 13 (4)† 0 0 4(6) (7) 1 (2) 8 (30)

Spectrin/ankyrin 16 (18) 6 (11) 100 (60) 34 (55) 0 1 (2) 1 (4)

Other combination – – – – – – 15 (34) –

4.2 protein 6 (7) 2 (1) 0 3 (2) 0 (45) 3 (6) 4 (15)

Undetected 6 (7) 29 (10) 32 (58) 25 (15) 5 (8) (28) 4 (9) 9 (33)

*Only % without the number of the patients was presented in this study
†Including both Ankyrin only and Spectrin/ankyrin
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the SPTB gene (EPB41 and SPTB, EPB42 and SPTB in

each patient).

Interestingly, concurrent mutations of genes encod-

ing RBC enzymes (ALDOB, GAPDH, and GSR) were

detected along with heterozygous mutations of RBC

membrane protein-encoding genes in three patients.

Further analysis of enzyme activities in these patients is

necessary for validation. Of the 59 patients with HS ex-

amined in this study, 24 (40.7%) had significant

UGT1A1 variants. It was reported that a polymorphism

of UGT1A1 gene promoter homozygous insertion of

TA pairs (genotype UGT1A1*28/*28) might results in a

decrease in bilirubin glucuronidation activity, leading

to hyperbilirubinemia and late complication of patients

with HS, such as development gallstones [34, 35]. In

contrast, there are debates on the late impact of geno-

type of UGT1A1 [36]. However, a polymorphism of

UGT1A1 gene promoter was not included in this study.

Based on the results of the present study showing high

frequency of UGT1A1 variant with low enzymatic

activity, we infer that genotyping of UGT1A1 poly-

morphism might help to predict the development of

gallstones in HS.

The laboratory diagnosis of HS routinely relies on the

presence of spherocytes in PBS, OFT, and more

recently EMA binding test [10, 11, 37, 38]. Yet, there is

no single test that can confirm HS. We have matched

the results of genetic test with those of routine diagnos-

tic tests (Table 3). Among 50 patients harboring muta-

tions of encoding RBC membrane protein, 86.8%

showed positive OFT, while 70.2% of clinical HS

showed positive OFT. On the contrary, eight patients

(17.0%) with positive OFT result revealed no mutation

of membrane genes, and five (10.6%) with negative

OFT proved to harbor membrane gene mutation. Re-

garding to spherocytes, four of 50 patients (8%) harbor-

ing membrane gene mutation did not show spherocytes

in PBS. We retrospectively reviewed PBS to determine

the presence of spherocytes in those four patients who

did not show spherocytes in PBS but with RBC mem-

brane protein-encoding gene mutations. However, we

could not detect additional spherocytes. Conclusively,

OFT and spherocytes in PBS can be used in conjunc-

tion with genetic test for the -diagnosis of HS, giving

higher sensitivity and specificity.

With regards to the genotype-phenotype relationship,

we could not find any correlation between the genetic

test results and clinical characteristics including disease

severity, mean hemoglobin concentrations, splenomeg-

aly, gallstones, aplastic crisis and bilirubin levels ac-

cording to mutations of four genes (SPTB, ANK1,

SPTA1, and SLC4A1), except EPB41 and EPB42, which

were found in only one patient each, However, one

study reported that anemia was most severe in HS

patients with mutations on the ANK1 spectrin-binding

domain and splenectomy was more frequently per-

formed in patients with ANK1 mutations than in those

with SPTB mutations [25]. In addition, the other re-

ported that hemoglobin concentration was slightly

lower in patients with spectrin deficiency than with

band 3 deficiency [39].

Other NGS study on RBC membrane diseases re-

ported similar results (86.3%, 44 of 51 patients) [24].

This finding suggested a close correlation between clin-

ical diagnosis and gene mutations. In the present study,

molecular test could detect additional HS which could

be missed without molecular test (Fig. 4). Furthermore,

molecular test would be an effective method for neo-

nates or transfused individuals, since the result of OFT

and spherocytes in PBS can be unreliable, especially

when the patients are transfused [11]. Collectively, our

results suggest that mutation analyses will complement

with other conventional tests for accurate diagnosis of

HS. We consider the molecular test needs to be inte-

grated to the diagnostic criteria of HS.

The limitation of this study is that we did not per-

form the analysis on RBC membrane protein as a valid-

ation. Instead, we simulated 3-D spatial structure of

protein encoding mutated genes, predicting the effects

of gene mutations in silico. Although exact changes in

protein structure cannot be predicted based on 3-D

spatial structure, large-scale modification of the protein

due to frame shift or nonsense mutations can be visual-

ized and subsequent functional changes can be ex-

pected from structure analysis. Further family study or

functional studies using knockout mice needs to be

conducted to validate the significance of variants. An-

other limitation is that we could not match the results

of EMA binding test with genetic results, since our

study was done retrospectively. Nine patients who did

not harbor gene mutation of RBC membrane protein

(Additional file 1: Table S8), satisfied the diagnostic cri-

teria of HS suggested in the guideline [11]. Though they

satisfied those criteria, there are two possibilities that

they have other forms of hemolytic anemia or other

membrane gene mutations that is not included in our

multi-gene panel (e.g. channel defects such as KCNN4

as found in hereditary stomatocytosis) [40].

When we target the most frequent mutations only,

composition of gene panel with genes over 10% fre-

quency (SPTB and ANK1) will cover 94% (47 of 50 pa-

tients) of the diagnosis of HS. This could provide a

cheaper and more convenient method than current

strategies for diagnosis of HS. Regarding to the diag-

nostic guidelines suggested by international working

parties, we suggest that genetic test should be con-

ducted at least in patients without clues of laboratory

tests in spite of clinically suspected HS.
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Conclusions
This constitutes the first large-scaled genetic study of

Korean patients with HS. We detected 54 significant

HS-related mutations, including 46 novel mutations in

RBC membrane protein-encoding genes. We demon-

strated that multi-gene target sequencing is sensitive

and feasible that can be used as a powerful tool for diag-

nosing HS. Considering the discrepancies between clin-

ical and molecular diagnoses, use of molecular genetics

analysis provides an effective method for improving the

accuracy of HS diagnosis.

Additional file

Additional file 1: Figure S1. Significant variants diagrams for UGT1A1
gene. Figure S2. Results of NaCl induced OFT. Table S1. Multi-gene panel for
targeted sequencing. Table S2. List of protein simulation templates. Table S3.

List of significant variants detected in RBC membrane protein-encoding
genes. Table S4. Primer sets for all significant variants in RBC membrane
protein-encoding genes. Table S5. List of significant variants detected in RBC
enzyme-encoding genes among patients with HS. Table S6. List of UGT1A1
gene variants in patients with HS in Korea. Table S7. Clinical characteristics of
patients with HS without peripheral blood spherocytes. Table S8. Patients
without RBC membrane-encoding gene mutation. (DOCX 114 kb)

Abbreviations

AD: Autosomal dominant; ALDOB: Aldolase B; ANK1: Ankyrin 1;
AR: Autosomal recessive; CDA: Congenital dyserythropoietic anemia;
EMA: Eosin-5-maleimide; EPB42: Erythrocyte membrane protein band 4.2;
GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; GSR: Glutathione
reductase; HHA: Hereditary hemolytic anemia; HS: Hereditary spherocytosis;
ICSH: International Council for Standardization in Haematology;
IRB: Institutional Review Board; KHHAWP: The Korean Hereditary Hemolytic
Anemia Working Party; LDH: Lactate dehydrogenase; NA: Not assessable;
NGS: Next-generation sequencing; OFT: Osmotic fragility test; PBS: Peripheral
blood smear; PNH: Paroxysmal nocturnal hemoglobinuria; SLC4A1: Solute
carrier family 4, member 1; SNP: Single nucleotide polymorphism;
SOP: Standard operating procedure; SPTA1: Spectrin, alpha 1; SPTB: Spectrin,
beta; TIBC: Total iron-binding capacity

Acknowledgments

The authors thank the participating patients and their families. We also thank Dr.
YM Park and the Division of Statistics at the Medical Research Collaborating Center,
Seoul National University Bundang Hospital for assistance with statistical analysis.

Funding

Support was provided by: the National Research Foundation of Korea (NRF)
grant funded by the Korea government(MSIT) (NRF-2017R1A2A1A17069780)
http://www.nrf.re.kr/.

Availability of data and materials

The datasets used and/or analysed during the current study are available
from the corresponding author on reasonable request.

Authors’ contributions

HLJ, JHK and DSL designed the study. HSC, QC, HYS, HJK, HK, SJK, IK, JAK, HK,
KDP, KBP, MP, SKP, ESP, JAP, JEP, JKP, HJB, JHS, YJS, HSA, KHY, HSY, KSL, KCL,
MJL, SAL, JML, JHL, JAL, JWL, YWW, YTL, HWC, EJC, HLJ and DSL collected study
samples and data. QC, JAK, KOI, SNP, YP, JHK, and DSL processed blood
samples, performed mutation analysis and analyzed the study data. CHS, QC,
and DSL wrote the manuscript. HLJ, JHK and DSL provided final review of the
manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate

This study was approved by the Institutional Review Board (IRB) of each
participating institution (Seoul National University Hospital IRB No. 1308–006-507).

Consent for publication

As details on individuals reported within the manuscript are entirely
unidentifiable, consent for publication in OJRD was not requested from parents.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details
1Department of Pediatrics, Seoul National University Bundang Hospital,
Seongnam, Republic of Korea. 2Department of Laboratory Medicine,
Chungnam National University Hospital, Daejeon, Republic of Korea.
3Department of Laboratory Medicine, Seoul National University College of
Medicine, 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
4Cancer Research Institute, Seoul National University College of Medicine,
Seoul, Republic of Korea. 5Division of Biomedical Informatics, Seoul National
University Biomedical Informatics (SNUBI), Seoul National University College
of Medicine, 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
6Department of Pediatrics, Seoul National University College of Medicine,
Seoul, Republic of Korea. 7Department of Pediatrics, Chonnam National
University Hwasun Hospital, Chonnam National University Medical School,
Gwangju, Republic of Korea. 8Department of Laboratory Medicine,
Chungnam National University School of Medicine, Daejeon, Republic of
Korea. 9Division of Hematology, Department of Internal Medicine, Yonsei
University College of Medicine, Severance Hospital, Seoul, Republic of Korea.
10Department of Internal Medicine, Seoul National University College
Medicine, Seoul, Republic of Korea. 11Department of Pediatrics, Kyungpook
National University School of Medicine, Daegu, Republic of Korea.
12Department of Hematology and Oncology, Ulsan University Hospital,
University of Ulsan College of Medicine, Ulsan, Republic of Korea.
13Department of Pediatrics, Soonchunhyang University Hospital Cheonan,
Cheonan, Republic of Korea. 14Department of Pediatrics, Chungbuk National
University College of Medicine, Cheongju, Republic of Korea. 15Department
of Pediatrics, Ulsan University Hospital, Ulsan, Republic of Korea.
16Department of Pediatrics, Gyeongsang National University College of
Medicine, Jinju, Republic of Korea. 17Department of Pediatrics, Inje University
College of Medicine, Busan, Republic of Korea. 18Department of Pediatrics,
Ajou University School of Medicine, Suwon, Republic of Korea. 19Department
of pediatrics, Inje University College of Medicine, Busan Paik Hospital, Busan,
Republic of Korea. 20Department of Pediatrics, Pusan National University
College of Medicine, Yangsan, Republic of Korea. 21Department of Pediatrics,
Keimyung University School of Medicine and Dongsan Medical Center,
Daegu, Republic of Korea. 22Department of Pediatrics, Sungkyunkwan
University School of Medicine, Samsung Medical Center, Seoul, Republic of
Korea. 23Department of Pediatrics, Kyung Hee University School of Medicine,
Seoul, Republic of Korea. 24Department of Internal Medicine, Hanyang
University Guri Hospital, Guri, Republic of Korea. 25Department of Pediatrics,
Korea University College of Medicine, Seoul, Republic of Korea. 26Department
of Pediatrics, University of Dankook College of Medicine, Cheonan, Republic
of Korea. 27Department of Internal Medicine, Daegu Fatima Hospital, Daegu,
Republic of Korea. 28Department of Pediatrics, Korea Cancer Center Hospital,
Seoul, Republic of Korea. 29Department of Pediatrics, College of Medicine,
Yeungnam University, Daegu, Republic of Korea. 30Department of Pediatrics,
Chosun University School of Medicine, Gwangju, Republic of Korea.
31Department of Pediatrics, Dong-A University College of Medicine, Busan,
Republic of Korea. 32Department of Pediatrics, Daegu Catholic University,
Daegu, Republic of Korea. 33Department of Pediatrics, Sungkyunkwan
University School of Medicine, Seoul, Republic of Korea. 34The Korean Society
of Hematology, Seoul, Republic of Korea.

Received: 1 December 2018 Accepted: 17 April 2019

References

1. Perrotta S, Gallagher PG, Mohandas N. Hereditary spherocytosis. Lancet.
2008;372(9647):1411–26.

Choi et al. Orphanet Journal of Rare Diseases          (2019) 14:114 Page 12 of 13

https://doi.org/10.1186/s13023-019-1070-0
http://www.nrf.re.kr/


2. Iolascon A, Del Giudice EM, Perrotta S, Alloisio N, Morlé L, Delaunay J.
Hereditary spherocytosis: from clinical to molecular defects. Haematologica.
1998;83(3):240–57.

3. Da Costa L, Galimand J, Fenneteau O, Mohandas N. Hereditary
spherocytosis, elliptocytosis, and other red cell membrane disorders. Blood
Rev. 2013;27(4):167–78.

4. Barcellini W, Bianchi P, Fermo E, Imperiali FG, Marcello AP, Vercellati C, et al.
Hereditary red cell membrane defects: diagnostic and clinical aspects. Blood
Transfus. 2011;9(3):274–7.

5. Jung HL. A new paradigm in the diagnosis of hereditary hemolytic anemia.
Blood Res. 2013;48(4):237–9.

6. Cynober T, Mohandas N, Tchernia G. Red cell abnormalities in hereditary
spherocytosis: relevance to diagnosis and understanding of the variable
expression of clinical severity. J Lab Clin Med. 1996;128(3):259–69.

7. Park ES, Jung HL, Kim HJ, Park SS, Bae SH, Shin HY, et al. Hereditary
hemolytic anemia in Korea from 2007 to 2011: a study by the Korean
hereditary hemolytic Anemia working Party of the Korean Society of
hematology. Blood Res. 2013;48(3):211–6.

8. King MJ, Garcon L, Hoyer JD, Iolascon A, Picard V, Stewart G, et al. ICSH
guidelines for the laboratory diagnosis of nonimmune hereditary red cell
membrane disorders. Int J Lab Hematol. 2015;37(3):304–25.

9. Mariani M, Barcellini W, Vercellati C, Marcello AP, Fermo E, Pedotti P, et al.
Clinical and hematologic features of 300 patients affected by hereditary
spherocytosis grouped according to the type of the membrane protein
defect. Haematologica. 2008;93(9):1310–7.

10. Bianchi P, Fermo E, Vercellati C, Marcello AP, Porretti L, Cortelezzi A, et al.
Diagnostic power of laboratory tests for hereditary spherocytosis: a
comparison study in 150 patients grouped according to molecular and
clinical characteristics. Haematologica. 2012;97(4):516–23.

11. Bolton-Maggs PH, Langer JC, Iolascon A, Tittensor P, King MJ. Guidelines for
the diagnosis and management of hereditary spherocytosis–2011 update.
Br J Haematol. 2012;156(1):37–49.

12. Park SH, Park CJ, Lee BR, Cho YU, Jang S, Kim N, et al. Comparison study of
the eosin-5′-maleimide binding test, flow cytometric osmotic fragility test,
and cryohemolysis test in the diagnosis of hereditary spherocytosis. Am J
Clin Pathol. 2014;142(4):474–84.

13. Streichman S, Gescheidt Y. Cryohemolysis for the detection of hereditary
spherocytosis: correlation studies with osmotic fragility and autohemolysis.
Am J Hematol. 1998;58(3):206–12.

14. Shim YJ, Won DI. Flow cytometric osmotic fragility testing does reflect the
clinical severity of hereditary spherocytosis. Cytometry B Clin Cytom. 2014;
86(6):436–43.

15. Kar R, Mishra P, Pati HP. Evaluation of eosin-5-maleimide flow cytometric
test in diagnosis of hereditary spherocytosis. Int J Lab Hematol. 2010;
32(1p2):8–16.

16. Miraglia del Giudice E, Iolascon A, Pinto L, Nobili B, Perrotta S. Erythrocyte
membrane protein alterations underlying clinical heterogeneity in hereditary
spherocytosis. Br J Haematol. 1994;88(1):52–5.

17. Del Orbe Barreto R, Arrizabalaga B, De la Hoz AB, García-Orad Á, Tejada MI,
Garcia-Ruiz JC, et al. Detection of new pathogenic mutations in patients
with congenital haemolytic anaemia using next-generation sequencing. Int
J Lab Hematol. 2016;38(6):629–38.

18. Metzker ML. Sequencing technologies—the next generation. Nat Rev
Genet. 2010;11(1):31–46.

19. Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, et al.
Target-enrichment strategies for next-generation sequencing. Nat Methods.
2010;7(2):111–8.

20. Constantino BT. Reporting and grading of abnormal red blood cell
morphology. Int J Lab Hematol. 2015;37(1):1–7.

21. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and
guidelines for the interpretation of sequence variants: a joint consensus
recommendation of the American College of Medical Genetics and Genomics
and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.

22. Hui P, Shultz V, Krauthammer M, Holford M, Chen S, Silva T, et al. Yale Blood
Cell Disease Reference Laboratory Programs: Rapid Mutation Scanning by
Next Generation Sequencing. Available from: https://medicine.yale.edu/
pathology/programs/moleculardiagnostics/YBDRL/Morrow_2012_YBCDRL_
Program_265397_33208_v1.pdf. Accessed 24 Dec 2016.

23. Agarwal AM, Nussenzveig RH, Reading NS, Patel JL, Sangle N, Salama ME, et
al. Clinical utility of next-generation sequencing in the diagnosis of
hereditary haemolytic anaemias. Br J Haematol. 2016;174(5):806–14.

24. van Wijk R. Next generation sequencing in diagnosis and research on rare
anemias. 20th Congress of the European Hematology Association Vienna,
Austria, June 11–14, 2015. Oral Presentation, Not published.

25. Park J, Jeong DC, Yoo J, Jang W, Chae H, Kim J, et al. Mutational
characteristics of ANK1 and SPTB genes in hereditary spherocytosis. Clin
Genet. 2016;90(1):69–78.

26. Eber S, Lux SE. Hereditary spherocytosis–defects in proteins that connect the
membrane skeleton to the lipid bilayer. Semin Hematol. 2004;41(2):118–41.

27. An X, Mohandas N. Disorders of red cell membrane. Br J Haematol. 2008;
141(3):367–75.

28. Lee YK, Cho HI, Park SS, Lee YJ, Ra E, Chang YH, et al. Abnormalities of
erythrocyte membrane proteins in Korean patients with hereditary
spherocytosis. J Korean Med Sci. 2000;15(3):284–8.

29. Jarolim P, Murray JL, Rubin HL, Taylor WM, Prchal JT, Ballas SK, et al.
Characterization of 13 novel band 3 gene defects in hereditary
spherocytosis with band 3 deficiency. Blood. 1996;88(11):4366–74.

30. Ricard MP, Gilsanz F, Millan I. Erythroid membrane protein defects in
hereditary spherocytosis. A study of 62 Spanish cases. Haematologica. 2000;
85(9):994–5.

31. Yawata Y, Kanzaki A, Yawata A, Doerfler W, Ozcan R, Eber SW. Characteristic
features of the genotype and phenotype of hereditary spherocytosis in the
Japanese population. Int J Hematol. 2000;71(2):118–35.

32. Inoue T, Kanzaki A, Yawata A, Wada H, Okamoto N, Takahashi M, et al.
Uniquely higher incidence of isolated or combined deficiency of band 3
and/or band 4.2 as the pathogenesis of autosomal dominantly inherited
hereditary spherocytosis in the Japanese population. Int J Hematol. 1994;
60(4):227–38.

33. Iolascon A, Perrotta S, Stewart GW. Red blood cell membrane defects. Rev
Clin Exp Hematol. 2003;7(1):22–56.

34. Chen Z, Su D, Ai L, Jiang X, Wu C, Xu Q, et al. UGT1A1 sequence variants
associated with risk of adult hyperbilirubinemia: a quantitative analysis.
Gene. 2014;552(1):32–8.

35. Takeuchi K, Kobayashi Y, Tamaki S, Ishihara T, Maruo Y, Araki J, et al. Genetic
polymorphisms of bilirubin uridine diphosphate-glucuronosyltransferase gene
in Japanese patients with Crigler-Najjar syndrome or Gilbert syndrome as well
as in healthy Japanese subjects. J Gastroenterol Hepatol. 2004;19(9):1023–8.

36. Warang P, Devendra R, D’Silva S, Chiddarwar A, Kedar P, Ghosh K, et al. Do
UGT1A1 and HMOX1 gene promoter polymorphisms increase the risk of
hyperbilirubinemia and gallstones in patients with hereditary spherocytosis?
Ann Hematol. 2015;94(1):169–71.

37. Farias MG. Advances in laboratory diagnosis of hereditary spherocytosis. Clin
Chem Lab Med. 2017;55(7):944–8.

38. Arora RD, Dass J, Maydeo S, Arya V, Radhakrishnan N, Sachdeva A, et al.
Flow cytometric osmotic fragility test and eosin-5′-maleimide dye-binding
tests are better than conventional osmotic fragility tests for the diagnosis of
hereditary spherocytosis. Int J Hematol. 2018;40(3):335–42.

39. Iolascon A, Avvisati RA. Genotype/phenotype correlation in hereditary
spherocytosis. Haematologica. 2008;93(9):1283–8.

40. Andolfo I, Russo R, Gambale A, Iolascon A. New insights on hereditary
erythrocyte membrane defects. Haematologica. 2016;101(11):1284–94.

Choi et al. Orphanet Journal of Rare Diseases          (2019) 14:114 Page 13 of 13

https://medicine.yale.edu/pathology/programs/moleculardiagnostics/YBDRL/Morrow_2012_YBCDRL_Program_265397_33208_v1.pdf
https://medicine.yale.edu/pathology/programs/moleculardiagnostics/YBDRL/Morrow_2012_YBCDRL_Program_265397_33208_v1.pdf
https://medicine.yale.edu/pathology/programs/moleculardiagnostics/YBDRL/Morrow_2012_YBCDRL_Program_265397_33208_v1.pdf

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Patients
	Targeted sequencing
	Variant calling
	Simulation of the effect of mutated genes on protein structure
	Statistical analyses

	Results
	Clinical characteristics
	Variants profile of RBC membrane protein-encoding genes
	Variant characteristics in patients with HS
	Genotype and phenotype correlations in patients with HS
	Intercorrelations between gene mutations and laboratory findings: OFT, the presence of spherocytes in PBS, and gene mutations

	Discussion
	Conclusions
	Additional file
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

