
Molecular Dynamics on FPGA Based Accelerated Processing Units

Mihaela Maliţa1,3,⋆, David Mihǎiţǎ2,⋆⋆, and Gheorghe M. Ştefan3,⋆⋆⋆

1Computer Science Dept., Anselm College, Manchester, NH
2Faculty of Electronics, Tc. & IT, Politehnica University of Bucharest, Bucharest, Romania
3Faculty of Electronics, Tc. & IT, Politehnica University of Bucharest, Bucharest, Romania

Abstract. One of the main problems in providing the amount of computation requested by the Molecular Dy-

namic domain is to offer an appropriate architectural environment for solving all the aspects of the intense parts

of the involved computation. Current solutions accelerate only partially the intense computation – forces com-

putation & position and speed updates, which represents around 75% from the total computational effort – thus

limiting the help provided by the parallel computing resources involved. The aim of this paper is to introduce

a parallel accelerator featured with functions able to add to the accelerated functions the neighbourhood list

building, which represent around 25% from the total computation. Thus, accelerations higher than the current

∼ 4× are expected. Our proposal, the MapReduce Accelerator, is evaluated using the Gromacs system. The

Martini water example, running on a cycle accurate simulator, is used to evaluate the speed-up and the energy.

1 Introduction

The Molecular Dynamics computational domain belongs

to the 4-th dwarf – N-Body Methods – emphasized in the

Berkeley’s View [2]. A short description of the problem

considers N particles, pi for i= 1, . . .N, each characterized

by a small set of parameters, let say, for example, position,

speed, charge and mass (pi : (xi,yi,zi,v
i
x,v

i
y,v

i
z,qi,mi)).

Each simulation cycle, in the brut force approach, consists

of the following two steps:

1. for each pi is computed the force vector resulting

from the forces exerted by all the other N −1 parti-

cles (in time belonging to O(N2))

2. the particles are let free to change their state (posi-

tion and speed) for a very short time interval; the

shorter the interval the more accurate the simulation

is (in time belonging to O(N)).

While, for N bodies, the brute force approach leads to

O(N2) computation for each simulation cycle, applying

various strategies, the computational complexity are re-

ducible to O(NlogN) or even O(N). For the particular

case of Molecular Dynamics, the computational complex-

ity is given by the huge number of simulation cycles re-

quested for an accurate simulation of the molecular fold-

ing process. Thus, any optimization applied to the first

step of the simulation cycle is welcome. There are various

ways to reduce the number of forces considered as act-

ing on each particle, such as Barnes-Hut Algorithm, Fast

Multipole Method or Particle Mesh Method. We selected,

⋆e-mail: mmalita@anselm.edu
⋆⋆e-mail: David.Mihaita@infineon.com

⋆⋆⋆e-mail: gheorghe.stefan@upb.ro

for investigating how the Molecular Dynamics can be ac-

celerated using hybrid computation, the Gromacs1 system

whose main idea is to limit the interactions of each particle

pi to a small neighbourhood of M << N particles whose

actions on the particle pi worth taking into consideration.

Thus, a three-step approach is currently practiced:

1. neighborhood search (in time belonging to O(N2))

2. forces computation (in time belonging to O(N×M))

3. up-date (in time belonging to O(N))

There are many solutions for accelerating the Molec-

ular Dynamics applications. The most radical one is to

build ASICs based specialised engines, like the Anton ma-

chine build by D. E. Shaw Research [10]. At the other

end, meaningful accelerations are also obtained by using

the last Intel’s families of multi cores processors supported

by SSE2 units.

A good compromise performance vs. price is provided

by using hybrid computation solutions embodied in Ac-

celerated Processing Units (APU). An APU integrate in

the same system a PU with an accelerating parallel engine,

such as a GPU3, a MIC4 or, increasingly more frequently,

a FPGA. The small accelerations provided by the use of

the current parallel accelerators are mainly due to the fact

that only the last two of the previously listed steps are sub-

mitted to the parallel accelerator, while the first step – the

neighbourhood search – which is theoretically the most

1GROningen MAchine for Chemical Simulations, see

http://www.gromacs.org/
2Streaming SIMD Extensions
3Graphic Processing Units such as Nvidia or ATI products.
4Many Integrated Core such as Intel’s Xeon Phi family of processors

�
   

 
 

DOI: 10.1051/, 04012 (2017) 712501MATEC Web of Conferences 25 matecconf/201

CSCC 2017

4012

© The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of  the Creative Commons Attribution
 License 4.0 (http://creativecommons.org/licenses/by/4.0/). 



time consuming, is left to the PU. Usually, the weight of

the first step is minimized by the compromising solution

of applying it only once at 10-50 state up-dates.

Our proposal refers to an APU based on a parallel ac-

celerator having a Map-Reduce architecture, implemented

in FPGA, able to perform efficiently on all the previously

emphasized three steps.

The next section discuss the state of the art. In the

third section is a short description of the proposed mapRe-

duce accelerator. The fourth section describe the use of

the accelerator in running the Gromacs system, a widely

used Molecular Dynamics environment. Final comments

concludes the paper.

2 State of the Art

2.1 Multi-Core Approach

Current CPU are already parallel machines. Intel’s pro-

cessors, for example, are multi-core engines featured with

Streaming SIMD Extensions (SSE) accelerators. We used

an Intel i5 system for running Gromacs for Martini water

[8]. Table 1 shows us the effects of this kind of two-level

parallelism: multi cores, each accelerated by an SSE.

Table 1. The performance on i5 multi-core [8].

CPU type Performance [µ/day] Acceleration

1-Core, no SSE: 1 EU 5.84 1.00×

1-Core, with SSE: 1+4 EUs 9.78 1.67×

4-Core, no SSE: 4 EUs 18.94 3.24×

4-Core, with SSE: 4+16 EUs 31.48 5.39×

It looks like the SSE accelerator (with its 4 execution

units, EU) is not of great use. The multi-core aspect is

more useful. The overall acceleration, 5.39×, is higher

than the acceleration provided by the hundred of EUs of a

GPU or the 60 cores of a MIC, because all stages of the

Gromacs computation are submitted to the acceleration.

But, from architectural point of view, the acceleration pro-

vided by p = 20 EUs is too small, 0.27× p.

2.2 Hybrid Solutions

In this paper we deal with systems, distributed or not,

based on APU, but we consider only the task executed by

one APU. We discuss and provide a hybrid solution for

accelerating the Gromacs system.

The current hybrid solutions [1] [6], using GPUs or

MICs to accelerate a CPU, develop an algorithm (see Fig-

ure 1) containing the following sections:

1. Build the neighbor lists; runs on CPU

2. Compute forces for the bonded interactions and up-

date; runs on CPU

3. Compute forces for the non-bonded interactions and

update; runs on GPU or MIC

4. Integrate the results; runs on CPU

The section 1 of the algorithm runs only once at 10-50

updates of the state. The Gromacs team decided exper-

imentally that each update of the positions provides too

small chances of positions to be considered in redefin-

ing the neighbourhood of each particle. Only the sec-

tion 3 of the algorithm is sent to the accelerator. Because

the force computation and update computation represent

∼ 75% form the total computation [8], the acceleration

provided by a hybrid system is theoretically limited by the

Amdahl rule to ∼ 4×.

❄
2: Compute forces

and update
for bounded
interractions

3: Compute forces
and update

for non-bonded
interractions

1: Build the neighbor lists

❄

4: Integrate the results

❄

❄

each iteration

every 10 to 50 iterations

Figure 1. The hybrid algorithm. Only the section 3 is per-

formed by the accelerator part of the hybrid system.

The current performances published for the hybrid sys-

tems are the following:

• using GPU as accelerator no more than 3× acceleration

with GPUs equipped with hundred of cores [6] [4] [1]

• using the Intel Xeon Phi MIC as accelerator 1.8× accel-

eration is provided [9] [1]

The performances reported for the hybrid systems

based on GPU and MIC are limited mainly due to the weak

involvement of the accelerator part of the hybrid system in

all the sections of the computation represented in Figure

1. We consider that there are more computation stages ap-

propriated for parallel treatment. Therefore, we propose

that, at least, aspects related with the building of the

neighbor list can be reconsidered in order to allow the

accelerator to contribute more to the overall computa-

tion. The architecture of the accelerator we propose is fea-

tured with mechanisms able to compute efficiently both,

the neighbor list and the updates under the forces acting in

the identified neighbourhood.

3 APU Based on the mapReduce

Accelerator

3.1 The System

Figure 2 shows the block schematic of our proposal: an

APU designed as a hybrid system where ACCELERATOR

is based on the cellular system mapReduce [7] [11] [12]

[13]. It consists (in the initial FPGA implementation) of:

�
   

 
 

DOI: 10.1051/, 04012 (2017) 712501MATEC Web of Conferences 25 matecconf/201

CSCC 2017

4012

2



• HOST: a general purpose computing system with its

CPU, MEMORY, I/O system

• INTERFACE: a DMA (direct memory access) unit for

data and program transfer between MEMORY and the

internally distributed memories in ACCELERATOR

• ACCELERATOR: the mapReduce system with its:

– MAP section: an array of p cells, Ci for i = 1,2, . . . , p,

each containing:

– eng: a 32-bit execution unit

– mem: a 1KW of 32-bit words data memory

– REDUCE: a log-depth circuit performing vector-to-

scalar reduction operations (addition, maximum, ...)

– CONTROL: a special cell containing

– eng: a 32-bit execution unit (identic with those from

the MAP section)

– mem: a 1KW of 32-bit words data memory

– prog mem: a 4KW of 32-bit words memory used to

store the program executed by the accelerator

❄❄ inFIFO

outFIFO

✻

✻
DMA

prog
mem

✲

eng mem✛✲ eng mem✛ eng mem✛✲ ✲✲
❄❄ ❄❄ ❄❄

eng mem

ACCELERATOR

❄

✛

REDUCE

❄❄ ❄

✛

✻

✲

✻

MAP

✻

✛

INTERFACE

✲
✲

❄

✛
PERIPHERALS

CPU + MEMMORY + I/O
✛

CONTROL

Figure 2. APU as a Hybrid Computing System based on the

mapReduce Accelerator.

INTERFACE, connected between ACCELERATOR

and the HOST is controlled by a DMA unit and the trans-

fer is performed through the two FIFOs. DMA loads

the program in CONTROL section and transfers data be-

tween ACCELERATOR’s distributed memory along the

cells and MEMORY. In each clock cycle the MAP sec-

tion receives an instruction from CONTROL. There are

two operating modes:

• slave mode: CPU loads the program(s) in prog mem,

starts running the program(s) and controls the data trans-

fer between ACCELERATOR and MEMORY

• autonomous mode: CPU loads the program(s) and starts

running the program, but now the data transfer is com-

pletely under the control of ACCELERATOR.

3.2 Implementation

In this initial stage of the project, the mapReduce accel-

erator is implemented using the FPGA technology. For

an advanced stage of the project, we are based on previ-

ous implementations of the mapReduce accelerator [11]

and on evaluations for the 32nm technology. The FPGA

technology evolved from a pure programmable structure

to a mixed solution putting together frequently used ASIC

blocks with the in field programmable blocks used mainly

for interconnections. Thus, besides the usual Config-

urable Logic Blocks, the designers have access to mem-

ory blocks, DSP units, advanced micro-controllers (for ex-

ample: Dual-ARM Cortex 9), and a lot of standard inter-

faces. Such FPGAs could be a wonderful support for a

hybrid computing system centered on the micro-controller

and based on the mapReduce accelerator developed on the

programmable part.

3.3 The Architecture

Because each cell has its m-word memory, the data in the

p-cell MAP section is represented as an array of m p-scalar

full horizontal vectors as follows:

v[1] = <s[11], s[12], ..., s[1p]>

v[2] = <s[21], s[22], ..., s[2p]>

...

v[m] = <s[m1], s[m2], ..., s[mp]>

where: each “column":

w[j] = <s[1j], s[2j], ..., s[mj]>

is the full vertical vector of scalars associated to cell j,

for j = 1,2, . . . p. We call vector memory this distributed

memory in the MAP array. Distributed along the array of

cells there are also the following vectors:

IX = <1, 2, ..., p >

B = <b[1], b[2], ..., b[p]>

A = <a[1], a[2], ..., a[p]>

Vector IX is the constant index vector (used to identify

each cell), while B is a Boolean vector, used to enable or

disable every cell (bi = 1 the cell Ci executes the current

instruction). Vector A is the accumulator vector distributed

along the cells. CONTROL section has two special regis-

ters: a, the accumulator, and pc, the program counter.

Each cell, Ci, in MAP and CONTROL executes in-

structions from a similar ISA. The ISA is accumulator

centered in this initial stage of the project. of The main

difference is related with the control instructions. In the

MAP section there are executed spatial control instruc-

tions (the cells are enabled or disabled acting on the con-

tent of the vector B, at the clock cycle level, according

to locally tested conditions). In CONTROL the program

counter pc ensures the temporal control. Thus, the AC-

CELERATOR’s ISA is the Cartesian product of two ISAs:

ISA = (cISA×aISA)

Besides the usual arithmetic & logic and control instruc-

tions, the controller’s instruction set, cISA, contains spe-

cific instructions related with the REDUCE unit:

�
   

 
 

DOI: 10.1051/, 04012 (2017) 712501MATEC Web of Conferences 25 matecconf/201

CSCC 2017

4012

3



cCLOAD(0):

a <= reduceSum = a[0]*b[0]+ ... +a[p]*b[p]

cCLOAD(1):

a <= reduceMax = max(a[0]*b[0], ...,a[p]*b[p])

cCLOAD(2):

a <= reduceBool = b[0] | ... | b[p]

cCADD(0):

a <= a+reduceSum

where the output of the REDUCE section is the co-operand

provided by the ARRAY.

Here are few samples from aISA, which are executed

only in the cells where b[i] = 1:

ADD(val): a[i] <= b[i] ? a[i]+mem[val] : a[i]

VADD(val): a[i] <= b[i] ? a[i]+val : a[i]

CADD: a[i] <= b[i] ? a[i]+a : a[i]

MULT(val): a[i] <= b[i] ? a[i]*mem[val] : a[i]

WHERE(cd): b[i] <= cd ? 1 : 0

ENDWHERE: b[i] <= 1

where, a is the co-operand, i.e., the accumulator of the

CONTROL section.
The program is organized in pairs of instructions, one

for CONTROL prefixed with c, and one for the cells in
MAP. Here is an example of the assembler code which
performs the scalar multiplication of the index vector with
itself delivering the result in the controller’s accumulator:

cNOP ; ENDWHERE; / / b [ i ] <= 1 o v e r a l l

cNOP ; IXLOAD ; / / a [ i ] <= i

cNOP ; IXMULT;

/ / a [ i ] <= acc [ i ]∗ i

cVLOAD( l a t e n c y ) ; NOP;

/ / a <= l a t e n c y s i z e

LB ( 1 ) cBRNZDEC ( 1 ) ; NOP;

/ / w a i t f o r l a t e n c y

cCLOAD ( 0 ) ; NOP; / / a <= reduceSum

The left column of instructions are executed by the

CONTROL unit, while the right column instructions are

executed in each active cell. The first line activates all the

cells in the array, the second load the value of the index

vector in accumulator, then the content of the accumula-

tor is multiplied in the accumulator with the value of the

index vector. The next two instructions delays the load of

the accumulator a with the reduction sum provided by the

REDUCE unit with a latency in O(log p). The last line

loads in the accumulator of the CONTROL unit the value

of the reduction sum computed from the content of the ac-

cumulator vector A.

4 Gromacs on mapReduce based APU

The Gromacs simulations are defined for two cases: (1) in

the simulated space, a cellular periodic structure of identic

three-dimension boxes is defined, and (2) in the simulated

space, the cellular approach considers a number of differ-

ent boxes. In this paper the first case is considered.

The main difference from the actual algorithms con-

sists in the fact that the parallel approach is considered for

both, neighborhood selection and upgrade computation.

Each particle is represented by a particle vector of the

form: <x, y, z, vx, vy, vz, t, s> where: x, y,

z are spatial coordinates, vx, vy, vz are the three com-

ponents of the velocity, t is a parameter and s is an integer.

Initially, in MEMORY there is a string of unstructured par-

ticle vectors.

4.1 The Case of Periodic Cell Structure in the

Simulation Space

In the Gromacs molecular dynamic simulation, periodic

boxes of particles are considered for bulk glasses, liquids,

crystals or mixtures. The computation considers only one

box for which periodic boundary conditions are computed.

4.1.1 The Main Tasks

There are four tasks to be defined for describing the algo-

rithm. For the sake of simplicity, we consider the number

of particles equal with the number, p, of cells, Ci, in the

MAP array.

LOAD task

It loads, from MEMORY, the vector memory of the ac-

celerator with 8 horizontal vectors, each of p/8 particle

vectors. Then, the p/8 8× 8 resulting matrices are trans-

posed. Thus, each of the p cells, in the mapReduce accel-

erator, gets a particle vector as a partial 8-element vertical

vector:

pw[j] = <x, y, z, vx, vy, vz, t, s>

for j = 1,2, . . . , p. This task is performed in time O(p).

SEARCH task

It builds in each cell Ci the particle list of neighbourhood,

pl[i], for the associated particle pw[i], as follows:

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

t a s k name : SEARCH

r [ i j ] : d i s t a n c e be tween p a r t i c l e s i and j

rc : c u t o f f r a d i u s d e f i n i n g t h e ne ighbourhood

p l [ i ] : ne ighbourhood l i s t o f pw[ i ]

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

f o r ( i =1 ; i <p +1; i = i +1) begin

t r a n s f e r pw [ i ] i n CONTROL;

d o I n P a r a l l e l compute r [ i j ] ;

where ( r [ i j ] =< r c )

add pw [ i ] t o p l [ i ] ;

endwhere

end

At the end of this process, in each cell Ci, besides its

particle vector pw[i], there is stored a particle list pl[i]

of various lengths, for example:

w[1] = < pw[1], pl[1]> =

< pw[1], <pw[6], pw[20], pw[131]>>

w[2] = < pw[2], pl[2]> =

< pw[2], <pw[3], pw[32],..., pw[50]>>

...

w[46] = < pw[46], pl[46]> =

< pw[46], <pw[4], pw[50], pw[100]>>

...

w[p] = < pw[p], pl[p]> =

< pw[p], <pw[65],..., pw[315]>>

�
   

 
 

DOI: 10.1051/, 04012 (2017) 712501MATEC Web of Conferences 25 matecconf/201

CSCC 2017

4012

4



where, for example, the neighbourhood of particle 46 is:

pl[46] = <pw[4], pw[50], pw[100]>.

The execution time of this task is in O(p), because the

search of cells where r[i j] ≤ rc is performed in O(1) and

the update of the neighbourhood list, pl[i], in all the ac-

tive cells is performed also in constant time. The number

of particle vectors in pl[i] is no bigger than q < p.

UPDATE task

It consists, mainly, in two stages. In the first stage, the pro-

gram computes the force exercised by the particles from

pl[i] on the particle pw[i]. Then, in the second stage,

for a very short period of time, the force is applied on the

particle and its new particle vector pw[i] is computed.

The execution time for this task is in O(p×q).

STORE task

It is performed on the result of the last update on 8 hor-

izontal vectors containing p vertical 8-component partial

vectors. First, the p/8 8 × 8 matrices, contained in the

8 horizontal vectors, are transposed. Then the resulting

8 horizontal vectors, each of p/8 vectors, are stored in

MEMORY.

4.1.2 The Algorithm

The algorithm which uses the previously defined tasks is:

LOAD

loop ( how many t i m e s a r e needed )

SEARCH

loop ( L t i m e s )

UPDATE

r e p e a t

r e p e a t

STORE

The main loop is repeated so many times how may

times the application requires, while the inner loop runs

a number of cycles, L, determined by the accuracy im-

posed to the simulation. The Gromacs team recommends

L ∈ [10,50] updates of the positions at one neighbour

search. The execution time of the algorithm is in O(p×q).

4.1.3 Evaluation

Using, in the Vivado environment, our mapReduce accel-

erator instantiated for p = 400, the Gromacs molecular

dynamic simulation for the Martini water was done. The

data, corresponding to 400 particles, are loaded and all the

stages of simulation are computed on the parallel acceler-

ator.

At the end of the SEARCH task, in each cell Ci, be-

sides its particle vector pw[i], there is stored a particle

list pl[i] of various lengths, containing from 0 to 60 par-

ticle vectors, so as in each cell are stored no more than

61×8 = 480 scalars. The mean value is 41×8.

The degree of parallelism achieved for each main stage

of the computation are presented in Table 2. The figures

Table 2. Degree of parallelism for running Gromacs for Martini

water on the mapReduce accelerator [8].

Simulation part Cycles Percentage Degree of Parallelism

Box periodicity 80 0.24% 66.8%

Neighbour search 26410 79.93% 79.2%

Force computation 6409 19.40% 60.4%

Thermostat 91 0.28% 51.0%

Update 50 0.14% 100%

Mean degree of paral-

lelism ε

33040 100% 75.6%

are provided from the simulation, programmed in assem-

bly language for FPGA implementation. The architec-

ture performs pretty good for the neighbour search, the

stage we added to be submitted to the parallel accelerator.

Forces are computed in parallel with a smaller degree of

parallelism because the mean length of the neighbourhood

list is 40 while the maximal length is 60. the architecture

are presented in Table 2 and Table 3. Because the neigh-

bour search is performed once for 10 updates, its weight

in the full simulation is diminished, and consequently, the

overall degree of parallelism we measured in simulation is

only ε = 0.64, instead of ε = 0.756.

Table 3 shows the performance of the two extreme so-

lutions, CPU and specific circuit implemented as ASIC, in

order to pe compared with our architectural solution in two

implementations, FPGA and ASIC. The computation per-

formance is expressed in microseconds of dynamic sim-

ulation performed per one day of computation, µs/day,

while the energy use is expressed in Watts-hours per mi-

croseconds of dynamic simulation, Wh/µs.

Table 3. Comparing mapReduce based APU solution with PU

and ASIC solutions [8].

Machine Technology Freq µs/day Wh/µs

Intel I5: one

core no SSE

22nm 2.7 GHz 5.84 267.1

Intel I5: four

cores & SSE

22nm 2.7 GHz 31.48 72.4

Anton ASIC 65nm 0.4 GHz 572.32 3.1

mapReduce FPGA 28nm 0.5 GHz 187.01 3.5

mapReduce ASIC 22nm 2.7 GHz 1010.34 0.3

Theoretically, the acceleration for p execution cells is:

α = p×
fCK_Intel

fCK_FPGA

× ε ×
1

CPI

With of CPI5 of 1.5, because the cells execute floating

point operations in few clock cycles (to keep eng small &

simple), we compute α = 31.6. The acceleration measured

in simulation for the FPGA solution, with 400 execution

cells, is α = 32 compared with one Intel core without SSE,

i.e., one execution cell.

For the ASIC implementation of the mapReduce accel-

erator (with fCK_ASIC = 2.7MHz), the acceleration is

αA = 0.426p = 170.66

Let’s call this acceleration, αA, the architectural acceler-

ation, i.e., acceleration which compares engines working

5CPI stands for Cycles Per Instruction.

�
   

 
 

DOI: 10.1051/, 04012 (2017) 712501MATEC Web of Conferences 25 matecconf/201

CSCC 2017

4012

5



at the same frequency, thus emphasizing the effects of the

architectural design decisions. Indeed, for our case, the

acceleration is limited because of ε < 1 (limited by the

problem and by our ability to provide an efficient algo-

rithm) and because we decided to execute floating point

operations with a sequence of specific instructions.

Compared with a 4-core Intel PU with SSE, i.e., 4+16

execution units, the FPGA acceleration is 5.94×. In the

section 2.2 we provided performances published for GPU

and MIC based hybrid solutions. Our FPGA hybrid sys-

tem performs at least 2× better than GPU, which provides

3×, or MIC which provides 1.8× acceleration. Do not

mention the power of hundred of Watts consumed by GPU

or MIC accelerators, compared with tenth of Watts of our

FPGA solution.

The comparison with the Anton ASIC looks not too

bad. Our FPGA implemented programmable solution has

performances in the same range with this specialized cir-

cuit which is only 3× more efficient.

5 Final Remarks

The degree of parallelism achieved by the mapReduce

accelerator in running Gromacs is 60% for force compu-

tation and 80% for neighbour search. The overall degree

of parallelism is 64%. The current hybrid solutions accel-

erate only the force computation. Our solution brings a

substantial improvement, because it involves the acceler-

ator in the neighbour search also, for which its degree of

parallelism is higher than for force computation.

We defined the architectural acceleration of an APU

as the acceleration provided by an APU with both, one-

core PU and the accelerator implemented in the same tech-

nology and running at the same frequency. Thus, the ar-

chitectural acceleration of our proposal is 0.43p×. The

acceleration is limited only by the degree of parallelism

and by the weight of floating point operations, both spe-

cific to the application.

The acceleration provided by our mapReduce accel-

erator implemented in 28nm FPGA, related to the perfor-

mance of an 22nm 4-core Intel CPU with SSE, is 6×. The

simulation estimates, for an ASIC implementation of the

mapReduce accelerator, 30× improvement.

The energy efficiency of the mapReduce accelera-

tor is improved 20× for the FPGA version, and 300×, for

ASIC version.

A promising compromise between FPGA and ASIC

in implementing mapReduce accelerators for Gromacs

system is the eASIC technology.

Acknowledgments

The authors got meaningful support from Nicolae Goga, in un-

derstanding important details about the Gromacs system, and

form Lucian Petricǎ an exigent reader of the intermediary forms

of the text.

References

[1] S. Alam, U. Varetto, GROMACS on Hybrid CPU-GPU

and CPU-MIC Clusters: Preliminary Porting Experi-

ences, Results and Next Steps, At: http://www.prace-

ri.eu/IMG/pdf/wp120.pdf

[2] K. Asanovic, et al., The landscape of parallel computing

research: A view from Berkeley (2006)

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-

2006-183.pdf

[3] Cǎlin Bîra, Programming environment for parallel accelera-

tors, PhD Thesis, UPB, ETTI, Department of Electronic De-

vices, Circuits and Architectures (2013)

http://arh.pub.ro/papers/LucrareDoctorat_v9d.pdf

[4] L. Jianguo, Running GROMACS on GPUs: a Benchmark

Study (2014) At: https://www.acrc.a-star.edu.sg/docs/ASTAR

[5] S. C. Kleene, “General Recursive Functions of Natural Num-

bers", in Math. Ann., 112, (1936)

[6] E. Lindahl, Molecular Simulation with GRO-

MACS on CUDA GPUs (2013) At: http://on-

demand.gputechconf.com/gtc/2013/webinar/gromacs-

kepler-gpus-gtc-express-webinar.pdf

[7] M. Malita, G. Ştefan, D. Thiébaut, "Not Multi-, but Many-

Core: Designing Integral Parallel Architectures for Embed-

ded Computation" ACM SIGARCH Computer Architecture

News, Volume 35 , Issue 5, pp. 32-38 (2007)

[8] D. Mihǎiţǎ, N-Body Problem. Application, on a Map-Reduce

Accelerator, to Molecular Dynamics, Master Thesis, Po-

litehnica University of Bucharest, (2016)

[9] M. Plotnikov, GROMACS for Intel Xeon PhiT M Coproces-

sor At: https://software.intel.com/en-us/articles/gromacs-for-

intel-xeon-phi-coprocessor

[10] D. E. Shaw, et al., "Anton, A Special-Purpose Machine

for Molecular Dynamics Simulation". Communications of the

ACM. 51 (7): 91–97 (2008)

[11] G. Ştefan, et al., "The CA1024: A Fully Programmable

System-On-Chip for Cost-Effective HDTV Media Process-

ing", in Hot Chips: A Symposium on High Performance

Chips, Memorial Auditorium, Stanford University (2006) At:

https://youtu.be/HMLT4EpKBAw 35:00

[12] G. Ştefan, “One-chip TeraArchitecture", Proceedings of the

8th Applications and Principles of Information Science Con-

ference. Okinawa (2009)

http://arh.pub.ro/gstefan/teraArchitecture.pdf

[13] G. Ştefan, M. Maliţa, “Can One-Chip Parallel Computing

Be Liberated From Ad Hoc Solutions? A Computation Model

Based Approach and Its Implementation", 18th Inter. Conf. on

Ciruits, Systems, Communications and Computers, Santorini,

582-597 (2014)

�
   

 
 

DOI: 10.1051/, 04012 (2017) 712501MATEC Web of Conferences 25 matecconf/201

CSCC 2017

4012

6


