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Molecular dynamics evaluation of self-diffusion in Yukawa systems

H. Ohta and S. Hamaguchi
Department of Fundamental Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

~Received 30 May 2000; accepted 15 August 2000!

Self-diffusion coefficients of Yukawa systems in the fluid phase are obtained from molecular

dynamics simulations in a wide range of the thermodynamical parameters. The Yukawa system is

a collection of particles interacting through Yukawa ~i.e., screened Coulomb! potentials, which may

serve as a model for charged dust particles in a plasma or colloidal particles in electrolytes. The

self-diffusion coefficients are found to follow a simple scaling law with respect to the system

temperature, which is consistent with the universal scaling ~i.e., temperature scaling independent of

the ratio of interparticle distance to screening length! observed by Robbins et al. @J. Chem. Phys. 88,

3286 ~1988!# if the fluid system is near solidification. Also discussed is the velocity autocorrelation

function, which is in part used to determine the self-diffusion coefficients through the Green–Kubo

formula. © 2000 American Institute of Physics. @S1070-664X~00!04811-4#

I. INTRODUCTION

The Yukawa system is a collection of particles interact-

ing through Yukawa ~i.e., screened Coulomb! pair potentials

f~r !5

Q2

4pe0

exp~2kDr !

r
. ~1!

Here r is the distance between two Yukawa particles and kD
21

is the screening length. Yukawa systems can serve as a

model for charged dust particles ~particulates! immersed in

plasmas1–6—dusty plasmas—or colloidal particles sus-

pended in electrolytes,7–9 where each particle has electric

charge Q and the electric field potential around each particle

is screened with the screening length kD
21 . In the case of

dusty plasmas, particulates are typically charged negatively

due to the high mobility of electrons and the screening arises

from the formation of a sheath around each particulate. In

laboratory plasmas, dusty plasmas are often formed in glow

discharges with mesoscopic particles ~the sizes and electrical

charges of which are of order 1 mm and a few thousand

electron charges!. Recent laboratory experiments10 have

shown that the interparticle potential of charged dust par-

ticles in a plasma is indeed given by the Yukawa potential

with high accuracy in the absence of plasma flows. Of

course, in actual dusty plasmas, dynamics of charged dust

particles can be more complex and subject to several other

forces, such as the collision with background neutral gases.

For example, ion flows passing around a charged dust par-

ticle are known to create a wake field behind the particle,

resulting in anisotropic attractive forces among charged

particles.11,12 The Yukawa model therefore may be used as a

simplified model for charged dust particles in a plasma, on

which one can construct more realistic models to represent

actual dusty plasmas under various conditions.

The Yukawa system may also be of special interest as a

mathematical model for many-body systems since it allows

the full range of behavior between systems governed by

short-range and long-range forces. For example, in the limit

of no screening ~i.e., kD50), the system is known as the

one-component plasma ~OCP!,13–17 which represents a sys-

tem of ions when electrons are extremely mobile. The OCP

has often been used as a classical model of the dense interi-

ors of white dwarfs, where ions are freely interact with each

other through Coulomb potentials in degenerate electron

backgrounds. As the screening increases ~i.e., kD increases!,
the system acquires more characteristics of charge neutral

fluids.

The Yukawa system in thermodynamical equilibrium

can be characterized by two dimensionless parameters: k
5kDa , i.e., the ratio of the interparticle distance a

5(3/4pn)1/3 ~where n is the particle number density! to the

screening length kD
21 and G5Q2/4pe0aT , i.e., the inverse of

the system temperature ~thermal energy! T measured in units

of Q2/4pe0a . The system is called ‘‘strongly coupled’’ if

the coupling parameter G*5G exp(2k), i.e., the ratio of the

average interparticle potential energy to the average kinetic

energy, is comparable with or greater than unity. In particu-

lar, if the system is sufficiently cooled, i.e., the total kinetic

energy becomes sufficiently small compared with the total

potential energy ~i.e., internal energy! the system can un-

dergo phase transition from the fluid phase to the solid phase.

We denote the critical G by Gm , where the subscript m rep-

resents ‘‘melting.’’ Table I lists the values of Gm that we

used in our data analyses in this paper. These values are

taken from Table X of Ref. 3 and the fitting formula18 given

by Eq. ~21! of Ref. 4.

We define the nominal plasma frequency of the Yukawa

system as vp5AQ2n/e0m , where m is the mass of a

Yukawa particle. This represents the typical frequency of

collective particle oscillation only if the interparticle poten-

tial is of ~unscreened! Coulomb ~i.e., k50). In the case of

finite screening ~i.e., k.0), vp does not bear any particular

physical significance. We also define the Einstein frequency

by

vE
2
5

1

3m (
iÞ j

Df~ri2rj!5

kD
2

3m (
iÞ j

f~ri2rj! ,
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where f is the Yukawa potential of Eq. ~1!, the sum is taken

over all i except for ~fixed! j and all particles are assumed to

be at given crystal structure sites. This represents the har-

monic oscillation frequency of a particle around its equilib-

rium site when all other particles are located at their equilib-

rium sites. Note that vE→vp /A3 as k→0.19 Although vE

depends on the selected crystal structure, its numerical val-

ues for the fcc and bcc crystals differ by only less than 1%.

Therefore, in what follows, we shall use only the fcc Einstein

frequencies for convenience. Table I lists the fcc Einstein

frequencies for selected k values.

Particles in Yukawa systems in thermodynamical equi-

librium travel under the influence of collisions with other

particles. Such motions are called self-diffusion as the only

forces exerted on each particle are those from other particles

of the same kind. For charged dust particles in a plasma or

colloidal particles in an electrolyte, their actual diffusion is

not determined only by self-diffusion: motions of those par-

ticles are also affected by collisions with smaller particles

comprising the background media ~e.g., neutral atoms and

molecules of the background gas in the first case!. Further-

more, deviation of the interparticle potential from the

Yukawa form due to, e.g., the wake field potential11,12 in a

plasma mentioned previously, can significantly change the

values of self-diffusion coefficients obtained in this paper.

However, together with other transport coefficients such as

viscosity and thermal conductivity, the self-diffusion coeffi-

cient is one of the most fundamental dynamical parameters

that reflect the nature of interparticle potentials and charac-

terize thermodynamics of the system. Therefore, despite pos-

sible differences between the self-diffusion coefficients and

actual diffusion coefficients in those physical systems, we

still think it is worthwhile to determine numerical values of

the self-diffusion coefficient in the simplest possible model.

In this paper, we evaluate the self-diffusion coefficients of

Yukawa systems in the fluid phase, using molecular dynam-

ics ~MD! simulation. Prior to our study, Yukawa self-

diffusion coefficients were evaluated in a limited parameter

range by several other authors.7–9,20–22 Our goal is therefore

to present numerical values of the self-diffusion coefficients

in a more systematic manner in a wider range of the system

parameters.

II. NUMERICAL SCHEMES

Here we briefly discuss the numerical scheme of our MD

simulation. Let us consider a system of N identical particles

with mass m interacting through Eq. ~1!. To emulate the

infinitely large system, the simulation particles are placed in

a cubic box of side L and periodic boundary conditions are

imposed on all boundaries. Each particle then interacts with

all the other particles in the simulation box and all of their

periodic images. The effect of such image particles are im-

portant especially if the screening length kD
21 is comparable

with or greater than the box size L. Then the effective pair

potential5 for actual simulation particles may be given by

F~r!5f~ uru!1(
n5” 0

f~ ur1nLu! , ~2!

with f(r) being the Yukawa potential, i.e., Eq. ~1!. The

above-mentioned potential above represents the interaction

energy of particle i with particle j ~at separation r5rj2ri)

and with all periodic images of the latter. The infinite sum of

f over integer vectors n5(l ,m ,n) represents the contribu-

tion from all periodic images. In our MD simulation, the

infinite sum of Eq. ~2! is approximated numerically by a

tensor-product spline function.23

To have the system attain the desired temperature T ~or

G!, we periodically rescale the velocity of each particle

during the simulation until the system reaches the thermo-

dynamical equilibrium.3–5 Once the system reaches thermo-

dynamical equilibrium, we discontinue the periodic renor-

malization of particle velocities and let the system evolve

under the constant-energy conditions ~i.e., microcanonical

simulation!. In such a microcanonical MD simulation, the

system temperature T fluctuates but its mean value remains

almost constant. The statistical average ^ & of dynamical

quantities is then obtained by taking the time average over a

sufficiently long time period in the constant-energy simula-

tion ~i.e., microcanonical ensemble!. The MD code used in

this work was originally developed by R. T. Farouki5 and

modified by the authors to calculate various time correlation

functions.

III. VELOCITY AUTOCORRELATION FUNCTION

In this section we discuss the velocity autocorrelation

function ~VAF!, which we use to evaluate self-diffusion co-

efficients. The VAF Z(t) is defined as

Z~ t !5^vj~ t !•vj~0 !& ,

where vj(t) is the velocity of the j th particle at time t. As

Z(t) should be independent of the choice of a specific par-

ticle in thermodynamical equilibrium, we take the average

over all particles in order to minimize statistical errors:24

Z~ t !5

1

N K (
i51

N

vi~s !•vi~s1t !L
5

1

MN (
k51

M

(
i51

N

@vi~ tk!•vi~ tk1t !# . ~3!

TABLE I. The critical G for the fluid–solid phase transition and the fcc

Einstein frequencies. From Refs. 3 and 4.

k Gm A3vE /vp

0.0 171.8 1.0000

0.1 172.2 0.9972

0.3 175.7 0.9771

0.6 187.1 0.9209

1.0 217.4 0.8178

1.4 268.8 0.7018

2.0 440.1 0.5315

3.0 1185 0.3047

5.0 1.5063104 0.0810
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Here the ensemble average ^ & is replaced by time average

and $t1 ,t2 , . . . ,tM% with tk5kD denoting an equally spaced

time sequence with the sampling period D. In our simulation,

we typically use D5A3/2vp
21 and M5800. We optimize

our simulation by varying the number of simulation particles

N from 250 to 1000 to achieve the best compromise between

good accuracy and high computational efficiency.

We have also evaluated its Fourier transform Z̃(v) by

directly integrating Z(t) via

Z̃~v !5

1

2p
E

2`

`

exp~ ivt !Z~ t !dt .

Figures 1 and 2 show Z(t) and Z̃(v) of Yukawa systems in

the fluid phase for k50.3 and 3.0 obtained from MD simu-

lations with N5300 simulation particles. Note that, in Figs.

1~a! and 2~a!, curves are displaced vertically for clarity and

Z(t)→0 for all k and G.

It is shown in these figures that the VAFs are monotoni-

cally decreasing in time if G is sufficiently small ~e.g., G
&Gm/100). In this regime, short time correlations are weak

due to the high temperatures. The power spectrum for larger

G ~however, G,Gm , i.e., the system is in the fluid phase!
has two peaks. The peaks are prominent if the system is close

to the fluid–solid phase transition, i.e., G.Gm . As in the

case of OCPs,25 the peak at the higher frequency is related to

the longitudinal wave ~ion-acoustic mode or dust-acoustic

wave if the Yukawa particles are viewed as ions or dust

particles! whereas the broad peak at the lower frequency is

related to the transverse wave ~shear wave!, the details of

which will be discussed in Sec. V.

IV. SELF-DIFFUSION COEFFICIENTS

The self-diffusion coefficient D of a particle system may

be evaluated from the Einstein relation

D5 lim
t→0

1

6t
^urj~ t !2rj~0 !u2& , ~4!

where rj(t) represents the position of the j th particle. As in

Eq. ~3!, the above-mentioned statistical average is evaluated

numerically as

^urj~ t !2rj~0 !u2&5

1

MN (
k51

M

(
i51

N

@ uri~ tk1t !2ri~ tk!u2#

for the same discrete time sequence $t1 ,t2 , . . .tM%. It is easy

to show26 that the self-diffusion coefficient is related to the

velocity autocorrelation function Z(t) as

D5

1

3
E

0

`

Z~ t !dt , ~5!

which is known as the Green–Kubo formula.

One can use either Eq. ~4! or Eq. ~5! to evaluate D from

MD simulations. We have calculated DE(t)[^urj(t)

FIG. 1. ~a! Velocity autocorrelation function Z(t) and ~b! its power spec-

trum Z̃(v) at k50.3 for various G values. Note that curves in ~a! are

displaced vertically for clarity and Z(t)→0 for all G .

FIG. 2. ~a! Velocity autocorrelation function Z(t) and ~b! its power spec-

trum Z̃(v) at k53.0 for various G values. Note that curves in ~a! are

displaced vertically for clarity and Z(t)→0 for all G .
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TABLE II. Self-diffusion coefficients obtained from MD simulations with N5300. The normalized diffusion coefficients are defined by DE
*5DE /vEa2 and

DZ
*5DZ /vEa2.

k G T* DE
* DZ

* k G T* DE
* DZ

*

0.1 150 1.14 0.004 86 0.004 77

98.9 1.74 0.0112 0.0111

50.0 3.44 0.0351 0.0357

30.2 5.70 0.0627 0.0626

10.4 16.5 0.206 0.205

6.86 25.1 0.317 0.314

5.03 34.2 0.427 0.439

3.06 56.3 0.775 0.786

2.00 86.3 1.38 1.38

0.987 174 3.35 3.34

0.3 147 1.19 0.006 17 0.006 20

101 1.75 0.0113 0.0111

49.0 3.59 0.0376 0.0381

28.8 6.10 0.0713 0.0731

10.0 17.5 0.223 0.229

5.01 35.1 0.455 0.461

3.00 58.6 0.805 0.831

2.00 87.8 1.35 1.33

0.998 176 3.65 3.63

0.6 142 1.32 0.006 54 0.006 23

119 1.58 0.009 73 0.010 1

67.8 2.76 0.0241 0.0243

28.5 6.57 0.0851 0.0825

19.5 9.59 0.126 0.127

9.86 19.0 0.244 0.244

3.81 49.1 0.698 0.701

2.91 64.2 0.958 1.02

1.98 94.6 1.64 1.69

1.0 195 1.12 0.005 10 0.004 67

143 1.52 0.009 46 0.009 82

65.0 3.35 0.0334 0.0340

38.8 5.61 0.0692 0.0721

28.2 7.71 0.0953 0.0911

18.9 11.5 0.152 0.154

9.55 22.8 0.311 0.325

4.76 45.7 0.654 0.621

2.92 74.4 1.25 1.27

1.96 111 1.98 2.08

1.4 232 1.16 0.005 93 0.005 91

147 1.83 0.0145 0.0141

97.8 2.75 0.0274 0.0281

47.7 5.63 0.0698 0.0693

18.9 14.2 0.202 0.207

9.35 28.7 0.412 0.410

4.80 56.0 0.815 0.834

2.94 91.5 1.62 1.60

2.01 134 2.64 2.66

2.0 374 1.18 0.006 04 0.005 98

185 2.38 0.0220 0.0215

96.0 4.59 0.0566 0.0555

46.3 9.51 0.130 0.134

18.8 23.4 0.310 0.318

9.42 46.7 0.657 0.660

4.94 89.0 1.48 1.49

3.0 911 1.30 0.007 68 0.007 42

478 2.48 0.0256 0.0246

96.0 12.3 0.175 0.175

47.1 25.2 0.331 0.348

28.8 41.1 0.545 0.568

19.0 62.5 0.814 0.827

9.80 121 1.71 1.67

5.0 12 300 1.22 0.006 66 0.006 84

6 420 2.35 0.0178 0.0185

960 15.7 0.155 0.153

484 31.1 0.320 0.328

286 52.6 0.510 0.533

241 62.4 0.573 0.611

170 88.8 0.795 0.817

142 106 0.940 0.971

137 110 0.969 1.03

2rj(0)u2&/6t and DZ(t)[*0
t Z(t) dt/3 as functions of time t

and observed that DE(t) and DZ(t) converged to a single

value in most cases if t[vpt/A3.100. Therefore, to evalu-

ate D, we took the time average of DE(t) and DZ(t) typi-

cally over 100,t,500. The self-diffusion coefficients ob-

tained in this manner are listed in Table II @where DE
*

5DE /vEa2 and DZ
*5DZ /vEa2 with DE5limt→`DE(t) and

DZ5limt→`DZ(t). Theoretically D[DE5DZ , as men-

tioned previously.# Here the diffusion coefficients are nor-

malized by vEa2 with vE being the Einstein frequency for

the fcc crystals.9 As in Sec. III, we have employed N5300

particles for these MD simulations.

Denoting D*5D/vEa2, we fit the data given in Table II

to the form

D*5a~T*21 !b
1g , ~6!

for each k . Here T* is the ratio of the system temperature T

to the fluid–solid critical temperature Tm ~i.e., melting tem-

perature!, i.e., T*[T/Tm5Gm /G with Gm5Q2/4pe0aTm .

As the system under consideration is in the fluid phase, we

have T*.1. For each k, the least-squares fitting parameters

a, b, and g are given in Table III. The fitting parameters for

k50 in Table III were obtained from least-squares fitting Eq.

~6! to the OCP simulation data by Hansen et al.14 As shown

in Fig. 3 for some selected k, Eq. ~6! is an excellent fitting

formula for the simulation data. As k varies from 0 to 5, the

values of vE and Gm vary by more than the order of magni-

TABLE III. The fitting parameters for the self-diffusion coefficients given

by Eq. ~6!.

k a b g

0 0.009 13 1.15 0.004 57

0.1 0.0104 1.09 0.003 64

0.3 0.0106 1.09 0.004 29

0.6 0.0122 1.06 0.002 82

1.0 0.0121 1.07 0.003 67

1.4 0.0125 1.07 0.004 19

2.0 0.0131 1.04 0.003 85

3.0 0.0156 0.97 0.002 65

5.0 0.0112 0.96 0.003 99
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tude. Compared with this variation, the variation of fitting

parameters a, b, and g over the same range of k is relatively

small.

Figures 4 and 5 plot values of D* given in Table II

for various k. @Figure 4~a! is an expansion of the lower left-

hand corner of Fig. 4~b!.# Robbins, Kremer, and Grest found

that,9 if the system is relatively close to melting, values of D

for all k can be given by a single universal scaling law. The

data by Robbins et al.9 are in a limited parameter range

~2.0<k<6.3, 0.5<T*<2, where 0.5<T*,1 is for super-

cooled states!, but as can be seen in Fig. 4, this universal

scaling may be extended to T*.10 in the fluid phase. The

dashed line represents the least-squares fit of a linear func-

tion ~i.e., b51! of T* to the data of Fig. 4~b!, i.e., Eq. ~6!
with a50.0132, b51, and g50.00317. This scaling is con-

sistent with simulation results by Robbins et al.9 This scaling

also seems to be consistent with the universal entropy scaling

of the self-diffusion coefficients.27,28 However detailed dis-

cussion on the entropy scaling will be presented in future

publications.

The fact that D* is independent of k for 1,T*&10 may

be accounted for in the following manner. When a fluid sys-

tem is close to solidification, the motion of each particle may

be regarded as oscillation about its equilibrium site and par-

FIG. 3. Fitting of Eq. ~6! to the self-diffusion coefficients: ~a! k50.1 and

g50.003 64, ~b! k51.4 and g50.004 19, ~c! k55.0 and g50.003 99. The

symbols s and 3 represent DE
* and DZ

* given in Table II and other fitting

parameters are given in Table III.

FIG. 4. Self-diffusion coefficient D (DE
* and DZ

* , as given in Table II! vs

normalized temperature T* for ~a! 1<T*<3 and ~b! 1<T*<10. The

dashed lines in both ~a! and ~b! are the linear least-squares fit to the data

~listed in Table II! for 1<T*<10.

FIG. 5. Self-diffusion coefficient D for k50.1 and 5.0 (DE
* and DZ

* , as

given in Table II! vs normalized temperature T*. The dashed and dot-

dashed curves represent the fitting curves given by Eq. ~6! with the corre-

sponding fitting parameters given in Table III.
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ticle diffusion results from occasional hopping motion of the

particle from one equilibrium site to another. Such a self-

diffusion process may be characterized by the diffusion co-

efficient given by D5CDr2/Dt , where C is a proportional

constant, Dr is the oscillation amplitude, and Dt5vE
21 is the

typical time scale of oscillation. The Lindemann criterion29

states that fluid–solid phase transition occurs when the ratio

Dr/a reaches a universal constant regardless of the form of

interparticle potentials. Therefore, if the fluid system is near

the phase transition ~i.e., T* is close to 1!, the systems of the

same T* are likely to have the same ratio R5Dr/a , regard-

less of k. Under this ansatz, we may write D*} D/vEa2

5CR2, which is independent of k for a given T*.

For higher temperatures, the correlation among particles

becomes weak and the particle diffusion is governed more by

two-body collisions. As noted by Hansen et al.14 for OCP

and by Rosenberg et al.7 for a Yukawa system, the relation

between D* and T ~or T*) is no longer linear for larger T. In

Table III we observe the tendency that b decreases as k
increases. This slight dependence of b on k manifests itself

in the dependence of D* on T* for large T*, as shown in

Fig. 5.

We now briefly comment on the accuracy of the self-

diffusion coefficients presented in this work. As one can see

in Figs. 3–5, the obtained data are somewhat scattered

around the fitting curves, which suggests that the numerical

values of D given in Table II may have errors of up to about

10%. The possible sources of these uncertainties include; ~a!
the simulation system may not be completely in thermal

equilibrium, ~b! DE(t) given by Eq. ~4! may not have com-

pletely converged yet, ~c! DZ(t) may contain errors arising

from the numerical evaluation of the integral ~5! for large t,

where the integrand Z(t) is nearly zero, and ~d! if G is ex-

tremely large ~e.g., *104), then the system ~even in thermal

equilibrium! suffers noticeable temperature shift during the

microcanonical simulation due to discretization errors in

time integration. To minimize effects of such temperature

shift, we take the time average of system temperatures and

also use the time average of DE(t), rather than the actual

limit limt→`DE(t), as mentioned before.

On the other hand, a possible source of systematic errors

in the numerically evaluated self-diffusion coefficients is the

N dependence. As is known for particle systems with other

potentials, the numerical self-diffusion coefficient values de-

pend on the number of simulation particle N.30 However, in

our case, the correction of D due to the N dependence seems

comparable with errors due to ~a!–~d! mentioned previously.

For example, from MD simulation for k50.1, we have ob-

tained DE /vEa2
50.004 86 ~at G5150!, 0.005 62 ~at

G5148!, and 0.005 34 ~at G5150! for N5300, 600, and

1000, respectively. Similarly, DZ /vEa2
50.004 77 ~at

G5150!, 0.005 60 ~at G5148!, and 0.005 37 ~at G5150! for

N5300, 600, and 1000, respectively. Other possible system-

atic errors due to, for example, the shape of the boundaries

are not examined here.31

V. MODE COUPLING THEORY

Schmidt et al.25 have shown that the power spectrum of

the VAF Z̃(v) for a fluid OCP exhibits two peaks related to

the excitation of longitudinal and transverse waves if the

system is close to solidification. In this section, we shall

show that the same holds for Yukawa systems, using the

mode-coupling theory.25,26 For a given wave number k, let

us define the longitudinal and transverse current correlation

functions26 as

C l~k,t !5

1

N
^@k•j~k,t !#@k•j~2k,0!#& ~7!

and

C t~k,t !5

1

2N
^@k3j~k,t !#•@k3j~2k,0!#& . ~8!

Here

j~k,t !5(
j51

N

vi~ t !exp@ ik•rj~ t !#

is the Fourier transformation of the microscopic particle cur-

rent

j~r,t !5(
j51

N

vj~ t !d@r2rj~ t !# .

We also write the Fourier transformation of these functions

into the frequency space as C̃ l(k,v) and C̃ t(k,v). Waves

excited in Yukawa systems are collective motions of the con-

stituent particles and can be characterized by these correla-

tion functions.

We have used MD simulations with N5250 simulation

particles to evaluate the current correlation functions. As the

simulation volume is finite, the wave numbers k that can be

examined in our simulations are limited to

q 5 S 2p

L/n1

,
2p

L/n1

,
2p

L/n1
D

with (n1 ,n2 ,n3) being the integer triplet. Since the system is

isotropic, the correlation functions depend only on the mag-

nitude of the wave number, i.e., k5uku. Therefore the small-

est wave number kmin that we can take in our MD simula-

tions is given by kmin52p/L . ~For N5250 particles, we

have kmina.0.619.)

We have obtained the power spectra C̃ l(k,v) and

C̃ t(k,v) of the current correlation functions from the fast

Fourier transform ~FFT! of the MD simulation data. Gener-

ally the straightforward application of the FFT to MD data

results in low signal/noise ratios and therefore some smooth-

ing of FFT spectra is required. To evaluate the power spectra

of the current correlation functions, we first equally divided

1920 discrete time-sequential data into 15 sets, applied FFT

to each data set, and then took the average over the obtained

15 FFT spectra. This process limits the frequency resolution

to Dv50.0283vp in power spectrums obtained from the

FFT in this paper. To further reduce statistical noise, we also

averaged the correlation functions over different wave vec-

tors of the same magnitude k5uku. For example, for a given

wave number vector k5(k1 ,k2 ,k3), all of its permutations

such as (k1 ,k3 ,k2), (k2 ,k1 ,k3), ••• , are considered to be

equivalent for the current correlation functions since the sys-
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tem is isotropic. In general, the power spectrum of the auto-

correlation function CAA(t)[^A(t)A(0)& of a function A(t)

may be given by

C̃AA~v !5 lim
T→`

2p

T
ÃT~v !ÃT

*~v !5 lim
T→`

2p

T
uÃT~v !u2 ,

where

ÃT~v !5

1

v
E

2T/2

T/2

exp~ ivt !A~ t ! dt .

Therefore, to obtain the power spectra of the current auto-

correlations we first obtain ÃT(v) @e.g., ÃT(v)5 j̃(k,v)•k

for C l̃(k,v)] using FFT for a sufficiently large T. To mini-

mize nonphysical effects arising from the finiteness of T, we

apply a smooth data window edged with cosine functions to

the original time-sequential discrete data before applying

FFT. The magnitude of the thus obtained FFT power spec-

trum are then adjusted accordingly.32

Figure 6 shows the power spectra of longitudinal and

transverse current correlation functions, i.e., C̃ l(k ,v) ~de-

noted by solid curves! and C̃ t(k ,v) ~denoted by dotted

curves! for k51.0 and G5202 @coupling parameter G*

5Gexp(2k)574.3].The peaks of the current correlation

functions give the linear dispersion relations for the corre-

sponding waves.33,34

Similarly the self-intermediate scattering function is de-

fined as

Ss~k,t !5^rs~k,t !rs~2k,0!&

with

rs~k,t !5exp~ ik•rj~ t !!

FIG. 6. Power spectra of longitudinal

and transverse current correlation

functions, i.e., C̃ l(k ,v) ~denoted by

solid curves! and C̃ t(k ,v) ~denoted by

dotted curves! for various wave num-

bers k (q5ka) for k51.0 and G5202

@coupling parameter G*5Gexp(2k)

574.3].

4512 Phys. Plasmas, Vol. 7, No. 11, November 2000 H. Ohta and S. Hamaguchi

Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



being the density of a single ~the j th) particle. As before, we

denote the Fourier transform of Ss(k,t) in the frequency

space by S̃s(k,v), which is called the self-dynamical struc-

ture factor. Then, from the mode-coupling theory,25,26 we

have

Z~ t ! .
1

n~2p !3
E dk

k2
Ss~k,t !@C l~k,t !12C t~k,t !#

in the strongly coupled regime. Taking the Fourier transform

of the above-mentioned equation, we obtain

Z̃~v ! .
1

n~2p !3
E dk

k2
S̃s~k,v !*@C̃ l~k,v !

12C̃ t~k,v !# , ~9!

where the asterisk denotes the convolution. Note the above-

mentioned integrals are divergent for large k. Since waves

whose wavelengths are much shorter than the average inter-

particle distance are meaningless, we set the upper limit of

the k integration25 as kmax5(6p2n)1/3
52.42/a . The long-

dashed curve in Fig. 7 shows the power spectrum of the VAF

constructed in this manner, i.e., the right-hand side of Eq.

~9!, for k51.0 and G5202. Here we have used the current

correlation functions C̃ l(k ,v) and C̃ t(k ,v) shown in Fig. 6

and also S̃s(k ,v) obtained in a similar manner to evaluate

Eq. ~9!. The contribution from the longitudinal current cor-

relation function C̃ l(k ,v) is given by the short-dashed curve

in the higher frequency side whereas the contribution from

the transverse current correlation function C̃ t(k ,v) is given

by the dotted curve in the lower frequency side. The sum of

these curves is the upper dotted curve. The solid curve is the

power spectrum of the VAF Z̃(v) directly obtained from

Z(t) via FFT. The jaggedness of the curves are due to sta-

tistical noise. The agreement is good and this analysis shows

that, as in the case of OCPs demonstrated by Schmidt

et al.,25 the peak in the higher frequency is accounted for by

the excitation of the longitudinal mode whereas the broad

peak in the lower frequency by that of the transverse mode

~i.e., shear mode!.

VI. CONCLUSIONS

We have presented the self-diffusion coefficients of

Yukawa fluids obtained from MD simulations in a wide

range of the thermodynamical parameters k and G. The self-

diffusion coefficients are evaluated from both Einstein rela-

tion and Green–Kubo formula for the VAF. The numerically

obtained self-diffusion coefficient D is found to follow a

simple scaling relation given by Eq. ~6!, where the depen-

dence of coefficients a, b, and g on k is relatively weak, as

shown in Table III. Especially if the system temperature T

is close to the critical temperature Tm , the normalized

self-diffusion coefficient D* (5D/vEa2) is proportional to

T* (5T/Tm), the coefficients of which are independent of k.

This universal linear scaling was previously observed by

Robbins et al.9 in a relatively limited parameter range, but

we have confirmed the linear scaling holds approximately in

the range of 1,T/Tm&10 with good accuracy. We have also

presented the VAFs and its power spectra as functions of the

thermodynamical parameters. As in the case of OCPs dem-

onstrated by Schmidt et al.,25 it is shown that two peaks of

the VAF’s power spectrum in the strong coupling regime are

associated with waves excited in the system.

In the case of dusty plasmas or colloidal suspensions, the

diffusion of particulates is usually dominated by collisions

with the background media ~e.g., background neutral gas

molecules/atoms in the case of dusty plasmas!, rather than

self-diffusion, as mentioned earlier. Therefore the self-

diffusion coefficients obtained in this work do not directly

represent diffusivity observed in experiments of those sys-

tems. However, together with other transport coefficients

such as viscosity and thermal conductivity, the self-diffusion

coefficient is one of the most fundamental dynamical param-

eters that reflect the nature of the interparticle potentials and

characterize thermodynamics of the system. Evaluation of

other transport coefficients for Yukawa systems in the same

parameter range is the subject of a future study.
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