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Thermally driven escape over a barrier of arbitrary shape
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The Kramers theory for the thermally activated rate of escape of a Brownian particle from a

potential well is extended to a barrier of arbitrary shape. The extension is based on an approximate

solution of the underlying Fokker–Planck equation in the spatial diffusion regime. With the use of

the Mel’nikov–Meshkov result for the underdamped Brownian motion an overall rate expression is

constructed, which interpolates the correct limiting behavior for both weak and strong friction. It

generalizes in a natural way various different rate expressions that are already available in the

literature for parabolic, cusped, and quartic barriers. Applications to symmetric parabolic and

cusped double-well potentials show good agreement between the theory and estimates of the rates

from numerical calculations. © 1999 American Institute of Physics. @S0021-9606~99!01404-X#

I. INTRODUCTION

Ever since the pioneering contribution of Svante Arrhen-

ius, the problem of thermally driven escape from a meta-

stable state has become one of the most fundamental prob-

lems in physics and chemistry.1 The modern theory of

activated rate processes is essentially due to Kramers,2 who

provided a dynamical framework for the original concepts of

Arrhenius. The underlying idea of the Kramers theory is to

model the escape process by the motion of a Brownian par-

ticle with mass weighted coordinate x in a potential of mean

force V(x). The dynamics is governed by the following

Fokker–Planck equation for the probability density P(x ,v ,t)

of finding the particle at time t at position x with velocity v:2

] tP~x ,v ,t !5@2v]x1V8~x !]
v
1g]

v
~v1b21]

v
!#P~x ,v ,t !.

~1.1!

Here the prime denotes the derivative with respect to x, g is

the friction coefficient, and b the inverse energy available

from the thermal bath, b21
5kBT . The potential is assumed

to have a well with minimum at xw,0, separated from the

continuum by a barrier at x50 of height E52V(xw).

Hereby we set for convenience V(0)50. The quantity of

interest is the escape rate G of the particle from the well. The

latter can always be written in the form

G5mGTST , ~1.2!

where GTST is the transition state theory ~TST! result

GTST5HA2pbE
2`

0

dx e2bV~x !J 21

, ~1.3!

and m is a transmission coefficient describing the deviation

of the rate from GTST .

Kramers studied the dependence of the escape rate on

the frictional damping in two regimes, namely, for small and

intermediate to large friction g. In the former regime, the

coupling between the system and the bath is assumed to be

vanishingly weak so that the rate limiting step is the transfer

of energy from the bath to the particle. The transmission

coefficient takes in this case the form

m~g→0 !5D~g→0 !52gbE
xp

0

dxA22V~x !, ~1.4!

where D is the dimensionless loss of energy per oscillation of

a particle with energy close to the barrier height, and xp the

left-hand side turning point of the asymptotic underdamped

trajectory, V(xp)50. In the intermediate to large friction re-

gime, when the transfer of energy becomes fast enough to

maintain thermal equilibrium of escaping particles, the rate

limiting step is spatial diffusion across the barrier region.

One of the basic assumptions of the Kramers theory2 in this

regime is a parabolic barrier approximation. It consists in

dividing the full potential into a parabolic barrier part

U~x !52
1
2v

2x2, ~1.5!

with v2
52V9(0), and an anharmonic correction reading

V~x !5U~x !1O~x3!. ~1.6!

In the immediate vicinity of the barrier top which dominates

the dynamics, the nonlinearity of V(x) vanishes faster than

the parabolic part 2
1
2v

2x2 and therefore can be neglected.

This yields the following expression for the transmission co-

efficient:

mpb5A11

g2

4v22

g

2v
. ~1.7!

It should be noted that Eq. ~1.7! is valid for g
*v/(2pbE). Consequently, in the extreme high barrier

~low temperature! limit, bE→` , one will ultimately almost

always be in the spatial diffusion regime.

Kramers’ model, although simple, is of wide-ranging

significance to a detailed understanding and evaluating the

influence of the medium on reaction rates. It has found vari-

ous generalizations to the full friction range,3 non-Markovian

activated rate processes,4,5 multidimensional systems,6 and

cases without detailed balance7 ~for a review see Ref. 1!. In

a!Permanent address: Institute for High Temperatures, 13/19 Izhorskaya

Street, 127412 Moscow, Russia.
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all these investigations the barrier is assumed to be parabolic,

though this assumption is not always met in real physical and

chemical barrier crossing processes. For example, the barrier

of charge transfer reactions is often of a cusp-shaped form.8

Kramers also derived the transmission coefficient for a cusp-

shaped barrier,2 U(x)52auxu,

mcusp~g→` !5

a

g
A1

2
pb , ~1.8!

but his expression is valid only in the asymptotic limit of

large friction where Eq. ~1.1! can be approximated by a

Smoluchowski equation. There are various attempts in the

literature to bridge the strong friction limit result for a cusp-

shaped barrier with the TST value, mTST51, at zero

damping.9,10 An analogous interpolating formula is known

for a quartic barrier.1 Only very recently, Berezhkovskii

et al.11 have extended this formula to an arbitrary nonpara-

bolic barrier of the form

U~x !52~a/a !uxua. ~1.9!

Their generalization reads11

ma5H E
2`

`

dx exp@bU~x !#J 21

3E
2`

`

dx expH bFU~x !2

1

2
g2x2G J . ~1.10!

There is, however, a certain irony here; the above formula

agrees with the known escape rates for nonparabolic barriers,

but fails to reproduce the exact result for a parabolic barrier.

In the latter case, it yields instead of Eq. ~1.7! an approxi-

mate expression

m25~11g2/v2!21/2. ~1.11!

The aim of this paper is twofold. First, we want to

present an approximate rate formula, which indeed is valid

for arbitrarily shaped barriers and interpolates between the

limits of small and large friction. And second, we wish to

compare this formula with exact numerical rates in different

types of potentials.

II. INTERPOLATING FORMULA

To begin with we consider the spatial diffusion regime.

Our purpose is to derive an approximate solution of the

Fokker–Planck equation which would allow one to recover

Eqs. ~1.7! and ~1.10!. This goal can be achieved in many

different ways.12 Here we employ the flux over population

method developed by Kramers.2 Within its scope, the escape

rate is defined as the ratio of a stationary diffusion current at

the top of the barrier to the population of the well. Accord-

ingly, we have to look for a current carrying stationary prob-

ability density P(x ,v), that smoothly matches the equilib-

rium distribution

Peq~x ,v !5exp@2bV~x !2
1
2bv

2# ~2.1!

in the well and vanishes beyond the barrier. The two station-

ary densities are related by a form function j(x ,v),

P~x ,v !5j~x ,v !Peq~x ,v !, ~2.2!

which is determined from

$2v]x1@V8~x !2gv#]
v
1gb21]

vv

2 %j~x ,v !50. ~2.3!

Once the form function is known, the reactive flux formula

yields for the transmission coefficient

m5bE
2`

`

dv vj~0,v !expS 2

1

2
bv

2D . ~2.4!

Following Kramers, we approximate the potential V(x)

entering Eq. ~2.3! by its barrier part U(x). The latter is not

necessarily parabolic, it may be a sum of arbitrary ~parabolic

and nonparabolic! terms

U~x !52
1
2v

2x2
2

a

a
uxua2¯ . ~2.5!

Moreover, we assume that j(x ,v) is a function of some lin-

ear combination of x and v ,

j~x ,v !5j~̺ !, ̺5cx1bv . ~2.6!

Then, it is not difficult to check by direct substitution that in

leading order in ̺ and (bE)21 an approximate solution to

Eq. ~2.3! reads

j~x ,v !5Z21 E̺`

dy ebU~y !, ~2.7!

with

̺5Av/~gmpb!@x2~mpb /v !v#. ~2.8!

In the above mpb is given by Eq. ~1.7!, while the normaliza-

tion constant Z is defined by the requirement that the form

function j(x ,v) approaches unity in the initial well and zero

in the product side. This immediately yields

Z5E
2`

`

dy ebU~y !. ~2.9!

It will be recalled here that the barrier ~temperature! is as-

sumed to be high ~low! enough so that the potential can be

well approximated by its local behavior in the vicinity of the

barrier top. Otherwise one can use in Eqs. ~2.7! and ~2.9!
instead of the barrier part U(x) the full potential V(x) itself.

In such a case, the integration has to be restricted to the

barrier region with a lower limit at, say, xw and the upper

limit at a value beyond the barrier from where the recrossing

probability of a particle with zero initial velocity can safely

be neglected.

Inserting Eq. ~2.7! into Eq. ~2.4!, we obtain the follow-

ing expression for the transmission coefficient:

mab5Z21E
2`

`

dx expH bFU~x !2

1

2
~gv/mpb!x2G J .

~2.10!

It is a simple matter to check that for a parabolic barrier the

above formula coincides with the exact Kramers result, Eq.

~1.7!, while for a purely nonparabolic barrier (v50) it re-

produces Eq. ~1.10!. One may also note that it agrees in the

limiting case of high friction with the transmission factor for

an arbitrarily shaped barrier following from the correspond-

ing Smoluchowski equation13
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m~g→` !5H gA b

2p
E

2`

`

dx ebU~x !J 21

, ~2.11!

and reduces to unity at zero damping.

A rate expression valid in the full damping range can be

obtained by making use of an elegant approach developed by

Mel’nikov and Meshkov.3 This gives in a straightforward

way

m5mabA~D !, ~2.12!

with

A~D !5expS 1

p
E

0

`

dx
ln$12exp@2D~x2

1
1
4!#%

x2
1

1
4

D ,

~2.13!

where D is given by Eq. ~1.4!. It should be noted that the

ansatz of writing a uniform formula for nonparabolic barriers

as a product of a spatial diffusion expression and the depopu-

lation factor A is ad hoc. It follows neither from Mel’nikov

and Meshkov nor from Pollak, Grabert, and Hänggi turnover

theories. It is our aim here to prove the utility of Eq. ~2.12!
by comparing with exact numerical rates. The latter is not so

obvious as one might think. Specifically, Mel’nikov and

Meshkov derived the depopulation factor ~2.13! under the

assumption that the escape dynamics can be described by a

probabilistic integral equation in energy-action variables,

whose Green function corresponds to the barrier trajectory.

For a smooth potential the trajectory that leaves the barrier

with the entire energy close to zero returns to it after time

T→` . This infinite time, however, is no longer true for a

cusped barrier where the time is of the order of the period of

particle oscillation in the well. Thus the interesting issue we

shall address in our numerical applications is as follows:

Does the finite period of the barrier trajectory spoil the ap-

plicability of Eq. ~2.12!?

III. NUMERICAL RESULTS

The aim of this section is to present exact numerical

rates for different types of potential barriers that would allow

one to test analytical predictions. One might, at first, believe

that this issue should have been settled long ago, mainly

because of its continuous importance in many problems of

chemical physics. To the best of our knowledge, however,

there are no numerical solutions of such a type, other than

those obtained in Refs. 10 and 11 under the assumption that

the potential consists only of a barrier part. This assumption

results in a monotonic dependence of the transmission coef-

ficient on g; the coefficient increases with decreasing g and

reaches its maximal value at zero damping, when there is no

coupling between the system and the bath. It is clear that the

data so obtained are not suited for testing analytical predic-

tions in the most problematic intermediate and weak damp-

ing regimes.

Here we deal with activated rate processes in a symmet-

ric double-well potential of the form

V~x !5

E

112a
@x4

24auxu22~12a !x2# , a.2
1
2 .

~3.1!

Its barrier part varies with the parameter a from a purely

parabolic (a50) to a purely cusped (a>1) barrier, see Fig.

1. Accordingly, the frequency v entering our rate expression

reads

v2
5H 4~12a !E/~112a ! 2

1
2,a<1,

0 a.1.
~3.2!

The method used to numerically solve Eq. ~1.1! will be de-

scribed elsewhere.14,15 Table I shows a list of the first non-

zero eigenvalue in the considered potential for bE510 and

a50, 0.5, and 1. The calculation is performed over a large

range of g which covers all regimes of chemical interest,

from the underdamped Brownian motion to the spatial diffu-

sion regime.

Before testing the validity of the present rate expression,

we note that Eq. ~2.12! gives the transmission coefficient for

the escape from a metastable state. Using the approach sug-

gested by Mel’nikov and Meshkov,3 the coefficient for a

symmetric double well can be written as

m5mabA
2~D !/A~2D !. ~3.3!

FIG. 1. Different shapes of the potential V(x), Eq. ~3.1!, for a50 ~the

dashed line! and a51 ~the solid line!.

TABLE I. First nonzero eigenvalue for symmetric double-well potentials,

Eq. ~3.1! with bE510 and a50, 0.5, and 1. Exponential notation 2k

means that the number preceding is to be multiplied by 102k.

g a50 a50.5 a51

0.05 0.17124 0.14624 0.14424

0.1 0.30424 0.25924 0.24724

0.25 0.59324 0.49424 0.45624

0.5 0.86824 0.71324 0.64024

1 0.10623 0.88924 0.79124

2 0.10623 0.95224 0.85624

5 0.85824 0.91424 0.85024

10 0.60724 0.78624 0.77024

20 0.36124 0.55724 0.56424

50 0.15424 0.26824 0.28624

100 0.78025 0.13324 0.14524

1000 0.78326a 0.13425a 0.14725a

aExact estimate of the eigenvalue calculated from the respective Smolu-

chowski equation.
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The least nonvanishing eigenvalue of the corresponding

Fokker–Planck operator is then given by twice the rate de-

fined by Eq. ~1.2!. The numerical values of the transmission

coefficient extracted in this way are exhibited in Fig. 2, to-

gether with the analytical predictions obtained in terms of

Eq. ~3.3!. As evidenced by Fig. 2, the approximate rate ex-

pression gives an upper bound to the exact result for the rate

in the parabolic double-well potential. For the cusped poten-

tials the theory overestimates the rate in both limits of weak

and strong friction and underestimates it in the intermediate

friction region. It is also seen that for all values of a the best

agreement is achieved in the strong damping limit (g
*100). With decreasing g the error made by the ansatz ~3.3!
increases and reaches maximal values in the weak damping

region (g&0.1). The theoretical expression overestimates

the rate in this region by 14% for a parabolic barrier (a

50) and by 18% for a purely cusped barrier. It should be

pointed out that the same is true for the turnover theory of

Pollak, Grabert, and Hänggi.5 As we have shown in recent

papers,15,18 their theory also considerably overestimates the

rate in the weak friction regime.

Finally, to conclude this section we note that the barrier

frequency v appearing in Eq. ~2.10! may still be left even if

the barrier is purely nonparabolic. In such a case, it should be

treated as a variational parameter.16 Yet another way to im-

prove the rate formula is to take into account finite-barrier

corrections. These are obtainable systematically in both re-

gimes of weak17 and intermediate to strong friction.12 A fur-

ther improvement of the overall rate expression can be

achieved by using in Eq. ~2.10! a properly determined energy

loss of the deterministic particle dynamics. In contrast to the

weak friction expression for D proposed by Mel’nikov and

Meshkov, Eq. ~1.4!,3 as well that suggested by Pollak, Grab-

ert, and Hänggi5 in their turnover theory, the deterministic

approach to this quantity yields an approximation which re-

mains correct in the full damping range, regardless of the

particular shape of the potential barrier.15,18

IV. CONCLUDING REMARKS

In this paper, an approximate formula for the rate of

escape over an arbitrarily shaped barrier has been con-

structed by means of the flux over population method and the

approach by Mel’nikov and Meshkov. The resulting expres-

sion agrees in the limiting case of high friction with the rate

following from the corresponding Smoluchowski equation

and, in the extremely underdamped regime with the rate ob-

tained by Kramers from a diffusion equation in energy ~ac-

tion! variables. It generalizes in a natural way the known rate

formulas for parabolic and nonparabolic barriers.

Besides, we have presented for the first time numerically

exact rate constants for potentials with different barrier

shapes in all regimes of chemical interest, from under-

damped to overdamped Brownian motion. These results pro-

FIG. 2. Transmission coefficient and percentage error,

1003~approximate2exact!/exact, made in m by using

Eq. ~3.3!. Exact numerical results are shown by circles.

~a! a50; ~b! a50.5; ~c! a51.
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vides the necessary foundation for testing various different

rate expressions that already exist in the literature. Compari-

son with the numerical data shows that the present overall

rate expression is rather accurate in the strong damping limit,

underestimates the rate by ;0%–18% in the intermediate

friction region and overestimates the rate by ;14%–23% in

the weak damping regime.
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