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Introduction

Blue phosphorene (BlueP), a monolayer of phosphorus atoms 

with buckled honeycomb structure, attracts much attention 

because it combines fascinating features [1]. It is an intrinsic 

semiconductor with a sizable bandgap in excess of 2 eV [1, 2],  

which can be modulated by applying an electric field [3], 

stacking effects [4, 5], functionalization [6–8], doping [9–11], 

and formation of heterostructures [12–14]. Its mobility is as 

high as 103 cm2 V−1 s−1 [15], and the thermoelectric figure of 

merit reaches values of 1.2 (p-doping) and 0.7 (n-doping) 

already at room temperature [16]. BlueP has potential in 

important applications such as nanoelectronic devices [17], 

gas sensors [18, 19], lithium-ion batteries [20, 21], and pho-

tocatalysts [22–24]. It can be readily synthesized by epitaxial 

growth on Au(1 1 1) [25–27] and GaN(0 0 1) [28] substrates. 

Despite the promises of BlueP as two-dimensional (2D) semi-

conducting material, however, an effective approach to tune 

its properties is necessary to facilitate future utilization.

Molecular doping of 2D materials was addressed in the 

literature for graphene [29–44], MoS2 [45–54], black phos-

phorene [55–59], arsenene [60, 61], and antimonene [62]. 

Concerning the effect of molecular doping on the electronic 

properties, it was shown, for instance, that a bandgap can be 

opened in graphene, which enables application in devices 

such as field-effect transistors [32]. Adsorption of deca-

methylcobaltocene and 3,6-difluoro-2,5,7,7,8,8-hexacyano-

quinodimethane molecules on bilayer graphene was studied in 

[36], achieving a bandgap of up to 0.15 eV. Molecular doping 

is also a method to control the carrier type and amount in 2D 
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materials without perturbing the band structure (in contrast to 

traditional atomic doping) [37, 54, 56]. While monolayer gra-

phene grown by ambient-pressure chemical vapor deposition 

shows p-type characteristics, transition to n-type characteris-

tics can be realized by adsorption of piperidine, making it pos-

sible to form a graphene-based p-n junction [42]. Molecular 

doping can also be used to tune the optical properties of 2D 

materials. For instance, the photoluminescence intensity of 

monolayer MoS2 is drastically enhanced by adsorption of 

2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-

TCNQ) or 7,7,8,8-tetracyanoquinodimethane (TCNQ) [45]. 

It can be enhanced by a factor of nine by doping with sali-

cylic acid molecules [52]. While these investigations show 

that molecular doping is a very powerful approach to tune 2D 

materials and broaden their range of applications, the tech-

nique was not applied to BlueP so far.

In the present work, we therefore explore the effects of 

molecular doping on BlueP, using first-principles calcul-

ations. In addition, application of an external electric field 

is considered as a tool to modify the electronic proper-

ties. Four organic molecules (atomic structures illustrated 

in figure 1, see also figure S1 in the supporting information  

(stacks.iop.org/JPhysCM/32/055501/mmedia)) are investi-

gated: tetrathiafulvalene (TTF) and cyclooctadecanonaene 

(CCO) as examples of electron donors (low ionization poten-

tials of 6.83 and 7.23 eV, respectively [63, 64]), and F4-TCNQ 

and 1,3,4,5,7,8-hexafluorotetracyanonaphthoquinodimethane 

(F6-TNAP) as examples of electron acceptors (high electron 

affinities of 5.24 and 5.37 eV, respectively [65, 66]). We will 

demonstrate that adsorption of these molecules can yield p- 

and n-doping without breaking the 2D structure of BlueP. In 

addition, the ability to absorb sun light can be enhanced sig-

nificantly, which is critical for the application of BlueP-based 

materials in energy harvesting.

Computational details

First-principles calculations are performed using the Vienna 

ab-initio simulation package based on plane-wave density func-

tional theory and the projector-augmented wave method [67]. 

The energy cutoff of the plane-wave expansion is set to 450 eV 

and the exchange-correlation functional is treated in the gen-

eralized gradient approximation (Perdew–Burke–Ernzerhof 

form). To describe the long-range interaction between BlueP 

and organic molecules, the vdW-D3 correction of Grimme is 

used [68]. The optB86b-vdW functional [69] is found to result 

in unreasonably large adsorption heights. A large 6  ×  6  ×  1 

supercell is adopted with a vacuum region thicker than 15 Å 

to eliminate artificial interaction between periodic images. 

One molecule is added to the supercell, which corresponds to 

an areal density of 3  ×  1013 cm−2. We can neglect substrate 

effects, because the binding energy between BlueP and the 

usual substrate, Au(1 1 1), is only 0.11 eV/atom [70]. Brillouin 

zone sampling on a Monkhorst-Pack 3  ×  3  ×  1 k-mesh pro-

vides good convergence. In the structure optimization the 

atomic coordinates are relaxed until the Hellmann–Feynman 

forces are reduced to 0.01 eV Å−1. Absorption spectra are cal-

culated using the Heyd–Scuseria–Ernzerhof (HSE06) hybrid 

functional [71]. The imaginary part of the dielectric tensor is 

obtained by neglecting local field effects and approximating 

the macroscopic dielectric function by the head of the micro-

scopic dielectric matrix [72]. The real part of the dielectric 

tensor then results from Kramers–Kronig transformation.

Results and discussion

We obtain for pristine BlueP an optimized lattice constant 

of 3.277 Å. Previously, Zhu et al [1] predicted a lattice con-

stant of 3.33 Å, while Bao et al [20] obtained a value of 3.29 

Å. Thus, our calculated lattice constant is in satisfactory 

agreement with previous results, demonstrating reliability 

of the methods used in the present work. We determine the 

Figure 1. Top views of the atomic structures of TTF, CCO, F4-
TCNQ, and F6-TNAP.

Table 1. Adsorption energy (Ead), adsorption height (h), electron 
transfer (∆Q), and injected carrier concentration (n; ∆Q per area).

Adsorption 
site

Ead  
(eV) h (Å) ∆Q (e)

n (1012 e 
cm−2)

BlueP–TTF 6 0.87 3.08 −0.11 3.3

BlueP–CCO 6 1.12 3.50 −0.04 1.2

BlueP–F4-TCNQ 2 0.87 3.51 0.12 3.6

BlueP–F6-TNAP 2, 6 1.11 3.37, 

3.43

0.16 4.8

Figure 2. Top (upper panel) and side (lower panel) views of the 
favorable adsorption configurations of TTF, CCO, F4-TCNQ, and 
F6-TNAP molecules on BlueP. The orange and blue sticks represent 
upper and lower P atoms, respectively. The white, black, red, green, 
and yellow spheres represent H, C, N, F, and S atoms, respectively.
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favorable adsorption configuration for each molecule (table 1,  

figure  2) by calculating the adsorption energy Ead  =  Emol

ecule  +  EBlueP  −  EBlueP+molecule, where Emolecule, EBlueP, and 

EBlueP+molecule are the energies of the molecule, pristine 

BlueP, and BlueP with adsorbed molecule, respectively. 

For each molecule, several high-symmetry adsorption sites 

are considered (figure S2 in the supporting information). 

The TTF molecule favors alignment parallel to the zigzag 

direction of BlueP with Ead  =  0.87 eV and adsorption 

height h  =  3.08 Å, the electron-abundant C3S2 rings located 

above P atoms. The CCO molecule favors a high sym-

metry configuration with space group C3v (Ead  =  1.12 eV, 

h  =  3.50 Å). The aromatic ring of the F4-TCNQ molecule is 

located directly on top of a P atom to maximize the overlap 

between its delocalized π electrons and the p electrons of 

the P atom. In addition, two cyano groups cross the P–P 

bonds, increasing the electron transfer and binding strength 

(Ead  =  0.87 eV and h  =  3.51 Å). Finally, for the F6-TNAP 

molecule there exist two adsorption sites with Ead  =  1.11 eV 

(2 and 6 in figure S1(d) with h  =  3.37 and 3.43 Å, respec-

tively). We choose the configuration presented in figure  2 

for the following calculations.

Charge transfer in the molecule-doped materials may alter 

the transport and optical performance of BlueP, as revealed 

for the F4-TCNQ/MoS2 interface in an earlier study [45]. To 

investigate this question, figure  3 shows the charge density 

difference isosurfaces obtained for BlueP with adsorbed TTF, 

CCO, F4-TCNQ, and F6-TNAP molecules. The pink regions 

denote accumulation of electrons and the gray regions denote 

depletion of electrons. In the cases of TTF–BlueP and CCO–
BlueP (figures 3(a) and (b)) electrons are transferred from 

the highest occupied molecular orbital (HOMO) to BlueP 

Figure 3. Top (upper panels) and side (lower panels) views of charge density difference isosurfaces (isovalue: 0.0003 e Å−3) for (a) TTF–
BlueP, (b) CCO–BlueP, (c) F4-TCNQ–BlueP, and (d) F6-TNAP–BlueP. The white, black, red, green, blue, and yellow spheres represent H, 
C, N, F, P, and S atoms, respectively. Pink color denotes electron accumulation and gray color electron depletion.

Figure 4. Projected band structures of (a) pristine BlueP, (b) TTF–BlueP, (c) CCO–BlueP, (d) BlueP–F4-TCNQ, and (e) F6-TNAP–BlueP. 
Red color highlights the contributions of the molecules.

J. Phys.: Condens. Matter 32 (2020) 055501
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Figure 5. Doping gaps and electron transfer in (a) TTF–BlueP, (b) CCO–BlueP, (c) F4-TCNQ–BlueP, and (d) F6-TNAP–BlueP as functions 
of the electric field. The insets show the structure under an electric field of strength  ±0.5 V Å−1 and the orange arrows indicate the positive 
direction of this field.

Figure 6. Projected band structures of (a) TTF–BlueP and (b) CCO–BlueP under an electric field of  −0.5 V Å−1, and of (c) F4-TCNQ–
BlueP and (d) F6-TNAP–BlueP under an electric field of 0.5 V Å−1. Red color highlights the contributions of the molecules.

J. Phys.: Condens. Matter 32 (2020) 055501
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(P atoms in the contact region), i.e. the TTF and CCO mol-

ecules act as electron donors. Bader analysis [73–75] shows 

that 0.11 and 0.04 electrons are transferred from the TTF 

and CCO molecules to BlueP, respectively. In the cases of 

F4-TCNQ–BlueP and F6-TNAP–BlueP (figures 3(c) and (d)) 

electrons are transferred from BlueP to the lowest unoccupied 

molecular orbital (LUMO), i.e. the F4-TCNQ and F6-TNAP 

molecules act as electron acceptors. The transferred electrons 

are found mainly in the interlayer region between molecule 

and BlueP as well as on the cyano groups of the F4-TCNQ and 

F6-TNAP molecules. Large gray isosurfaces at P atoms near 

the cyano groups reflect strong interaction. Bader analysis 

[73–75] shows that 0.12 and 0.16 electrons are transferred 

from BlueP to the F4-TCNQ and F6-TNAP molecules, respec-

tively. The electron transfer from/to the TTF, CCO, F4-TCNQ, 

and F6-TNAP molecules leads to a carrier concentration of 

3.3  ×  1012, 1.2  ×  1012, 3.6  ×  1012, and 4.8  ×  1012 cm−2 in 

BlueP.

Figure 4 shows a projected band structure of pristine BlueP 

in comparison to results for TTF–BlueP, CCO–BlueP, F4-

TCNQ–BlueP, and F6-TNAP–BlueP. Pristine BlueP has an 

indirect bandgap of 1.94 eV (figure 4(a)), in agreement with 

the findings of previous investigations [2, 3]. The band struc-

tures of TTF–BlueP (figure 4(b)) and CCO–BlueP (figure 4(c))  

resemble that of pristine BlueP. However, additional flat bands 

emerge at 0.27 and 0.97 eV, respectively, i.e. below the conduc-

tion band minimum (CBM) of BlueP, reflecting n-doping of 

the host material. The flat bands represent localized electronic 

states due to the HOMOs of TTF and CCO. The doping gap 

(between CBM and HOMO for n-dopants, between LUMO 

and VBM for p-dopants) of TTF–BlueP is significantly smaller 

than that of TTF–BlackP (0.73 eV) [56]. For F4-TCNQ–BlueP 

(figure 4(d)) and F6-TNAP–BlueP (figure 4(e)) the LUMOs of 

F4-TCNQ- and F6-TNAP appear at 0.39 and 0.45 eV, respec-

tively, i.e. above the valence band maximum (VBM) of BlueP, 

reflecting p-doping of the host material.

The n-dopants TTF and CCO as well as the p-dopants 

F4-TCNQ and F6-TNAP induce a large doping gap in BlueP, 

which makes them to ineffective doping molecules. We next 

investigate whether an external perpendicular electric field can 

help to overcome this issue. The dependence of the doping gap 

and electron transfer on the applied electric field is shown in 

figure 5 (results after re-relaxing the atomic coordinates in the 

electric field, which, however, induces only minor structural 

changes). The strength of the electric field ranges from  −0.5 

to 0.5 V Å−1 with the positive direction oriented from the 

molecule to BlueP, see the insets of figure  5. We note that 

the change in bandgap of pristine BlueP is negligible under 

such an electric field [3]. For TTF–BlueP and CCO–BlueP the 

electron transfer is reduced for increasing electric field, i.e., 

the HOMOs of the molecules shift toward the CBM of BlueP 

and the doping gaps increase monotonically. Under an elec-

tric field of  −0.5 V Å−1 (figures 6(a) and (b)) the doping gaps 

are as small as 57 and 420 meV, respectively, reflecting good 

controllability. In par ticular, due to its shallow donor state, 

TTF–BlueP resembles a typical n-type semiconductor. It turns 

out that the charge transfer can be reversed by an electric field 

of 0.3 V Å−1. For F4-TCNQ–BlueP and F6-TNAP–BlueP the 

electron transfer grows for increasing electric field, i.e. the 

LUMOs of the molecules shift toward the VBM of BlueP and 

the doping gaps decrease monotonically. Under an electric 

field of 0.5 V Å−1 (figures 6(c) and (d)) the doping gaps are as 

small as 79 and 94 meV, respectively, indicating that shallow 

acceptor states are formed in both F4-TCNQ–BlueP and F6-

TNAP–BlueP, resembling typical p-type semiconductors. We 

note that the HSE06 functional enhances the doping gaps, 

while maintaining the general trends described above.

In addition to enhancing the effectiveness of doping, 

applying an electric field also supports the charge carrier 

injection and therefore can be beneficial for the device perfor-

mance. More specifically, according to figure 5, 0.44 electrons 

are transferred from TTF to BlueP, which leads to an n-type 

carrier concentration of 1.31  ×  1013 cm−2 in BlueP. Transfer 

of 0.41 and 0.46 electrons from BlueP to F4-TCNQ and F6-

TNAP, respectively, leads to p-type carrier concentrations of 

1.22  ×  1013 and 1.37  ×  1013 cm−2 in BlueP.

Absorption spectra are shown in figure 7 together with the 

incident AM1.5g global standard spectrum. Pristine BlueP 

does not exhibit strong optical absorption in the visible region 

and, therefore, is not a good photovoltaic material. Similar 

results are obtained for TTF–BlueP. On the other hand, 

CCO–BlueP shows a pronounced absorption peak (intensity 

7.2  ×  104 cm−1) in the visible region centered at 534 nm. For 

T4-TCNQ–BlueP we obtain more enhancement of the absorp-

tion in the visible region with a broader absorption peak 

(intensity 6.2  ×  104 cm−1) centered at 641 nm. Finally, T6-

TNAP–BlueP realizes a very broad absorption peak (intensity 

6.2  ×  104 cm−1) centered at 877 nm. Apart from these addi-

tional absorption peaks, which are mainly due to molecular 

transitions, we observe for all doped materials a redshift of 

the absorption spectrum with respect to pristine BlueP, which 

enlarges the overlap with the incident solar flux and thus fur-

ther enhances their ability to absorb sun light. To quantify 

the performance of the materials under investigation, we cal-

culate η =
´ +∞

0
a (λ) S(λ)dλ, where λ is the wavelength, 

a(λ) is the absorption spectrum, and S(λ) is the incident AM 

1.5g global standard spectrum. We obtain for TTF–BlueP, 

Figure 7. Absorption spectra of pristine BlueP, BlueP–TTF, 
BlueP–CCO, BlueP–T4-TCNQ, and BlueP–T6-TNAP as calculated 
with the HSE06 functional. The incident AM1.5g global standard 
spectrum is shown for comparison.
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CCO–BlueP, F4-TCNQ–BlueP, and F6-TNAP–BlueP values 

of 10.6, 37.2, 24.1, and 28.8 W cm−3, respectively. In par-

ticular, both CCO–BlueP and F6-TNAP–BlueP therefore turn 

out to be superior to T4-TCNQ–Arsenene (28.0 W cm−3) [76].

Conclusions

Our investigation of molecular doping of BlueP, based on 

first-principles calculations, shows that TTF and CCO mol-

ecules act as electron donors and lead to n-doping of BlueP 

while F4-TCNQ and F6-TNAP molecules act as electron 

acceptors and lead to p-doping of BlueP. The amount of elec-

tron transfer, which determines the carrier dynamics and thus 

the device performance, has been quantified. It turns out that 

an external perpendicular electric field shifts the HOMO of 

TTF closer to the CBM of BlueP, resulting in a shallow donor 

state and effective n-doping of BlueP. Similarly, the LUMOs 

of F4-TCNQ and F6-TNAP can be shifted closer to the VBM 

of BlueP, resulting in shallow acceptor states and effective 

p-doping of BlueP. The application of an electric field also 

enhances the charge transfer and thus the charge carrier injec-

tion into BlueP. CCO, F4-TCNQ, and F6-TNAP molecules 

induce redshifts of the absorption spectrum of BlueP and 

enhance the absorption in the visible and infrared regions, 

which is beneficial for solar energy harvesting. Due to a lack 

of experimental studies, our results provide important insights 

into the electronic and optical properties achievable by molec-

ular doping of BlueP. They offer guidelines for the design of 

electronic, optoelectronic, and photovoltaic devices.
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