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This article describes the collisional dynamics (CD) method adapted for 
molecules with geometrical constraints within a description using Cartesian 
coordinates for the atoms. In the CD method, stochastic collisions with virtual 
particles are included in usual molecular dynamics simulations to couple the 
considered polymer molecule to a solvent. The actual presence of the solvent is 
not explicitly included in the simulation. The results of CD simulations of a 
polymer chain immersed in the time-dependent elongational flow field are 
presented. The influence of nonbonded interactions on the coil-stretch transition 
of the chain occurring in the flow is discussed. 
Sons, Inc. 
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Introduction 

omputer simulation techniques represent an C active area of research for understanding of 
the behavior of macromolecules in solution. 
Molecular dynamics (MD) simulations of polymers 
provide the most detailed information for theoreti- 
cal investigations of their structural and dynamical 
properties. In a usual MD approach, the dynamics 
of the solvent molecules as well as the polymer 

* Author to whom all correspondence should be addressed 
(e-mail: lemak@impb.serpukhov.su). 

molecules are simulated explicitly. However, the 
available computer time imposes restrictions on its 
application: only short polymer chains (about 20 
atoms) can be considered during short simulation 

These restrictions can be eliminated by 
treating explicitly only one polymer molecule, 
whereas the solvent molecules are represented im- 
plicitly by their stochastic influence on the simu- 
lated molecule. The variety of models has been 
used for both a polymer molecule4 and the 
molecule coupling to the solvent, treated as an 
external heat bath.5,6 We used the polymer model 
in which atoms are joined together by a fixed bond 
length and, perhaps, bond angles. The excluded 
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volume effects are included in the model when the 
polymer atoms are allowed to interact with one 
another via a prescribed potential. As a rule, the 
interaction potential is of a Lennard-Jones type. 
The potential may incorporate the potential of 
mean force due to interaction with the solvent. To 
couple the polymer molecule to an external heat 
bath without explicitly simulating solvent 
molecules, we used the collisional dynamics (CD) 

The CD method is a modification of 
that suggested by Andersen' and Ryckaert and 
Ciccotti.'o In both methods, Cartesian atomic ve- 
locities are modified instantaneously at random 
times. The difference between Andersen's method 
and collisional dynamics is based on the way in 
which velocity jumps are realized. In the first 
method, new velocities are chosen at random from 
the momenta part of the canonical ensemble distri- 
bution and are independent of those before a jump. 
In collisional dynamics, the choice of new veloci- 
ties depends on the point in phase space, where 
the jump occurs. They are calculated as a result of 
collision with a virtual bath particle. Andersen's 
random assignment of the new velocities ignores 
velocity autocorrelation and yields artificial dy- 
namics. The CD method seems to be more accurate 
in mimicking the dynamical coupling to the sol- 
vent, and yields more realistic dynamical behavior 
of the simulated molecule. The relation between 
the CD method and some other closely related MD 
methods is discussed elsewhere.",'2 

The main goal of this article is to describe an 
algorithm of the CD method for molecules with 
geometrical constraints using the Cartesian coordi- 
nate approach. The implementation of the CD 
method differs from that of Andersen," especially 
in the case of constrained molecules. The collisions 
can be easily combined with a standard MD pro- 
gram performing the numerical integration of the 
Cartesian equations of motions. The use of the 
constraints introduces new problems, both in the 
computational scheme and in the velocity modifi- 
cation, due to the collisions (a collisional problem). 
Two methods have been proposed for integrating 
the Cartesian equations of motion for a system 
subjected to holonomic  constraint^'^: the matrix 
method and the SHAKE method. In this work we 
used the original version of the matrix method 
developed by Balabaev et al."," The method has 
been efficiently used for several years and has 
proved to be a numerically stable one. The CD 
simulations for molecules with constraints require 
the collisional problem to be solved. To achieve 

this, changes in velocities of the atoms due to the 
impulsive force should be found. Such a change in 
velocities has been implicitly reported in Stratt 
et a1.16 That study presents an exact procedure for 
treating the molecular dynamics of holonomically 
constrained systems in the presence of impulsive 
forces. The same result was obtained in a different 
manner by Lemak.7 The algorithm for performing 
CD for molecules with constraints and some de- 
tails of its implementation are presented in the 
following sections. 

Our current interest concerns the behavior of a 
polymer molecule in a hydrodynamic flow. The 
polymer molecule in a solution responds to the 
applied hydrodynamic forces by its stretching and 
orienting. The flow-induced stretching and orien- 
tation of the polymer in a dilute solution are 
thought to be responsible for the existence of im- 
portant macroscopically observable phenomena. 
For example, even very low concentrations of a 
polymer can cause a substantial decrease of the 
drag in turbulent flows and an increase of the drag 
in flows through porous media.17 The first results 
on simulation of a polymer chain in an elonga- 
tional flow by the CD method are reported in 
Balabaev and Lemak.' In this article, we present 
further results including the comparison of chain 
behavior, which depends on whether or not the 
attractive forces are included in the polymer model. 

Method 

SYSTEM UNDER SIMULATION 

A polymer molecule is considered as an assem- 
bly of N atomic point masses connected by M 
internal geometrical constraints. The constraints 
are assumed to be holonomic and they may be 
represented in terms of fixed distances between 
certain atoms. For example, bond lengths and an- 
gles in a linear chain polymer may be constrained 
by fixing the distance between neighboring atoms 
and those separated by one atom. 

Let r,(t) and v,(t) be positions and velocities of 
atoms at time t ,  m, be atomic masses, i = 1,. . . , N. 
When atoms i, and jm are connected by a bond of 
fixed length, I , ,  the constraint: 

2 (rja - r,,) - I t  = o 

holds at all times. Here, ci varies from 1 to M, 
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specifymg a particular constrained bond. The vec- 
tor of the bond number 01 is defined as: 

c, = r .  - ri 1. (2) 

The set of the imposed constraints can be specified 
by the following matrix: 

SP = 6: - 61 
1 -  la 

0, 

1, 

the atom i is not connected 
by the bond 01 

the bond 01 goes out from 
the atom i ( i  = i,) (3)  I - - 

- 1, the bond 01 goes into the 
atom i ( i  = j,) I 

Index i specifies an atom and index 01 specifies a 
bond, whereas 6; represents Kronecker’s delta: 
6; = 1 if i # j ,  and 8; = 0 otherwise. 

All atoms of the polymer molecule interact with 
the potential energy U(rl, r2 , .  . . , rN). The molecule 
is also supposed to couple to an external heat bath. 

COLLISIONAL DYNAMICS METHOD 

In the collisional dynamics method, the cou- 
pling to a bath is simulated by collisions with 
virtual bath atoms. Each stochastic collision is an 
instantaneous event. Collisions occur in accor- 
dance with a Poisson process and the times at 
which different atoms suffer collisions are statisti- 
cally uncorrelated. Between stochastic collisions, 
the system evolves in accordance with the equa- 
tions of motion as in the usual molecular dynam- 
ics. The Lagrangian equations of motion for the 
molecule under constraints (1) in Cartesian coordi- 
nates are: 

d2ri d u ( r l , r 2 ,  ..., r N )  M 

dri l X = l  

- c p,s;c, (4) 
= - 

with Lagrangian multiples, pa, to be determined 
by the constraint relations (1). Because the colli- 
sions are instantaneous, they do not allow coordi- 
nates to change and thus affect only the velocities. 
The postcollision velocities are found by solving 
the collisional problem. In this problem, the veloc- 
ity, v,, of the bath particle is chosen at random 
from the Gaussian distribution with the following 

moments: 

(6) 

Here, rn, is a mass of the bath particle, To is the 
bath temperature, and parameter w is considered 
as a macroscopic velocity of the bath. The nonzero 
value of w means that the bath is in the state of a 
hydrodynamical flow with the velocity w. 

COLLISIONAL PROBLEM 

Suppose the bath atom collides with an atom 
number s at the time t,. The problem is to find a 
way to use the coordinates and velocities before 
the collision to calculate the postcollision veloci- 
ties. It should be noted that the position of the bath 
atom coincides with the position of the atom num- 
ber s. If there are no constraints, the collision 
modifies only the velocity of atom s in a well- 
known manner” : 

Here [v,] denotes a jump of the velocity at the time 
t ,  and the bath atom is numbered by 0. The vector 
n shows the direction of the momentum transfer 
during the collision. 

In the case considered here, the velocities of all 
atoms of the molecule are modified because of the 
constraints. There are seven relationships used to 
find new velocities: conservation laws of energy, 
momentum, and angular momentum of the sys- 
tem, which consists of a molecule and a bath atom. 
Only six of them are independent. Three equations 
can be used to find new velocities of the bath 
atom. The velocities of the molecule atoms are 
determined from three other equations. When a 
molecule consists of more than one atom, it has 
more than four independent velocities. Hence, 
there are more unknown variables than equations 
for them. A unique solution can be found if all the 
jumps [vi] of the atomic velocities of the molecule 
are expressed via only three independent vari- 
ables. 

An instantaneous change in the atomic veloci- 
ties of the molecule can be considered as a result 
of some impulse, P, =fSn8(t - t,), with In1 = 1, 
which acts on the atom number s. The jump in 
velocities due to the impulse P, may be derived 
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from the equations of motion (4) with the con- 
straints 

c 

with: 

M 

d i =  c s;ji,c, + n &  (8) 

In order to find the Lagrangian multiples Fa,  
the following system of M linear equations must 
be solved: 

a=l 

M c AaPfiP = h,  (Y = 1, ..., M (9) 
p= 1 

where: 

Now we assume that the collision of the 
molecule with a bath atom is equivalent to the 
action of an impulse unknown beforehand. This 
actually indicates three independent variables (a 
power Ps of the impulse) via which the jumps of 
the velocities of all the atoms in the molecule are 
expressed. If the multiples, ji,, are known, the 
unknown variables P, and [v,] can be calculated 
from the conservation laws. As a result7: 

with: 

qs = -2 d?/mi + l / m ,  i "  i =  1 

Note that the power of an impulse depends on 
molecular conformation and on the atom that is 
affected by the impulse. 

The direction of the impulse n remains indefi- 
nite in the present statement of the collisional 
problem. Hence, the jumps in the velocities are 
found with an accuracy in any direction n, as in 
the classical nonelastic collision problem.I8 To find 
the vector n, the geometry of the collision and the 
law of interaction between collided atoms should 
be specified in more detail. Our choice of the 

direction n is based on the assumption that the 
velocity of the bath atom has an opposite direction 
after collision in the frame of reference where the 
atom s is at rest before the collision. The velocity 
jump of the bath atom is calculated as7: 

f s  [v,] = --n 
mo 

Thus, the above assumption leads to: 

n = (v, - v,>/lv, - v,l (12) 

In fact, the choice of vector n is a parameter of the 
CD method. We believe that the proposed choice 
of n is quite reasonable when a generalized mecha- 
nism to couple the system to a bath is used. 
Special investigations are required to analyze what 
way of choosing n is appropriate for solving a 
particular problem. 

Implementation Details 

We use the "leap frog" form of the Verlet algo- 
rithm to solve the equations of motion numeri- 
cally." Coupling to a bath by the collisions with 
virtual atoms can be easily incorporated into this 
algorithm. As a result, the following three opera- 
tions should be performed at every integration 
time step A t .  

Given coordinates ri( t )  and velocities vi(t 
- $ At) for all atoms in molecule, which satisfy 
the constraints: 

(i) Compute velocities vi(t + $ A t )  satisfying 
the constraints. 

(ii) Modify velocities vi(t + $ At) due to the 
collisions that the molecule has suffered 
during the time interval ( t ,  t + At).  

(iii) Compute new coordinates ri(f + A f )  by: 

ri(f + A t )  = ri(f) + vi(t + $ A t )  A t  (13) 

(iv) Go to the next time step. 

The first two operations are discussed below in 
more detail. 

COMPUTATION OF CONSTRAINED 
VELOCITIES v,(t + At) 

Computation of the velocities vj(t + A t )  in 
accordance with the Verlet algorithm is compli- 
cated by constraints. It is required to solve a non- 
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linear system of equations that is obtained from 
eqs. (1) and (4) using: 

d2ri(t) 1 
-I - -(ri(t + A t )  - 2ri(t) + r,(t - A t ) )  

dt2 A t 2  

and: 

1 
vi ( : ) A t  t + - A t  = -(ri(t + A t )  - r,(t)) 

Now we introduce the following notations: 

1 
v, = vi( t + 5 A t )  

Then, the nonlinear system takes the form: 

(15) 

i = 1,2 ,..., N, (16) 
2 2c,( t )  * (via - vi ) + At(vja - via) = 0 

Q = 1,2, ..., M (17) 

Here the unknown variables are the velocities, vi, 
and a set of Lagrangian multiples, pa. 

The nonlinear system of equations can be solved 
if its root is approximated well enough. Then the 
root can be obtained by some iteration process. In 
the numerical integration of the equations of mo- 
tions we are performing step by step in time. If the 
time step A t  is sufficiently small, a good initial 
approximation for positions of the atoms is given 
by positions in the preceding step, that is, r{")(t + 
A t )  = ri(t). The corresponding initial approxima- 
tion for the velocities vi(t + + A t )  is v)') = 0. 

In the Newtonian iteration process, at each iter- 
ation, a linear system of equations should be solved 
to find a new approximation of the root. In our 
case, the linear system derived from eqs. (16) and 
(17) has the following form: 

where: 

Here, unknown vjk' and pLkk) values are approxi- 
mations at the k iteration step, while vjk-l) values 
are supposed to be known. vjk) can be found from 
eqs. (18) and (19) in two steps. First, by substitut- 
ing eq. (18) in eq. (19) the following linear system 
of equations for ,@) is obtained: 

M 
x B a b ( k ) = h u  a = 1 ,  ..., M (20) 

p= 1 
E*;c 

where: 

+ A ~ c ~ - u ' , ~ - ~ ) ) )  

Second, the calculated solution of eq. (20) being 
substituted into (18) gives vjk). 

The Newtonian iteration process is stopped 
when an appropriate approximation of vi = 

vi(t + + A t )  is achieved. Experience shows that if 
the iteration process starts from vj") = 0, only a 
few iterations are necessary to achieve a good 
approximation of vi(t + i At).  

VELOCITY MODlFlCATION DUE 
TO COLLISIONS 

In collisional dynamics it is assumed that, dur- 
ing the time interval ( t ,  t + At), the molecule suf- 
fers collisions with virtual bath atoms. It is as- 
sumed that during this interval the atom positions 
do not change. The collisions lead to modification 
of the velocities vi(t + i A t )  only. To simulate this 
process, the following operations should be ful- 
filled. 

1. Find the number of collisions n,(At) occur- 
ring during the time step At .  n,(At) is a 
random integer variable. The collisions occur 
in accordance with a Poisson process, which 
is specified by one parameter, A (collisions 
frequency). Therefore, the probability of 
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P,(A t >, meaning that just k collisions occur 
during time step At,  is: 

EXP(-AAt) (21) P,(At) = - 
( A t ) ,  

k !  

So, to find n,(At) at each step At ,  a random 
integer number is sampled from the proba- 
bility distribution given by eq. (21). 

2. For each of the n , ( A t >  successive collisions 
the atom number s, which collides with the 
virtual bath atom, is chosen from the uni- 
form distribution. 

3. Jumps in the velocities v,(t + 4 A t )  due to 
the collision are found solving the collisional 
problem, as described previously. In eqs. 
(7)-(11) v, is replaced by vi( t + 4 A t  1, and c a 
is evaluated using r,(t). 

It should be noted that, in collisional dynamics 
simulations, additional operations should be done 
to couple the molecule to a bath and to satisfy the 
constraints. The solving of the two linear systems 
of eqs. (9) and (20) consume the most additional 
operations. Both of these systems are to be solved 
more than once during each integration step. Ma- 
trices A and B are of the order of M ,  M being the 
number of imposed constraints. Therefore, in a 
general case, a solution of both systems of eqs. (9) 
and (20) requires operations proportional to M '. 
This makes the calculation for molecules with a 
large number of constraints progressively more 
difficult. The structure of the both matrices A and 
B is determined by the structure of matrix I: 

Matrix I reflects the topology of the net of the 
constrained distances between certain atoms in the 
molecule. In some important cases, matrix I has a 
special structure, which permits a reduction in the 
number of operations required for solving the lin- 
ear system. For example, if in a linear polymer all 
valent bonds are fixed, the nonzero elements of 
matrix I are positioned only on the three central 
diagonals. For such a triangle matrix, the number 
of operations required to solve the corresponding 
linear system is proportional to M. Thus, in this 
case, an addition of constraints and coupling to an 
external bath does not perceptibly increase the 
required computer time, because only a minor 

calculation proportional to the number of atoms in 
the polymer is added. 

Results and Discussion 

To perform the collisional dynamics simula- 
tions, the value of parameters m,, To, A and func- 
tion w(r), characterizing coupling to a bath, should 
be specified. Here, mu is the mass of bath atoms, 
T, is the prescribed bath temperature, A is the 
collision frequency, and w(r) is the velocity of the 
hydrodynamic flow of the bath. All these parame- 
ters have clear physical meaning. They influence 
molecular behavior in different ways. To test the 
effect of the coupling parameters, we have applied 
the collisional dynamics to simulations of a linear 
polymer chain consisting of 101 atoms connected 
by 100 bonds of a fixed length 1. The atoms inter- 
act in pairs according to the repulsive (shifted) 
Lennard-Jones potential: 

U G ( r l l )  is the potential energy of interaction of two 
atoms i and j at the distance r I I ,  R = Z1I6u, while 
UL,(r)  = 4 ~ , ( ( u / r ) ' ~  - ( u / r I 6 )  is a full Lennard- 
Jones (L-J) potential. At r = R, the potential ULJ 
has its minimum UL, = - E,. The shifted L-J po- 
tential Ufi  takes into account the excluded volume 
in a convenient manner in that it is repulsive, short 
ranged, and continuous. All the atoms are as- 
sumed to have the same mass rn and the same 
parameters u and E, of the L-J potential. The 
calculations are performed in usual reduced units. 
Lengths are measured in units of cr, time in units 
of t,, = u ( m / ~ ~ ) ~ \ * ,  and masses in units of m. In 
our calculations we used 1 = u, and A t  = 0.005tU. 

We divide all our simulations into two groups 
corresponding to two distinct physical situations. 
In one group, determined by the condition w = 0, 
the obtained trajectories are equilibrium ones, 
while in the other group, determined by w # 0, 
the obtained trajectories are nonequilibrium ones. 

POLYMER CHAIN IN HEAT BATH 

Let us suppose that w = 0. The result of the 
collisional dynamics procedure will be a trajectory. 
Under the condition of irreducibility of the motion 
generated by the collisional dynamics procedure, 
the time average of any function F(rl, r 2 , .  . . , rn; 
vl, . . . , v,) calculated from the trajectory is equal 
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1- 

TI 2&J 

TIYg 1 to 

FIGURE 1. Behavior of instantaneous temperature of 
the polymer chain in CD simulation performed at the 
time-varying bath temperature T,(t): k,T, / E, = 2.5 for 
0 I t 5 250t,; 5.0 for 250 < t 5 500t,; and 1 .O for 500 
< t I 750t,. The coupling parameters are A = 100t;' 
and m, = m. 

to the ensemble average of F for a canonical en- 
semble at temperature To. This can be proved in 
the same manner as done by Andersen? So, in this 
case the collisional dynamics yields configurations 
corresponding to the canonical distribution. 

Figure 1 shows the evolution of the instanta- 
neous temperature of the chain through the trajec- 
tory obtained at the time-varying To value. The 
first CD run was carried out at To = 2.5c:\kB. 
Then the temperature of the bath was suddenly 
increased, initially from 2.58, \ k, to 5 . 0 ~ ~  \ k,, and 
then through a 250f,  period to l .O&,\k,.  The 
chain temperature quickly relaxed to the new pre- 
scribed value To (within 2 f ,  after the jumps) and 
fluctuated close to this value. The values of the 
rms fluctuations 6T = (((T - (T))2))1\2 were in 

good agreement with the ones expected in the 
canonical ensemble (see Table I). 

The results of using different A and rn, values 
were compared at To = 2.58, \ k,. Each run started 
at the same initial conditions and consisted of 
calculations of 20,000 time steps. The results of the 
calculated trajectory averages are listed in Table 1. 
The mean values of the kinetic energy and the 
energy fluctuations give almost the same results 
for different A and m, values. To check the dy- 
namic quantity, the energy time autocorrelation 
function CE(7) = ( ( E ( t )  - ( E ) X E ( t  + T )  - ( E ) ) )  
was calculated from various trajectories. Figure 2 
shows a plot of the time evolution of the total 
energy autocorrelations for different A and m, 
values. It is seen that an alteration of A and rn, 
changes the effective dumping coefficient. 

The above CD simulation results demonstrate 
that the calculated trajectory averages are indepen- 
dent of the choice of A and m,. The time depen- 
dence of the fluctuations is very sensitive to A and 
m,. 

The most difficulties arise with the choice of the 
parameter A in CD calculations. There are two 
possible ways to estimate A. One way involves 
estimating the collision frequency on the basis of 
the hard-sphere model of liquids. Another way is 
based on the relation between A and the friction 
constant for an atom or monomer of a polymer.8,'2 

POLYMER CHAIN IN ELONGATIONAL FLOW 

In this section we compare the behavior of two 
models of a polymer chain immersed in a hydro- 
dynamic flow. The models differ by the type of 
pair interactions. In one model the repulsive L-J 
potential U i  is used in the form of eq. (22), while 
in the other model the full L-J potential U,, includ- 

TABLE 1. 
Mean Values and rms Deviationsa of Total, Kinetic, and Potential Energies in Collisional Dynamics 
Simulations of Polymer Chain Coupled to an Equilibrium Bath. 

1 2.5 1 00 1 2.63 0.256 0.248 26.17 4.53 
2 2.5 100 1 \3 2.53 0.254 0.248 25.97 4.30 
3 2.5 1 00 1\9 2.52 0.259 0.248 26.69 4.33 
4 2.5 200 1 2.62 0.250 0.248 25.56 4.60 
5 2.5 50 1 2.59 0.243 0.248 24.74 4.49 
6 5.0 1 00 1 5.21 0.515 0.496 53.09 8.91 
7 1 .o 100 1 1.05 0.099 0.099 10.13 1.72 

~ ~~~~~ ~ ~~ 

aAll mean values are calculated as time averages using 1000t, MD trajectories stored at every O.lt, time step. 
6Te, is the expected value of the rms deviation of the kinetic energy in a canonical ensemble with temperature To. 
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4.24 , 
0 2 4 6 8 10 

TIME / to 

0 2 4 6 3 ’ ‘  10 
4.A . 

TIME / to 

FIGURE 2. Comparison of the polymer chain total 
energy autocorrelation functions C,(t) obtained from 
different 1 OOOt, trajectories. Simulations were performed 
using the CD method at To = 2.5&, /kB and various 
values of A and m,: A = loot ; ’ ,  m, = 1.0m (line 1 ) ;  
A = I O O ~ ; ’ ,  m, = 1 / 3 m  (line 2); A = loot ; ’ ,  m, = 1 / 
9m (line 3) ;  A = 50t; ’ ,  m, = 1 .Om (line 4); and A = 
200t0-’, m, = 1.0m (line 5).  

ing the attractive part, is used. The coupling pa- 
rameters of these simulations are specified by m, 
= m,T, = 2.5&,\kB, and A = 131.4f;’ as in Bal- 
abaev and Lemak.8 The hydrodynamic flow is 
incorporated in the collisional dynamics via pa- 
rameter w(r) which is the mean velocity of bath 
atoms in position r. We assume that the polymer 
chain is carried out by the flow and so the center 
of mass of the polymer chain moves with the flow 
velocity. The flow over the length of the polymer 
can be described by a linear field w(r) = A(t) . 
(r - z), where A( t ) is the veloicty gradient tensor, 
and z is the center of mass vector. In a purely 

elongational flow, the velocity gradient has the 
form: 

We restrict our consideration to the behavior of 
the chain extension factor defined as: 

where h ( t )  = Ir,(t) - r,(f)( is the end-to-end dis- 
tance and L is the extended length of the chain. In 
our case, L = 1001. A nonlinear dumbbell model 
of the polymer chain predicts the following behav- 
ior of x in a steady elongational flow?’ When E 
increases, the steady-state value for the extension 
factor ( x) increases monotonously but steeply. 
There is one critical value E T ,  at which ( x) rises 
sharply. This situation is called a transition be- 
tween the coil (C) and stretch (S) states of the 
polymer chain. For the reverse situation, the tran- 
sition from S to C takes place at a particular value 
E: ,  and furthermore, E; < E T ;  i.e., hysteresis is 
expected. 

Here we examine the response of the polymer 
chain to a time-dependent flow by setting E ( t )  as a 
sequence of constant strain rates E l ,  F2 , .  . . , which 
persist over the time interval 500 to.  In dividing 
E ( t )  into segments, we implicitly assume that the 
flow intensity changes instantaneously. The chosen 
values of E,, E2,  . . . , first increase from 0 to 0.03 t i  I ,  

and then decrease to 0 in a symmetrical way (see 
Fig. 3). This time-dependent flow field simulation 
produces a trajectory that lasts 12,50Ot,. We ob- 
tained two trajectories of this kind. One was ob- 
tained for the chain with a repulsive L-J potential, 
and the other for the chain with a full L-J potential. 
The time evolution of the extension factor x along 
these trajectories is shown in Figure 3. Both trajec- 
tories exhibit a critical value for the strain rate, at 
which the chain switches from coil to stretch. For 
the chain with the repulsion only this critical value 
is about i T  = 0.004t;’. An addition of the attrac- 
tive forces in the polymer model results in the coil 
state being persistent at strain rates up to ET = 

0.007t;’ and the transition C + S being more con- 
spicuous. To test the hysteresis mentioned above, 
the strain rate dependence of the quasi-equi- 
librium values of the extension factor 2 was calcu- 
lated using the obtained trajectories. The value of 
X ( E )  was calculated as a time average over the 
portion of the trajectory corresponding to the given 
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TIME / to 

FIGURE 3. Evolution of the chain extension factor ,y in the time-dependent elongational flow field for two models of 
polymer chain: (a) chain with a repulsive L-J potential; and (b) chain with a full L-J potential. Curves 1, the time 
dependence of the strain rate ti (scale left). Curves 2 and 3, the time dependence of ,y (scale right). 

value d.. For averaging, we used only the last 250f, 
period of this portion. For a given value of d. we 
can calculate two values of X. The first one is 
calculated over the part of the trajectory where d. 
increases, and the second one over the part where 
d. decreases. In Figure 4, the curve for the d. depen- 
dence of X obtained over the part of the trajectory 
where increases does not coincide with the one 
obtained over the part where d. decreases. The gap 
between the curves is more pronounced with the 
chain model that includes the attraction forces 
(Fig. 4b). 

It should be noted that the calculated averages 
are not steady-state values. To check this, we 

performed the following CD simulations for the 
chain with a repulsive L-J potential. For each value 
of d. taken in the time-dependent flow field simu- 
lations, a separate trajectory was obtained. At given 

d., we started from the same initial conditions, 
corresponding to the coil state, and carried out the 
CD simulations at a constant strain rate i. The 
duration of the simulation was sufficient to achieve 
a steady state and then to remain in this state for 
some time. Relaxation times that are necessary to 
achieve a steady state at various values of d. are 
given in Figure 5. For some values of d. the relax- 
ation times exceed 500t,. We also evaluated steady 
state values of x for each given d. (see Fig. 4a). 
The calculated at small values of d. does not 
coincide with the corresponding steady-state val- 
ues. This is explained by the fact that the chain 
relaxation time from the coil state toward the 
steady state is longer than the duration of the 
simulation at which d. remains constant. Thus, the 
hysteresis that is seen in Figure 4 can be traced 
due to a reason different from the one established 
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STRAIN RATE k . t ,  

FIGURE 4. Quasi-equilibrium values of the chain 
extension factor X in the time-dependent elongational 
flow field as a function of the strain rate i for two models 
of a polymer chain: (a) chain with a repulsive L-J 
potential; and (b) chain with a full L-J potential. The 
dependence X ( i )  is displayed both for the part of the 
trajectory where i increases (curves 1 and 3) and for the 
part where i decreases (curves 2 and 4). Steady-state 
values of the extension factor (m) are shown. 

for the nonlinear dumbbell model. The observed 
hysteresis is of kinetic nature. 

Conclusion 

This article gives a description of the algorithm 
of the collisional dynamics that merges the trajec- 
tory routine of Verlet with both holonomic con- 
straints and stochastic collisions with virtual bath 
atoms. The collisional dynamics method is be- 
lieved to be useful to simulate not only static 

STRAIN RATG k * t ,  

FIGURE 5. Relaxation times (B) for transition of a 
polymer chain immersed in the elongational flow from an 
equilibrium coil state to a steady stretched state at 
different values of the flow strain rate i. For each value 
of i the CD simulation of the chain (N = 101) with a 
repulsive L-J potential immersed in the elongational flow 
field with constant strain rate i was performed. Each 
simulation started at the same initial condition. The 
relaxation times were evaluated by the times at which the 
chain extension factor ,y reached its steady stretched 
value. 

properties, but dynamical behavior as well. The 
proposed algorithm is numerically stable and can 
be effectively implemented at least for polymer 
chains with fixed valence bonds. The number of 
required additional operations is of the order of 
the number of atoms in the chain. The proposed 
algorithm provides for an opportunity to perform 
CD simulations of polymers subjected to holo- 
nomic constraints in stochastic solvents. It includes 
both equilibrium and nonequilibrium processes. 
There are, for example, a studies of coil and glob- 
ular states of a flexible polymer chain21,22; solvent 
effects on isomerization dynamics in chain mole- 
c u l e ~ ~ ~ ;  kinetics of coil-globule transitions; and dy- 
namical behavior of polymers in a hydrodynami- 
cal flow with the velocity gradient, etc. 

The effect of various CD simulation parameters 
on the dynamical behavior of a polymer chain 
with 100 fixed bonds is described. It includes the 
results of CD simulations of a polymer chain in a 
time-dependent elongational hydrodynamical 
flow. The influence of nonbonded interactions on 
the coil + stretch transition of the chain in such a 
flow field has been examined. It is found that, due 
to additional attractive forces, the coil state of the 
chain persists at larger values of the strain rate, 
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and the coil -+ stretch transition is more pro- 
nounced than in the case when only repulsive L-J 
interactions are included. The hysteresis observed 
in the strain rate dependence of the chain end-to- 
end distance is discussed. It may be inferred that 
the hysteresis has a kinetic nature. 
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