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The molecular dynamics and electronic structure of the p+-C60 radical in crystalline C60 have been

studied using muon spin rotation and relaxation. At room temperature p -C60 appears to be in a state
of quasifree rotation. At the critical temperature T& =260 K the local electronic structure and molecu-

lar dynamics change discontinuously as expected for a first-order phase transition. The correlation times
for reorientation are remarkably close to those determined by recent NMR experiments on C60, suggest-

ing that the molecular dynamics of p+-C60 are strongly coupled to those of its C60 neighbors.

PACS numbers: 64.70.Kb, 6l.70.—r, 76.75.+i

The observation of C60 and other fullerenes by Kroto et
al. [1] has led to wide variety of studies of closed carbon
clusters. The subsequent production of bulk quantities of
relatively pure C60 has greatly accelerated the process
[2]. An intense effort is being made to understand the

unique structural and electronic properties of pure crys-
talline C60, which is a semiconductor, and C60 doped with

other atoms. High-resolution x-ray diffraction [3] has

determined that pure C60 at room temperature has an fcc
crystal structure in which the large weakly interacting

C6p molecules are orientationally disordered. Below 249
K there is a transition to an orientationally ordered phase
accompanied by a small change in the lattice constant of
0.044 A [4]. Although early calorimetry studies [5] in-

dicated the transition is second order, heat-capacity
anomalies have now been reported at 260 [3] and 252 K

[6], which are characteristic of a first-order transition.
Information on the molecular dynamics has been ob-
tained principally from NMR studies [7,8], which show a

very narrow "C line at room temperature, indicating rap-
id rotation of the C60 molecules. This is confirmed by re-
cent quasielastic neutron scattering [9]. As the tempera-
ture is lowered below about 190 K the NMR line gradu-
ally broadens due to a gradual slowing down of the
motion. Although no anomaly is observed in the I/Tq
linewidth or the chemical-shift tensor, at the transition
there is a sharp but continuous increase in the I/T~ spin-
relaxation rate below 260 K [7].

Little is known about the electronic structure and
molecular dynamics of simple isolated impurities in C60,

such as atomic hydrogen. In conventional semiconduc-

tors muon spin rotation (pSR) and related methods have

been used to obtain detailed information on the structure
and dynamics of isolated muonium (It+e ), whose prop-
erties are closely related to those of hydrogen [10]. A

previous muon-spin-rotation experiment revealed signals

from two distinct paramagnetic centers in a commercial

sample of C6p which had a 10%-15% C7p contamination

[11]. One signal has a large isotropic muon hyperfine pa-

rameter of 4256 MHz, which is close to the value for
a muonium atom (p+e ) in vacuum (4463 MHz),
whereas the second signal had an isotropic hyperfine pa-
rameter of 325-MHz which is typical of muonated radi-
cals [12]. In this Letter we report a study of the molecu-

lar dynamics and electronic structure of the 325-MHz
center in a highly crystalline sample of pure C60. We
show that the 325-MHz signal at room temperature is a

p -Cgp radical in crystalline C60 undergoing quasifree ro-

tation. Clear discontinuities are observed at Tv =260 K,
confirming that the phase transition is first order. The
correlation times for reorientation of p+-C60 above and

below the phase transition are almost identical to the
NMR results on C6p [7,8].

The experiment was performed on the M15 beam line
at TRIUMF, which provides a beam of nearly 100%
spin-polarized muons with a momentum of 28 MeV/c.
Muons were stopped in a 500-mg sample of high-purity
C6p powder prepared using standard techniques [2]. The
sample was vacuum dried overnight at 250 C, a process
which results in no detectable infrared lines attributable
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to solvent molecules. High-resolution powder x-ray dif-
fraction yielded a crystallite size of greater than 1500 A,
and high-performance liquid chromatography showed

better than 99.5% pure Ct,o and no trace of C|;00. The
sample was cooled using a He-gas-flow cryostat.

Conventional transverse-field pSR data [13] were tak-
en in an applied magnetic field of 1.5 T. We assume that
the p+-C&0 radical has an axial hyperfine interaction and

that gyromagnetic ratios for the muon and electron (2zy„
and 2ny, . , respectively) are isotropic. For a fixed orienta-
tion of the symmetry axis with respect to a large external
magnetic field H the muon spin will precess about an

eAective magnetic field whose components parallel and

perpendicular to H are approximately

Hii =H T [A,.
—Ap(l —3cos 8)]/2y„, (1)

H4& = + 3A„sin 0cose/2y„, (2)

where A,. and A„are the isotropic (s) and anisotropic (p)
hyperfine parameters, 0 is the angle between H and the
axis of symmetry, and the upper or lower sign corre-
sponds to the projection of the electron spin along H. If 0
is random with respect to H and A~((A, , then one ex-
pects a powder-pattern line shape for each of the two pos-
sible muon precession frequencies, a higher one v and a
lower one v+. On the other hand if H& is fluctuating
with an autocorrelation time T;,. due to reorientation, such

that 2zA„«1/r, . «2mv, one expects a Lorentzian line

shape, which for v+ has a width

1/Ta =cr)jr( + ~ 0jrI /[1 '+ (2zv rI ) ], (3)

where the second term is the I/T~ contribution arising
from the fluctuating transverse components of the ef-
fective field. The parameters cr~ =,'&, (2@A„) and IT,

,= —,
'

(2rrAp) are proportional to the mean-squared devia-

tions for II[[ and H~&, respectively.
Figure 1 shows the Fourier transform of the pSR spec-

trum at various temperatures in the region of the lower

frequency v+. Near room temperature the pSR lines are
very narrow with a width close to that measured for

muonated organic radicals in liquids [12]. Below Tq

=260 K a new signal appears which is characterized by a

slightly larger A, and significant line broadening, attri-
buted to slowing down of the reorientation. There is a re-

gion of temperature between 242 and 265 K where the
signals coexist. The observation of a significant coex-
istence region for a first-order transition implies that part
of the high-T phase is pinned by defects or (undetected)

impurities during cooling. The Gaussian line shape at 5

K indicates that a distribution of hyperfine parameters,
arising from inequivalent orientations of the symmetry

axis with respect to the crystalline axes, efIectively smears
the powder pattern. The overall width of the line indi-

cates that A„ is a few MHz which is typical for muonated

radicals [14]. Figures 2(a) and 2(b) show the discon-
tinuity in the fitted Lorentzian linewidth 1/T. and the

average hyperfine parameter A, at 260 K.

The correlation times for reorientation below Tq [see
Fig. 2(c)] were estimated by fitting the time evolution of

10

'lO

l0

330-
II A A A~ AA h Jl a A A

W
Cl

O

AA A AAA m ~AA

I I I I I

10 20 30 40 50 60 70
FREQUENCY (MHz)

FIG. l. pSR frequency spectra p+-C«) in solid C(0 near v+.

Below the phase transition at T~ =260 K a new line appears at
a slightly lower frequency and with increased linewidth.
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the muon spin polarization using the formula [15]

G„,(t) =exp[ —of r, (e.
'" —

I +t/r )] (4)

to describe the dephasing and resulting decay of the am-

plitude of precession. Although this expression neglects

the I/T~ contribution to the linewidth in Eq. (3), it is val-

id for arbitrarily large r, . Note that the Fourier trans-

form of G, , (t-) is the line shape. In all the fits the static
linewidth parameter at=21.2(l. l) ps ' was obtained

from an average of the lowest-temperature runs so that

the only free parameter was r, The correlation times

between 200 and 250 K were fitted with an Arrhenius

law, I/r, =A ex.p[ E—,/ktt T], yielding A =6.4(2.4)
X IO' s

' and E, =219(7) meV. At 200 K, r„=52(17)
ns which is remarkably close to the NMR result [7] of 64
ns for C60. This is surprising considering that the added
p+ atom is estimated to be approximately a C-H bond

length on the outside of the C6o molecule [16] where it

would be expected to hinder the reorientation of the mol-

ecule. This suggests that the reorientation of p+-C60 is

coupled to the motion of its C60 neighbors such that the

molecular dynamics of the p+-C60 impurity are con-

trolled by those of its neighbors. At 200 K there appears
to be a slight change in slope in the temperature depen-

dence of A, and I/r, . One possibility is that at lower

temperatures the p+-C60 is no longer able to execute

large-angle reorientations but is restricted to jumps
within a finite solid angle. Although an additional phase

transition is also a possibility there is no evidence for such

a transition from other studies. There are several calcu-
lations on the nature of the orientational ordering in C60
[17-20]. Most of them predict a single first-order transi-

tion below room temperature whereas one calculation

[20] finds an additional second-order transition at lower

temperatures [20]. However, none of the calculations is

accurate enough yet to predict the simple-cubic phase in-

dicated by x-ray diffraction [3].
Figure 3 shows the field dependence of the measured

muon I /T ~ spin-relaxation rate as a function of magnetic
field for two temperatures below Tg. The solid curves are
fits with the second term in Eq. (3). Note that the peak
position occurs at a magnetic field where v+ =0, whereas
the width of the peak is determined by r, . The correla-
tion times measured in this way agree within a factor of 2

with those obtained from the transverse-field data,
confirming that the fluctuating hyperfine field is the dom-

inant source of muon spin relaxation and line broadening
below Tq.

Above T~ the motion changes suddenly as evidenced by
the discontinuous behavior of I/Tq and A, [see Figs. 2(a)
and 2(b)]. There is good evidence that p+-C6o is in a
state of quasifree rotation in the high-temperature phase,
as has been proposed for the Cpo molecules [7,8]. For in-

stance, the linewidth for p+-C60 above T~ is close to that
observed for other rnuonated organic radicals in liquids
[12] and increases with increasing temperature. The
latter observation cannot be explained by Eq. (3) which
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FIG. 3. The I/T~ muon spin-relaxation rate of p+-Chp as a

function of magnetic fie)d.

predicts a monotonic decrease in the linewidth for in-

creasing I/r, or temperature. On the other hand if there

is very rapid rotation of the radical the contribution from

the fluctuating hyperfine field is negligible and the pSR
linewidths are dominated by electron-spin relaxation in-

duced by the coupling of the electron spin to the

molecular-rotational-angular momentum [21]. The muon

I/T2 linewidth in this case can be approximated as

I /T. =osa r, ./[ I + (2tr v,, r, . ) '], (5)

where osR is the electron-spin-molecular-rotation cou-

pling constant and v,. =y,.H is the Zeeman frequency of
the electron. The relaxation-rate data above T~ were

fitted with Eq. (5) assuming an Arrhenius behavior for

I/r, , yielding osR =4.9(I.O) x 10" s ', A =5.1(7)x 10'

s ', and E„=98(16)meV. The correlation times above

Tq shown in Fig. 2(c) were obtained from the measured

I/T2 linewidths using this fitted value for osa. At 300 K,

r, =8.5(2.0) ps. T. his is in good agreement with NMR
results [7,8], although we find the preexponential factors

for p+-C60 are about the same above and below Tq with

the main change occurring in the activation energy.
The discontinuous change in the isotropic hyperfine pa-

rameter at Tq shows that the electronic structure of p+-
C60 changes suddenly at the phase transition. Based on

what is known about structure and intrarnolecular motion

of muonated radicals [22] it is reasonable to assume that

at the phase transition there is a sudden change in the C-
tt+ bending motion and/or C-p+ bond length. Since the

lattice constant at T& changes by only a small amount

(0.044 A) [4] it suggests that there is a change in the dis-

tribution of angles between the C-p+ bond and the crys-

talline axes which are being sampled over the path of ro-
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tation. This is consistent with a sudden change in the

motion from one characterized by jumping between

specific crystalline directions to one involving quasifree
rotation.

In conclusion, we have carried out a pSR investigation

of the molecular dynamics of the p+-C&0 radical in solid

C~o. Above the structural phase transition at Tq- =260 K

the radical appears to rotate rapidly as if it were in a

liquid with correlation times of about 10 ps, whereas just
below Tq the correlation time is more than a 100 times

longer. The molecular dynamics of p+-C&0 appear to be

controlled by those of its C&0 neighbors indicating strong

dynamic correlations. Clear discontinuities in both the

local electronic structure and in the molecular dynamics

are observed at Tq, confirming that the orientational or-

dering at 260 K is a first-order transition.
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