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Molecular dynamics simulation of a smectic liquid crystal with atomic detail 
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Netherlands 

(Received 12 November 1987; accepted 31 May 1988) 

A molecular dynamics simulation of a sodium-decanoate/decanol/water system is reported. 

The system is treated in full atomic detail, with the exception of CHz and CH3 groups that are 

considered to be "united atoms," and is a refinement of a previous model membrane [Mol. 

Phys. 11, I (1983)]. The long-range Coulomb interactions were included specifically. The 

order parameters of the chain units of the lipids and diffusion constants of components in the 

system calculated from the simulation agree well with those reported in experiments on this 

model membrane. The overall structure of the membrane shows considerable disorder, with a 

broad lipid-water interface, extending over approximately 1 nm. The distribution of the 

components is such that an almost complete charge cancellation occurs throughout the system, 

which is in contradiction with the generally assumed electrical double layer structure for 

membranes. A counterion condensation of 70% is observed. Both the translational and the 

rotational motions of water are slowed down compared to bulk water. The penetration of water 

into the hydrocarbon region of the membrane is substantial. Pair correlations of various atom 

pairs, arid dihedral statistics and transition rates of the dihedrals in the lipids are reported. The 

distributions of chain segments of the lipids, of water molecules, and of sodium ions are 

compared with theoretical predictions. 

I. INTRODUCTION 

The smectic liquid crystalline state is one of the impor­

tant aggregation states of binary or ternary mixtures con­

taining amphiphilic molecules. Its structure can be charac­

terized as a multilamellar aggregate built up from bilayers 

similar to the bilayers in lipid membranes. The biological 

interest in such membranes has considerably stimulated ex­

perimental and theoretical research in this field. The recent 

advance in computer simulation methods now enables us to 

describe the dynamic and static properties of the lipid matrix 

in terms of the fundamental interactions between the mole­

cules involved. 

Theoretical work on lipid bilayers has covered poten­

tials of mean force and specific defect structures. We men­

tion some approaches: Nagle1
,2 performed free energy calcu­

lations, using statistical mechanics, for the description of the 

behavior oflipid bilayers near the gel to liquid crystal phase 

transition, from which he concluded that this transition de­

pends sensitively on even quite small headgroup interac­

tions. A similar method was followed by WiegeV who con­

structed a two-dimensional lattice model for lipid 

monolayers, that are considered to bear much resemblance 

to layers in a bilayer structure. In the statistical mechanical 

work by Jiihnig,4 the lipid membrane is approximated by a 

layer of identical polymethylene chains, with one end at­

tached to a surface plane. This model has much in common 

with the work of Marcelja,5 but is analytically solvable due 

to the treatment of the chains as continuous elastic lines. 

Both authors discuss lipid structure in terms of orientational 

order parameters. Gruen6 presented a simple model for the 

state of chains in amphiphilic aggregates, by the generation 

a) To whom correspondence is to be addressed. 

of all possible internal bond sequences of a single chain. His 

model for bilayers distinguishes between hydrocarbon core, 

headgroup region, and water layer, and provides a good 

model system for comparison with static properties derived 

from molecular dynamics simulations of bilayers. Leer­

makers et al. 7 extended a lattice theory for the formulation of 

the formation and properties of amphiphilic bilayer mem­

branes. In their theory individual conformations are distin­

guished and lateral interactions are taken into account in a 

Flory-Huggins approximation. Probability distributions of 

head, tail, and solvent segments in a bilayer are calculated in 

their work. 

The above theories have in common that they cannot 

give an accurate description of the relationship between the 

fundamental intermolecular interactions and the static and 

dynamic properties of the membrane, and that they do not 

yield the detailed description provided by simulations. The 

molecular dynamics (MD) simulation method presents a 

way of predicting the macroscopic properties of molecular 

systems on the basis of atomic interactions. Nowadays, sim­

ulations oflarge and complex molecular systems are possible 

and give reliable results. Time scales of phenomena and com­

plexity of systems that are open to investigation keep pace 

with ever increasing computer power. 

The sodium-decanoate/decanol/water system, a lipid 

multibilayer system, has been thoroughly investigated as a 

model system for biological membranes. This system exhib­

its a smectic liquid-crystalline phase at room temperature, 

with lipid molecules arranged in bilayers. It differs from bio­

logical membranes in the type of lipids (only single chain 

lipids with ionic head groups ), and in the nearby presence of 

other bilayers, as the model system is a multibilayer system. 

This system has been experimentally investigated by Seelig 
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and Niederberger by means of x-ray diffraction and NMR 

techniques,8-12 leading to values of local order parameters 

and diffusion constants. 

Previous MD simulations, mimicking this smectic liq­

uid crystalline system, have been carried out by van der 

Ploeg and Berendsen.13.14 Their simulations involved a sim­

plification: only a single bilayer of decanol molecules was 

simulated, whereas head groups were treated as united 

atoms, held in a nearly coplanar configuration by means of a 

harmonic force. Our present simulation represents a far 

more accurate implementation of the system, and differs 

from the previous simulations in the following aspects: 

(i) the head groups of the amphiphilic molecules are 

treated in full atomic detail enabling the discrimination 

between decanoate ions and decanol molecules; 

(ii) (partial) atomic charges are included in the simula­

tion; 

(iii) aqueous degrees offreedom are explicitly treated; 

(iv) sodium ions are included, constituting counterions 

for decanoate ions. 

We are now in a position to compare results of the pres­

ent simulation with those of the previous ones and with ex­

perimental results and theoretical predictions. Moreover, 

the structure of the lipid-water interface and properties of 

water in smectic systems can be studied. A preliminary re­

port of our findings has been presented at the first EBSA 

Workshop. IS 

In Sec. II the method of simulation and the details of the 

model are described. Section III gives the results of an SO ps 

simulation, performed after a preliminary simulation of a 

small system and after an extensive equilibration procedure. 

The static properties are described in Sec. III C. They in­

clude distribution functions of atoms and charges, pair cor­

relation functions, electron density function, order param­

eters, and trans-gauche statistics. Dynamic properties are 

described in Sec. III D, and cover diffusion constants, trans­

gauche transitions and reorientational correlation times. In 

Sec. IV the results are compared with previous simulations, 

with experimental data and with other theories. 

II. METHOD AND MODEL 

A. Method of simulation 

The molecular dynamics simulation method is a proce­

dure for the numerical integration of Newton's equations of 

motion. The types of forces applied in the algorithm are de­

scribed in Sec. II C. A leap-frog algorithm 16 was used, which 

is mathematically equivalent to the algorithm of Verlet,17 

but is more efficient from a computational point of view . We 

used Cartesian coordinates and constrained bond lengths by 

the SHAKE method. 18,19 The computational unit cell con­

tains 3166 atoms: a bilayer of 52 decanoate ions and 76 de­

canol molecules, and a water layer of 526 water molecules 

and 52 sodium ions. 

Periodic boundary conditions were applied in three di­

mensions. A weak coupling of the system to a temperature 

bath at 300 K was applied.20 Velocities of solute and solvent 

molecules were scaled independently, both with a coupling 

time constant of 0.1 ps. An isotropic pressure of 1 atm was 

applied to the system by weakly coupling the system to a 

pressure bath at 1 atm. 20 The three unit cell dimensions were 

scaled independently, with a coupling time constant of 0.5 
ps. The integration time step was set to 2 fs. A cutoff radius 

for Lennard-Jones interactions of 0.75 nm was used. Cou­

lomb interactions were treated as described in Sec. II D. 

The simulation program that was used is based on 

GROMOS.
21 After adaptation of this program to the specific 

task of simulation of a membrane, a speed of 1 ps simulation 

(500 MD steps) per hour CPU time on a Cyber 170/760 

computer was attained for the system of 3166 atoms. On a 

one-pipe Cyber 205 machine, a speed of lOps simulation per 

hour CPU time was realized with an extensively vectorized 

version of the program. 

B. Composition of the model system 

The composition of the system equals that of the model 

membrane, studied by Seelig and Niederberger8
-

12 (molar 

ratios: sodium-decanoate: 0.41, decanol: 0.59, water: 4.11). 

The computational unit cell for the MD simulation con­

tained 76 decanol molecules, 52 decanoate ions, 52 sodium 

ions, and 526 water molecules, leading to a total of 3166 

atoms. The initial configuration of the system was derived 

from a hydrocarbon configuration in one of the previous 

simulations. 13,14 Coordinates for head group atoms of decan­

oate ions and decanol molecules were added, since in the 

previous simulations headgroups had been treated as united 

atoms. The water layer was generated from a liquid configu­

ration of SPC water22. Randomly chosen water molecules 

were replaced by sodium ions. 

C. Model parameters 

The water model used in the simulation is the SPC mod­

el. 22 In this simple point charge model, the oxygen atom 

carries a charge - 0.S2e, and both hydrogen atoms carry 

charges of0.41e . The O-H bond length is 0.1 nm, the H-O­

H angle is 109° 2S'. As far as Lennard-Jones interactions are 

concerned the H2 0 molecule is treated as a united atom 

centered on the oxygen atom. Both the bond lengths and the 

bond angle in SPC water are constrained by the SHAKE 

method. 18,19 Solute molecules are treated in full atomic detail 

with the exception of CH2 and CH3 groups, that are treated 

as single Lennard-Jones centers. Lennard-lones interactions 

between atoms i andj have the form: 

(1) 

Values for Eij and O'ij were taken from GROMOS
21 and 

from van der Ploeg and Berendsen. 13,14 Parameters for inter­

actions between sodium ions and water oxygens were calcu­

lated from Kistenmacher.23 Parameters for interactions of 

sodium ions with other atoms follow from standard combi­

nation rules.24 In Table I the Lennard-Jones interaction pa­

rameters are listed for all atom pairs. Bond lengths are con­

strained by the SHAKE method. 18,19 Equilibrium bond 

lengths were taken from GROMOS
21 and are given in Table II. 

Bond angles were treated by a harmonic potential, param­

eters can be found in Table III. Details on dihedral interac­

tions are presented in Table IV. Table V, finally, summarizes 
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TABLE I. Lennard-Jones parameters €ij and U ij for atom pairs. Parameters: 

upper values €ij (kJ/mo!), lower values uij (nm)." 

CH3 CH, C Na OW OA OM 

OM 1.038 0.861 0.836 0.153 0.495 0.566 1.724 
0.313 0.313 0.297 0.295 0.327 0.316 0.263 

OA 1.038 0.861 0.837 0.229 0.743 0.849 
0.313 0.313 0.297 0.276 0.306 0.306 

OW 1.201 0.997 0.968 0.200 0.650 

0.310 0.310 0.293 0.286 0.316 
Na 0.196 0.163 0.158 0.062 

0.310 0.310 0.294 0.258 
C 0.504 0.418 0.406 

0.355 0.355 0.336 OM = decanoate oxygen 
CH2 0.518 0.430 OA decanol oxygen 

0.374 0.374 OW = water oxygen 
CH3 0.624 

0.374 

• Lennard-Jones interactions are excluded for nearest and next-nearest 

neighbors, as well as for 1-4 interactions of groups that are treated by the 

Ryckaert-Bellemans potential (Table IV). The hydrogen atoms of de­

canol and water carry partial charges, but have no Lennard-Jones param­

eters. These are incorporated in the parameters for OA and OW, respec­
tively. 

the ( partial) charges on atoms. An interaction cutoff radius 

of 0.75 nm was used for Lennard-Jones and Coulomb inter­

actions. An extra long range interaction term was calculated 

for Coulomb interactions (see Sec. II D). A relative dielec­

tric constant €r of 1 was used. 

D. Treatment of electrostatics 

The lipid bilayer contains groups with a net charge (so­

dium ions and decanoate ions) and groups with dipole mo­

ments only (water molecules and decanol headgroups). 

Coulomb interactions are therefore expected to play an im­

portant role in the dynamics. These interactions are long 

ranged, so a cutoff radius as small as 0.75 nm will introduce 

significant errors in the dynamics. A larger cutoff radius 

would therefore be preferable, but that has the major draw­

back of a dramatical increase of the CPU time required for 

the simulation, as this time is proportional to the cube of the 

interaction cutoff radius. 

We resorted to a compromise, illustrated in Fig. 1. Ev­

ery tenth dynamics time step a pair list is updated, contain­

ing all charge group pairs i-j with rij<0.75 nm. ( a charge 

group is the smallest group of adjacent atoms, for which the 

sum of the atomic charges is ne, n integer). Simultaneously 

with the updating ofthis pair list, the Coulomb force is eval­

uated on every partially charged atom i, due to those atomsj 

TABLE II. Equilibrium bond lengths (nm). 

CH3-CH2 : 

CHz-CH2 : 

CH2 -C: 

C-OM: 

CH,-OA: 

OA-HA: 

OW-HW: 

HW-HW: 

0.153 

0.153 

0.153 

0.125 

0.143 

0.100 

0.100 

0.163 (virtual bond length in SPC water) 

TABLE III. Equilibrium bond angles and force constants: V( a) = 1/2 k. 

(a - ao)2 (kJ/mol). 

Type k. (kJ mo(-I rad-2 ) ao (deg) 

CH, -CH2 -CH2 460 111 

CH2 -CH2 -CH2 460 III 

CH2 -CH2 -C 460 111 

CH,-C-OM 502 117 

OM-C-OM 502 126 

CH2 -CH,-OA 460 111 

CH2-OA-HA 397 109.5 

that are not in the pair list of atom i, but obey xt + yt <R ~yl • 

In the simulation we used Reyl = 1.7 nm. One cannot go far 

beyond this value, due to the requirement that the interac­

tion cutoff radius be smaller than half of the smallest unit cell 

dimension. As a third component, a charge distributionp(z) 

is evaluated by the division of the unit cell into slices in the 

bilayer plane and accumulation of the charge per slice during 

the simulation. This process is also performed simultaneous­

ly with the updating of the pair list. A time-averaged charge 

distribution p(z) is approximated by p* (z, t), obtained from 

p*(z,t) = p*(z,t - A)e( - ,liT) + p(z,t) (1 - e( - ,~./T», (2) 

where A is the time interval between two successive updates 

of the pair list, and where T is a characteristic time, set to 0.5 

ps in the simulation. The charge distribution p* (z,t) is the 

charge distribution that is present everywhere outside a cyl­

inder with radius Reyl ' It represents a low-pass filter that 

converges to the average charge distribution p(z), but still 

allows adaptation to slow changes. From this charge distri­

butionp*(z,t) the field Ez (z) on the axis of the cylinder can 

be obtained. Details are presented in the Appendix. 

The total force thus results from three components: 

(a) The short-range force, calculated every time step 

using a cutoff radius of 0.75 nm. 

(b) The medium-range force, calculated every tenth 

time step simultaneously with the updating of the short­

range pair list, and resulting from charges in a cylindri­

cal region. This force remains active during the next ten 

steps. 

TABLE IV. Parameters for dihedral interations. For the dihedrals CH,­
CH2-CH,-CH, and CH,-CH,-CH2-CH3 we used the Ryckaert-Belle­

mans potential (Refs. 40 and 41): V(tp) = l:;~o Ci(COStp)i, with Ci 

(i = 0, ... ,5): 9.28,12.16, - 13.12, - 3.06, 26.24, and 31.5 kJ/mol. The 

Ryckaert-Bellemans potential includes the interactions between first and 

last atom of the dihedral. For the other proper dihedrals we used: 

V(tp) = C cos (ntp + I)." 

Type C (kJ/mo!) n I) (deg) 

CH2-CH2-CH2-OA 5.86 3 0 

CH2-CH2-OA-HA 1.26 3 0 

CH2-CH2-CH2-C 5.86 3 0 

CH,-CH2-C-OM 0.42 6 0 

a For the improper dihedral C-OM-OM-CH2 we used: V( a) = 167.36 a 2 

(kJ/mol). 
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TABLE V. Partial charges of atoms. 

In decanol: OA: - O.548e, HA: O.398e, CH2: O.15Oe 
In decanoate: OM: - O.635e, C: O.27Oe 
In water: HW: O.410e, OW: - O.82Oe 

(c) The long-range force, resulting from the average 

charge distributionp(z) outside the cylindrical region. 

It is sufficient to limit the source charge distribution to 

one double layer, because the average fields resulting 

from homogeneous charge distributions in adjacent lay­

ers will cancel. 

This total force, in addition to bonded forces (angles, 

dihedrals, SHAKE) is used to update velocities every time 

step. For the calculation of the virial (necessary for the eva­

luation of the pressure components) we used forces on atoms 

instead of forces on molecular centers of mass, as is usually 

applied in pressure scaling. This was done in order to be able 

to incorporate the contribution to the virial from the extra­

cylinder charge distributionp*(z,t). In practice this contri­

bution turned out to be negligible, however. The details of 

this virial calculation will be reported elsewhere. 

III. RESULTS 

A. Simulation of a small system 

Originally, a simulation was set up on a small system, 

with unit cell sizes of2 (x,y) and 3.56 nm (z), consisting of 

20 decanol molecules, 12 decanoate ions, 12 sodium ions, 

and 128 water molecules. We observed that in the course of 

the equilibration run this system tended towards crystalliza­

tion. This is concluded from the radial distribution function 

for the headgroups of the lipid molecules, that shows very 

pronounced higher order maxima. Also, the x and y size of 

the unit cell changed in such a way that they obtained rela­

tive magnitUdes of 2 and 3. In this way, the headgroups of 

;'- .... , 
I \ 

I I 
\ I 

,. , / 
V ..... _/ 
{, 

( 
f----.... ........ 

/. , 

FIG. l. Schematic representation of regions involved in the evaluation of 

Coulomb interactions. The z coordinate runs from the middle of one lipid 

bilayer to the middle of the next lipid bilayer. The radius of the sphere is 0.75 

nm, the radius of the cylinder is l. 7 nm. 

decanoate ions (6 per monolayer) are able to arrange in a 

cubic lattice. We ascribe this crystallization to the fact that 

correlations in the system extend over distances comparable 

with the x and y unit cell dimensions. A similar observation 

was made in a previous simulation by van der Ploeg and 

Berendsen13 on a single bilayer of 2X 16 lipid molecules, 

where cooperativity extended over the entire unit cell. We 

therefore decided to increase the size of the system to 128 

lipid molecules and 526 water molecules, with unit cell sizes 

of 4 (x,y) and 3.56 nm (z), thereby conserving the surface 

area of 0.25 nm2 per head group. 

B. Equilibration 

The initial configuration of the system was constructed 

by taking a hydrocarbon configuration from a simulation 

performed by van der Ploeg and Berendsen,14 adding water 

from a liquid SPC water configuration. Randomly chosen 

water molecules were replaced by sodium ions. After energy 

minimization of the system an equilibration run was started, 

that was continued until such properties as potential ener­

gies, dimensions of the unit cell, and penetration depth of 

water into the hydrocarbon region of the membrane had 

more or less stabilized. It appears that the potential energy 

stabilizes much more quickly than the unit cell dimensions, 

and is therefore not a good criterion for judging whether 

equilibrium has been attained. The total length ofthe equili­

bration run was 100 ps. The equilibration run was started 

with unit cell dimensions of 4, 4, and 3.56 nm (x,y,z), corre­

sponding to the experimental values for surface area per 

head group of a lipid molecule2s of 0.25 nm2 and thickness of 

lipid bilayer + waterlayer of3.56 nm8--12 After the equilibra­

tion run the unit cell sizes had stabilized on 3.87, 3.87, and 

3.63 nm. This corresponds to a value for the surface area per 

head group of a lipid molecule of 0.234 nm.2 These values 

still agree within experimental error with density and x-ray 

data. All components of the potential energy function had 

stabilized. 

C. Static properties 

1. Distribution of atom types and charges 

In order to establish the structure present in the multibi­

layer system, the distributions of the various components in 

the system along the normal to the bilayer were calculated. 

Figure 2 displays the distributions of the head groups of de­

canol molecules and decanoate ions, of water molecules, and 

of sodium ions. The location of decanol headgroups and wa­

ter molecules was taken to be determined by the position of 

the oxygen atoms. For decanoate headgroups the average of 

the two oxygen positions was taken. The distribution of the 

headgroups of the two lipid species is very broad. The bi­

layer-water interface is diffuse, while a remarkably deep 

penetration of water molecules into the hydrocarbon core of 

the lipid bilayer is observed. The distribution of sodium ions 

closely resembles that of water molecules, though the ion 

penetration into the lipid bilayer is less prominent. The de­

canoate headgroups preferably sit near the middle of the 

aqueous layer, in spite of the fact that this location involves 

the unfavorable exposure of part of the hydrocarbon chain to 
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FIG. 2. Distribution of components along the normal to the bilayer, z coor­

dinate as in Fig. I, for head groups of decanoate ions ( - - ), head groups of 

decanol molecules (- - - - ), sodium ions ( ... ), and water molecules ( - ). 

a water environment. The decanol headgroups, carrying no 

net charge and having a relatively small permanent dipole 

moment, tend to be more deeply buried in the lipid layer. 

The overlap of sodium ion and carboxylic acid distribution 

suggests a membrane structure that is characterized by a 

charge compensation rather than by the building up of a 

diffuse electrical double layer as pictured in many textbooks 

on membranes. 

In Fig. 3, a projected structure of a snapshot of the sys­

tem after 30 ps simulation is given. It is evident that the layer 

structure has been conserved in the simulation, but the lipid 

head groups have a low degree of coplanarity. Though it is 

not visible in the two-dimensional representation, an analy­

sis of the water-water pair correlation function in the hydro­

carbon core of the membrane reveals that the water mole­

cules in this core are never isolated but are always found in 

small clusters. 

We investigated the occurrence of transversal waves in 

the membrane, because the projected structures suggest the 

presence of ripples in the bilayer. Fourier analysis of the 80 

ps run at accessible values of the wave vector did not reveal a 

peak in the frequency power spectrum. This indicates that 

either the surface waves are highly damped or that the wave 

velocity is too small to be observable. 

Figure 4 displays the time-averaged charge distributions 

along the normal to the bilayer for decanoate and sodium 

ions, for decanol head groups, and for water molecules. 

These charge distributions were calculated by assigning ev­

ery ( partial) atomic charge to the slice in which it is found. 

FIG. 3. Projection on the xz plane ofa snapshot of the system after 30 ps simulation: decanoate ions and decanol molecules (-), sodium ions (V), water 
oxygens (0), oxygens in the lipids (0). 
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It is observed that the charge distributions of decanoate ions 

and sodium ions cancel to a large extent throughout the 

membrane. What is left of uncompensated charge is then 

once again largely compensated by the distribution of the 

dipole moments of water molecules and decanol head 

groqps. They appear to orient in such a way that they reduce 

the iotal charge in a slice to practically zero everywhere. 

An alternative way of representing charge distributions 

is by way of cumulative charge distributions Pc (z), defined 

through Pc (z) = S~ p(z')dz'. This is a smoother method to 

show the detailed charge compensation in the membrane, 
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FIG. 5. Cumulative charge distribu.tions ( electronic units) of components 

in the system from the middle of one lipid bilayer to the middle of the next 

lipid bilayer: sodium + decanoate ions ( - - - - ) , decanol molecules ( ... ), 

water molecules ( - - - ), all components together (-). 

because noise is integrated out in this way. For sodium ions 

and decanoate headgroups Pc (z) integrates up to the num­

ber of electronic charges in the system, i.e., ± 52e. In Fig. 5 

cumulative charge distributions are presented for sodium 

+ decanoate, decanol, water, and for all components to­

gether. From the cumulative charge distributions for sodium 

+ decanoate we see clearly that the decanoate ions are more 

on the hydrocarbon side of the interface, but it is also evident 

that the interface is very broad ( ::::: 1 nm) and diffuse. What 

is left of a cumulative charge distribution after the mutual 

compensation of the two ion types, is most effectively com­

pensated by the dipole moment distribution of the water 

molecules. The effect of the dipoles of the decanol head 

groups is negligible. The cumulative charge distributions 

practically cancel throughout the membrane. The charge 

distribution emerging in our simulation does not support the 

model of an electrical double layer with head groups con­

fined to a sharply defined interfacial region and with a dif­

fuse counterion distribution in tlJ.e aqueous part of the sys­

tem between the head groups. 

2. Radial distribution functions 

Pair correlation functions were calculated for various 

atom pairs. 'In Fig. 6 the pair correlation functions of sodium 

ions with oxygen atoms of decanoate, decanol, and water are 

given. These pair correlations have been corrected for the 

density distributions of the components in the system, i.e., 

for the correlation functions that would have been obtained 

as a resuIi of the z distribution of the components in the 

system, apart from any interatomic structure. The pair cor­

relation Na+ -OM (decanoate oxygen) exhibits a highly 

pronounced first neighbor peak as well as a sharp second 

order maximum. No correlation exists beyond this maxi­

mum. Using the location of the first minimum in the pair 

correlation function as a criterion for the upper bound of the 

existence of a bound state, one finds that 72% of the Na + 

ions is bound to at least one oxygen atom of decanoate ions. 

ThepaircorrelationNa+ -OW (water oxygen) shows a pro­

nounced first order maximum, as well as resolved second 

20~--~1~-~1~--~1~-~1~--~ 

15 I-

10 

5 r-
\ 

.\ 

-

"; /''::...' ~-----:--I 
0.3 0.6 0.9 1.2 1.5 

RADIUS (NM) 

FIG. 6. Pair correlation functions of sodium ions with oxygen atoms of 

decanoate (OM), decanol (OA), and water (OW). sodium-OM (-), so­

dium-OA ( ... ), sodium-OW ( - - - - ). 
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TABLE VI. Ligandation of sodium ions. 

Number of oxygens OM OA OW Percentualoccurrence 

5 2 0 3 13.2 

5 0 0 5 12.2 

6 2 0 4 lQ4 

6 0 0 6 8.4 

6 4 0 2 8.0 

5 3 0 2 7.3 

5 1 0 4 6.1 

6 0 1 5 4.5 

6 3 0 3 4.4 

6 5 0 I 4.3 

6 1 0 5 4.1 

5 4 0 1 3.6 

5 0 1 4 2.1 

7 4 0 3 1.1 

and third order neighbor peaks. As much as 98.9% of the 

Na+ ions is bound to at least one H2 0 molecule, applying 

the above criterion. OA (decanol oxygen) occurs consider­

ably less frequent as a neighbor ofNa + ions, as is clear from 

thepaircorrelationNa+ -OA. Only 12.5% oftheNa+ ions is 

liganded to decanol oxygens. 

The coordination number ofNa + to oxygen atoms is 5.5 

(63.8% OW, 33.9% OM, and 2.3% OA). Both a coordina­

tion number of five and of six occur in 47% of all cases. If 

Na + ions would not distinguish between the three oxygen 

ligands, one would calculate, using the above coordination 

number, for the percentage ofNa + ions bound to at least one 

OM, OW, or OA: 58.4%, 99.95%, and 46.6%. From these 

numbers it is clear that in the simulation Na + distinctly 

prefers ligandation to oxygens of decanoate, at the expense 

of water and decanol oxygens. In Table VI we list the most 

frequently occurring complexes of Na + with oxygens, with 

their percentual occurrence. 

3. Electron density distribution 

The electron density distribution in a system is a quanti­

ty that is in principle accessible to experiments. Figure 7 

displays the z distribution of electrons, calculated from the 

MD run, and an experimental result for the electron density 

in a more or less similar system. No experimental data are 

available on the electron density in the sodium-decanoate/ 
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FIG. 7. Electron density distribution (el A3) from the middle of one lipid 
bilayer to the middle of the next lipid bilayer, simulation (-), experiment 

on a dipalmitoylphosphatidylcholine/water system (rescaled) ( - - - ). 

decanolIH2 0 system. Therefore results from Levine26 on a 

lecithin/water system are included in Fig. 7. A rescaling of 

the z repeat distance has been performed for the results of 

Levine, which also have an arbitrary scale on the ordinate 

axis. 

Though it is hazardous to compare the two curves, two 

comments may be made. First, the electron density falls off 

rapidly towards the middle of the lipid bilayer in both 

curves. This is generally observed in membranes and model 

systems for membranes. Second, the difference in electron 

density between headgroup region and water region that is 

observed experimentally, is not reproduced in our simula­

tion. Only a small dip in the aqueous region is observed in the 

MD electron density function. Obviously the electronic 

composition of the diffuse and broad interfacial region is 

approximately constant. 

Jonsson et al.27 performed a MD simulation on a sodi­

um-octanoate micelle in aqueous solution. They calculated 

the electron density in the micelle in radial direction and 

observed it to be less structured than is usually assumed in 

models used to interpret scattering data. This observation 

agrees with our findings and so does their conclusion that the 

increase in electron density from tail ends to the headgroup 

region is prominent, while there is no difference in the elec­

tron density between headgroup region and aqueous region. 

4. Order parameters 

The order parameter tensor S is defined by 

Sij = 1/2 (3 cos 0i cos OJ - 8ij)' (3) 

where 0i is the angle between the ith molecular axis and the 
bilayer normal (z axis), and where the bar implies averaging 

over time and molecules. The molecular axes are defined per 

CH2 unit. For the nth CH2 unit we define: 

z: vector from Cn _ 1 to Cn + 1 ; 

y: vector, perpendicular to z, and in the plane through 

Cn_ l , Cn, and Cn+ I; 

x: vector, perpendicular to z and y. 

Order parameters can vary between I (full order along the 

bilayer normal) and - 1/2 (full order perpendicular to the 

normal), with a value of zero in the case of isotropic orienta­

tion. From symmetry arguments, S is diagonal, except for 

SyZ which is usually small. The diagonal elements sum to 
zero, so essentially we have three independent order param­

eters per CH2 unit. This number reduces to two in the case of 

isotropic rotation around the molecular z axis. In that case 

Szz = - 2Sxx = - 2Syy- Szz is usually referred to as Schain' 

Experimentally, deuterium NMR order parameters SeD are 

available for several positions along the chain, as measured 

by Seelig and Niederberger. 8
-

12 These are defined for the di­

rection along the CH bond and can be compared to the MD 

order parameters, using the relation SeD = 2/3Sxx 
+ 1/3Syy • In Fig. 8 both the experimental and the MD or-

der parameters are displayed for all CH2 units in a chain, 

decanoate ions and decanol molecules treated separately. 

There is reasonable agreement between experimental and 

MD order parameters SeD' 

The experimentally observed plateau in the order pa­

rameters is well reproduced. The present MD order param-
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eters tend to be somewhat lower than both the experimental 

ones and the ones in the previous simulations by van der 

Ploeg and Berendsen. 13,14 This is clearly observed for CH2 
units near the head groups of decanoate. This phenomenon 

reflects the fact that the lipid molecules in the present simu­

lation aggregate in a rather loose structure, with a broad 

bilayer region, and accordingly a lower packing density of 

CH2 groups than in the simulation by van der Ploeg and 

Berendsen. As is clear from Fig. 2, the head groups of the 

decanoate ions penetrate deeply into the aqueous layer, and 

it is therefore not surprising that the order parameters of 

CH2 groups near these head groups will be lower. It is ob­

served that - 2Sxx is larger than Szz for all but one CH2 
unit, indicating an anisotropy of rotation around the molec­

ular z axis. This has also been observed experimentally28 and 

in the simulations by van der Ploeg and Berendsen. As an 

illustration of the dependence of the order parameter SeD of 

CH2 units on their location in the membrane, Fig. 9 displays 

the order parameter SeD of CH2 groups as a function of z, 

. combined for decanol molecules and decanoate ions. The 

density functions of C atoms and of water molecules are 

0.1r----r----~--~----~--~r_--~ 

a::: 0.3 w 
...... 
w 
:t: '" 

a: 
a::: 
a: 
a.... 

0.2 

a::: ' , 
" w ,. 

e , " 

a::: 0.1 
, , 

e , , , , 
, , 
, , , , , , --

0.00.0 0.6 1.2 1.8 2.1 3.0 3.6 

Z-COORD(NM) 
FIG. 9. Order parameters - SCD for decanoate + decanol chain units 

( -), as a function of the zcoordinate of a chain unit, Z coordinate as in Fig, 

I: density ofCH2 groups (arbitrary scale) (--), density of water mole­

cules (arbitrary scale) ( ... ), 

included as a reference. The order parameter SeD falls off 

towards the middle of the lipid layer, where the C atom den­

sity also decreases, and towards the middle of the aqueous 

layer, where water is the predominant component. These 

observations demonstrate the correlation of the order pa­

rameters with the packing of the hydrocarbon groups. 

5. Trans-gauche statistics 

The overall orientation of a molecule is one factor deter­

mining the value of the order parameter. The state of the 

internal dihedral angles of a molecule (g+ ,t,g-) is another 

one. We calculated the fraction of trans dihedral angles in 

decanoate ions and decanol molecules. These turned out to 

be 0.79 and 0.775, respectively. These values are in good 

agreement with the value of 0.79 determined by van der 

Ploeg and Berendsen. Applying Boltzmann statistics to the 

Ryckaert-Bellemans potential for dihedral interactions 

(trans-gauche energy difference: 2.9288 kJ/mol) and ex­

cluding adjacent gauche conformations of opposite sign29 

one calculates a value of 0.66 for the fraction of trans dihe­

dral angles. Therefore, the effective trans-gauche energy dif­

ference in the simulation is higher than the Ryckaert-Belle­

mans value, and amounts to 4.25 kJ/mol. Clearly, the 

structure that is present in the membrane prefers trans con­

figurations. We calculated the fraction of trans dihedral an­

gles as a function of the angle of the central bond of a dihe­

dral with the normal to the bilayer. In accordance with the 

observations of van der Ploeg and Berendsen,13,14 it is ob­

served that dihedral rotations (g+ ,g-) occur preferably 

around bonds that are parallel to the normal. 

In Fig. 10, we display the fraction of trans dihedral an­

gles vs the dihedral number, separately for decanoate and 

decanol. Dihedral number one is the dihedral between car­

bon atoms two and three, counting downwards from the 

head group. An odd-even effect is observed, that is most 

prominent for decanoate. The explanation for the observed 

opposite polarity in this phenomenon for decanoate and de­

canol is found in the behavior of the head groups. From 

symmetry arguments the average dipole vector of the head 
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ber. Dihedral number one is the dihedral closest to the headgroup: decan­

oate ions (-). decanol molecules ( - - ). 

groups of the lipids will orient along the normal to the bi­

layer. This implies that the CH2 -C bond in decanoate will 

on average be oriented along the normal to the bilayer. The 

next CH2 -CH2 bond will therefore point away from the di­

rector, and the first dihedral in decanoate will thus have a 

relatively large fraction of trans dihedral angles, as dihedral 

rotations (g+ ,g-) occur preferably around bonds that are 

parallel with the normal to the bilayer. For decanol it is the 

CH2-O bond that is an average parallel with the normal to 

the bilayer, and the first dihedral will thus have a larger 

fraction of gauche dihedral angles. 

In Fig. 11 the fraction of trans dihedral angles is dis­

played as a function of the z coordinate of the central bond of 

a dihedral. The density function of carbon atoms is also in­

cluded in this figure. It is observed that the two curves are 

isomorphic: the fraction of trans dihedral angles is high 

where the density of carbon atoms is high and falls off where 

this density function falls off. 

The occurrence of g + tg - or g - tg + configurations is in­

frequent. The average number of these so-called kinks per 

decanoate ion or per decanol molecule is 0.14, respectively, 

0.20, where van der Ploeg and Berendsen calculated a num­

ber of 0.20 for the lipids in their simulation. The fraction of 
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FIG. 11. Fraction of trans dihedral angles as a function of the z coor­

dinate of the central bond of a dihedral, combined for decanoate and de­

canol (-). Z coordinate as in Fig. I. Density of carbon atoms (arbitrary 

scale) (---). 

kinks observed in the present simulation is far too low to 

support the kink model30 for the explanation of the plateau 

in the order parameters, which requires at least one kink per 

lipid molecule. Statistically one would expect numbers of 

0.182 and 0.199, making use of the fraction of trans angles 

calculated in the simulation, assuming a random distribu­

tion of gauche dihedrals, and excluding g+ g- and g-g+ se­

quences. The fraction of kinks per decanoate ion observed in 

the simulation is even smaller than expected statistically . 

This implies that the distribution of gauche dihedral angles 

in decanoate ions is nonrandom, in agreement with the ob­

served odd-even effect in decanoate. The observation that 

decanoate ions exhibit slightly less gauche rotations than de­

canol molecules, together with the observed odd-even effect 

is reflected in the smaller number of kinks per decanoate ion. 

D. Dynamic properties 

t. Trans-gauche dynamics 

A dihedral transition is considered to have taken place 

whenever the crossing of a barrier in the dihedral potential is 

followed by the crossing of the corresponding (local) mini­

mum in the dihedral potential. 31 Using this definition, which 

avoids the counting of a temporary transgression of the bar­

rier as a true transition, we calculated the mean time between 

two transitions of the same dihedral. For decanoate ions this 

time is 30.7 ps, for decanol molecules it is 31.3 ps, with errors 

of ± 0.5 ps. The two types oflipids have the same dihedral 

transition rate, which is however 2.5 times lower than in the 

previous simulations, 13,14 where a value of 12.3 ps was calcu­

lated for the mean time between transitions of the same dihe­

dral. The corresponding value in the micelle simulation by 

Jonsson et al.28 is 16.0 ps. We can think of two reasons for the 

low transition rate in the present simulation. In the first 

place there are the dominant electrostatic interactions, that 

may well reduce the flexibility of the chains near the charged 

head groups. A change in the internal configuration of a 

molecule can be prohibited by the strong intermolecular 

Coulomb interactions. We calculated the dihedral transition 

rate as a function of the z coordinate of the central bond of a 

dihedral. It is observed that the dihedral transition rate is 

lower by a factor of 2 in the aqueous part of the system than 

in the hydrocarbon core, where electrostatic interactions 

playa less important role, and where dihedrals are on aver­

age separated by several CH2 units from the charged head 

groups. We expect that this effect is only of secondary impor­

tance however, because the density of dihedrals in the 

aqueous region of the system is low. In the second place, the 

greater flexibility of the chains in the z direction, as com­

pared to the previous simulation, is expected to reduce the 

transition rate. 

2. Diffusion constants 

Lateral diffusion constants were calculated for Na + 

ions, and for the centers of mass of decanoate ions, decanol 

molecules, and water molecules, from mean squared dis­

placements, using the relation: 

lim (r(t» = 4Dt, (4) 
t_ 00 
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FIG. 12. Average squared lateral displacements as a function of time for the 

centers of mass of water molecules ( - - - - ), decanol molecules ( - - ), 

decanoate ions (-), and sodium ions ("'). 

where r(t) = [xU) - X(0)]2 + y(t) - y(O) ]2. 

In Fig. 12 the mean squared lateral displacements of the 

four components are given as a function of time. From Eq. 

( 4) one calculates for the diffusion constants: 

sodium: D = (2.7 ± 0.3) X 10-6 cm2 
S-I; 

decanoate: D = (2.7 ± 0.3) X 10-6 cm2 
S-I; 

decanol: D = (5.2 ± 0.4) X 10-6 cm2 
S-I; 

water: D= (1.2±0.05)XIO-5cm2 s- l. 

The values of the diffusion constants of the lipid molecules 

are in reasonable agreement with the value of 1.5 X 10-6 cm2 

S-I, measured by Seeligl2 with the use ofa nitroxide spin 

label. In the simulation by van der Ploeg and Berendsen, a 

value of 1.1 X 10-5 cm2 
S-I was calculated for the diffusion 

constants of the lipids. We note that the discrepancy of one 

order of magnitude between experimental and MD results in 

the previous simulations, with simplified treatment of head 

groups, has disappeared in the present simulation. Hence we 

conclude that the mechanism determining the diffusion con­

stants of the lipid molecules is the hydrodynamic interaction 

of the headgroups with the aqueous layer, rather than inter­

actions within the layer. 

The diffusion constant of H20 is a factor of 3 smaller 

than the one in the pure SPC model (3.6X 10- 5 cm2 
S-I ). 

Water in the membrane diffuses three times slower than bulk 

water, so not only are the lipids slowed down by the presence 

of H20, but also is the water motion affected by the presence 

of the lipids. A similar observation was made in NMR ex­

periments on a similar soap-water system,32 indicating that 

the state of water in models of biological systems is different 

from that of ordinary bulk water. We can compare the diffu­

sion constants of H2 0 in our simulation with experimental 

results on a potassium-palmitate/water system. Callaghan 

et al.33 determined a lateral diffusion constant of H20 in a 

70:30 w/w potassium-palmitate/D20 system at 65°C of 

0.85 X 10-5 cm2 
S-I. Using the temperature dependence of 

the diffusion constant ofSPC water, one arrives at a value of 

0.52X 10- 5 cm2 
S-I at 300 K for the diffusion constant of 

H20 in their system. Ukleja and Dohane,34 for the same 

sytem at 75°C, measured a value of 1.6XIO-5 cm2 s- l, 

which can be extrapolated to a value at 300 K of 0.77 X 10-5 

cm2 s - I. The correspondence between MD and experimen­

tal values is encouraging. The difference of a factor of 2 may 

be caused by the fact that the diffusion of decanol and decan­

oate is expected to be faster than that of palmitate, and by the 

fact that SPC water diffuses faster than real water . 

We investigated the dependence of the diffusion con­

stant of water molecules on their location within the system. 

Therefore, the system was subdivided into four parts and the 

lateral diffusion constants of water in these parts were deter­

mined: 

1 ° 0.0 < z < 0.7 nm, middle of lipid bilayer: 

D = (5.0 ± 1.0) X 10-6 cm2 
S-I; 

2° 0.7 < z < 1.2 nm, headgroups of decanol: 

D = (6.5 ± 1.0) X 10- 6 cm2 s-\ 

3° 1.2 <z < 1.6 nm, headgroups of decanoate: 

D = (1.0 ± 05) X 10-5 cm2 
S-I; 

4° 1.6 <z < 1.8 nm, middle of water layer: 

D = (1.2 ± .05) X 10-5 cm2 
S-i. 

From these data it is evident that the diffusion of water in the 

lipid part of the bilayer is slower than in the aqueous part of 

the system. In the lipid region of the membrane the diffusion 

of H20 is not much faster than that of decanol molecules, 

the main constituents of the interior of the lipid bilayer. 

3. Reorientational correlation times 

Reorientational correlation times were calculated for 

three molecular H2 0 vectors. The vectors used are: 

(a) the dipole vector; 

(b) the vector connecting the hydrogen atoms; 

(c) the vector, perpendicular to (a) and (b). 

Autocorrelation functions were evaluated for the Le-

gendre polynomials PI (cos e) = cos e, and P2 (cos e) 
= 3/2 cos2 e - 1/2, where e j (t) is the angle between 

nj (t 7) and nj (t' + t), and nj are the three molecular H20 

vectors. In Fig. 13, the autocorrelation functions of PI 

(cos e) for the three molecular H20 vectors are displayed. 

We calculated time constants assuming a single exponential 

decay in the region from 1 to 10 ps. In Table VII the time 

constants are listed as calculated in our simulation, in the 

water simulation by Postma,35 and in the water simulation 

by Teleman.36 The conclusion is that the rotational motion 

of water for all three molecular axes is considerably slowed 

down in our membrane compared to pure SPC water. This is 

in sharp contrast with the conclusion drawn by Jonsson et 

al.28 in their simulation of a sodium-octanoate micelle in 

aqueous solution. They state that both the rotational and the 

translational motion of water molecules are not significantly 

affected by the presence of the micelle. In our simulation, 

both the translational and the rotational motion of water 

molecules are clearly slowed down compared to bulk water. 

Though one may argue that in our simulation the density of 

ionic components is higher by a factor of 2.5, this does not 

seem to give a sufficient explanation for the observed dis­

crepancy. 
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time for three molecular vectors of Hz 0: dipole vector (-), H-H vector 

( - - - ), vector normal to the H-O-H plane ( .. '). 

The values of 1" l,a and 1"2,a in our simulation differ most 

from the corresponding values for SPC water. This implies 

that it is the rotation of the water dipole vector that is inhibit­

ed most in the membrane. The water dipoles tend to line up 

in the direction of the field caused by the solute charges, as 

we have seen before. This field will not drift significantly in a 

time span of a few ps, which explains the large values of 1" l,a 

and 1"2,a' A rotation of one of the other axes does not neces­

sarily involve rotation of the dipole vector, and these rota­

tions are accordingly less hindered. From a free diffusion 

model one expects a ratio of 1"I,a over 1"2,a of 3. This relation­

ship is already violated for pure SPC water, where the ratio is 

2.4. For water in the membrane the ratio is only 2.1, which is 

another indication of the hindered rotation of water in the 

lipid/water system. 

We investigated the dependence of 1"2,a on the z coordi-

nate of a water molecule. Three regions were discerned: 

middle oflipid bilayer: 1"2,a = 6.7 pSj 

headgroup region: 1"2,a = 4.5 pSj 

aqueous region: 1"2,a = 3.6 ps. 

Water molecules that penetrated the hydrocarbon core of 

the lipid bilayer not only diffuse slower (see Sec. III D 2), 

TABLE VII. Time constants of rotational autocorrelation functions for wa­

ter molecules. 

This work Postma 

'Tt,a 
8.C 8.8 ps 3.5 ps 

1"\ .• 4.6ps 3.1 ps 

T t•c 3.9 ps 

TZ,a 
b.c 4.1 ps 1.5 ps 

1"z •• 3.9 ps 1.8 ps 

Tz,c 3.6ps 

81"\: first order spherical harmonic functions. 

b1"Z: second order spherical harmonic functions. 

Te1eman 

3.1 ps 

2.7ps 

2.0ps 

1.3 ps 

1.7 ps 

1.0 ps 

c~, h,c refer to dipole vector, H-H vector, and normal to HOH plane, respec­

tively. 

but also rotate slower than their counterparts in the aqueous 

region. 

IV. DISCUSSION 

A. Comparison with experimental data 

When comparing the values of order parameters and 

diffusion constants in the present and the previous simula­

tions 13,14 with experimental data, the conclusion must be 

that the present modeling of the model membrane is more 

successful in the prediction of dynamical variables, but 

slightly less successful in the prediction of static properties of 

the model membrane than the previous simulations. This is 

not surprising when we realize that on the one hand, the 

present model is much closer to the experimental conditions, 

but on the other hand, we are now faced with the evaluation 

of Coulomb forces in an ionic system. This makes high de­

mands on the properties of the water model that is used, and 

on the parameters for the evaluation of the interactions 

between (fully or partially) charged components. As we 

have seen, the values of diffusion constants in the present 

simulation have been considerably brought down compared 

to the previous simulations and are now much closer to the 

experimental ones, though still somewhat higher. The ex­

plicit presence of water molecules together with the detailed 

description of the head groups of lipid molecules introduces 

a hydrodynamic damping term that is responsible for the 

lower values of the diffusion constants. 

The presence of water molecules not only influences the 

lateral motion of the lipid molecules, it also distorts the high 

degree of coplanarity of the head groups of the lipids. Where­

as in the previous simulations the head groups of the lipids 

were confined to a relatively narrow region by means of a 

harmonic force exerted on them, the presence of the water 

molecules now creates a broad and very diffuse lipid-water 

interface. Obviously, the forces at the interface do not pro­

duce a sharp boundary. It is this vertical spread of the head 

groups that reduces the packing density of the hydrocarbon 

tails of the lipids, resulting in lower values of the order pa­

rameters than in the previous simulations. The overall pic­

ture emerging from our simulation is that of a disordered 

lipid structure with substantial water penetration and al­

most complete overlap of the distributions of negative lipid 

charges and positive counterions, and is contrary to the gen­

erally accepted picture of the diffuse electrical double layer. 

One should bear in mind however, that the lipids in our sim­

ulation have only one, relatively short, chain and that the 

charge density in the system is high, thereby differing from 

the situation in real biological systems. 

B. Distribution functions compared with other theories 

In order to illustrate the spread of the hydrocarbon 

chain units in the present simulation, Fig. 14 gives the z dis­

tribution of carbon atoms in the present simulation, in the 

simulation by van der Ploeg and Berendsen,14 and in the 

model of Gruen.6 It is clear that the distribution of C atoms 

in the present simulation is much broader, due to the fact 

that the headgroups of the lipids are free to move. The den­

sity of carbon atoms in the lipid region is lower than in the 
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other models, except for the" very middle ofthe lipid bilayer, 

where the dip in the density is less pronounced. The lower 

density of carbon atoms explains the lower value of the order 

parameters in our simulation. 

In the work of Leermakers et al.7 the z distributions of 

several chain units were calculated. These distributions can 

be compared with the MD distributions, by making the mid­

dle of the bilayer and the mean positi9ns of the head groups 

coincide for the two systems. In Fig. 15 the z distributions of 

the tail methyl group and the CH2 group next to the head 

group are presented for the model ofLeermakers and for our 

simulation. Only chain units from one monolayer were 

counted. There is good agreement between the curves in the 

two systems. The MD curves show approximately the same 

width throughout the Jll.embrane, whereas the distributions 

in the model of Leermakers tend to sharpen up towards the 

head group region. The half-widths of the MD distributions 

are approximately 1 n~, showing the large spread of the 
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FIG. 15. Distribution of carbon atoms (nm- 3
) as a function of z coordi­

nate. z = 0 corresponds to the middle of the lipid bilayer, z = 1.8 nm to the 

middle of the aqueous layer. MD result for CH3 groups (-), result of Leer­

makers, Ref. 7, for CH3 groups ( - - - ), MD result for carbon atom 9 

(counted from CH3 group) ( ... ), result of Leermakers for carbon atom 9 

(---- ). 

components along z. The agreement between the models is 

somewhat artificial though, because the large spread of the 

MD distributions is caused, among others, by the different 

behavior ofthe two types of lipids present in our simulation . 

Our distributions would considerably narrow on consider­

ing only one type oflipid. It would be interesting to see how 

the distributions of Leermakers would change after refine­

ment of head group representation in their model. 

C. Distribution of counterlons 

Jonsson et al. 37 developed a model for the distribution of 

counterions in the aqueous region between two negatively 

charged bilayer sheets. They solved the Poisson-Boltzmann 

equation to find the charge distribution p(z) of counterions 

in a medium with relative dielectric constant €r between two 

sheets with a pegative surface charge density 0', that are a 

distance 2b apart. Their solution reads 

(€o€rkTr/eb 2) 
p(z) = , 

cos2(sz/b) 

p(z) = 0, 

Izl <b, 

Izl>b, 
where s is the solution of stan s = O'eb /(2€o€,kn. 

(5) 

Both the solution given by Eq. (5), filling in constants 

from our system, and the charge distribution of Na + ions 

from the simulation are displayed in Fig. 16. The two distri­

butions are in no way compatible. The reasons for this dis­

crepancy are in the implicit restrictions in the model of Jons­

son: the negative charges are restricted to planar surfaces 

and counterions and dielectricum are confined to the region 

in between these surfaces. Such a model can obviously not be 

used for charged membrane systems. 

D. Penetration of water 

The penetration of water into the hydrocarbon core of 

the membrane is deeper than is usually assumed for biologi­

cal membranes, though not much is really known about the 

behavior of water in these membranes. The water distribu­

tion in our system can be compared to the distributions 

found in the micelle simulation of Jonsson 27 and in the lattice 

model of :J..eermakers et al.7 The lipid chains in the model of 
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Jonsson are two units shorter than the ones in our simula­

tion, so in order to compare the water distributions we pro­

ceeded by m~ng the average positions of the headgroups of 

the lipids coincide. In Fig. 17 the distribution of water mole­

cules in the three systems (in mole per liter) are displayed. 

Except for the nonzero penetration of water in the middle of 

the bilayer in their model, the results from Leermakers agree 

remarkably well with our results. The density of water in the 

micelle is substantially higher than in our bilayer, but the 

penetration depths are equal. The densities of water in the 

aqueous region in the MO simulations is lower than the bulk 

wateJ: density because of the nonzero contributions of other 

components. In all three systems the water penetration is 

substantial, whereas the interface extends over about 1 nm. 

E. Charge compensation and dielectric behavior 

One of the outstanding features of the simulation is the 

almost complete charge compensation throughout the sys­

tem. On the one hand, the reason for this compensation is 

found in the fact that, on average, as much as 72% of the 

Na + ions are bound to decanoate head groups. On the other 

hand, it should be realized that it costs free energy to main­

tain an overall charge density, with its concomitant long­

range electric field, and a molecular system will tend to mini­

mize the average charge density as long as this is not 

counteracted by other sources of free energy. In addition the 

water polarization very effectively neutralizes any remain­

ing charge density (see Fig. 5). It is of interest to analyze to 

what extent this inhomogeneous system behaves as a contin­

uous dielectric medium by comparing the average dipole 

density or polarization P (produced by water molecules; the 

alcoholic dipoles can be ignored) with the average field 

caused by the solute charge density Po. In a medium with 

dielectric constant E = EoE, the polarization P is proportion­

al to the electric field E: 

P=EoXE, (6) 

where X = E, - 1 is the dielectric susceptibility ofthe medi­

um. The divergence of P represents a charge density Pw in­

duced by the polarization: 
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FIG. 18. Distributions (e/nm2) from the middle of one lipid bilayer to the 

middle of the next lipid bilayer. Cumulative charge distribution of sodium 

+ decanoate (-), z polarization of water molecules ( - - ). 

divP = -Pw' 

The total charge density Plot = Po + Pw relates to E as 

div E =ptotlEo 

which, with Eqs. (6) and (7) yields 

div P = (1- lIE,)po' 

(7) 

(8) 

(9) 

This means that the induced charge density - div P practi­

cally compensates the solute charge density Po for media 

with a high dielectric constant. Instead of Eq. (9) we can 

consider the integrated form: 

r(z) = (1 - liE,) f Po(z')dz'. (10) 

The integral on the right-hand side represents the time-aver­

aged cumulative charge distribution of the solute charges, 

which for a homogeneous dielectric medium is proportional 

to the electric field: 

Ez(z) = liE f p(z')dz'. (11) 

The z component of the water polarization as a function 

of z can be calculated by summing per slice in the bilayer the 

z components of the dipole vectors of those water molecules 

that have their oxygen atom in the slice. In Fig. 18 both the 

water polarization and the cumulative solute charge distri­

butions are given. The two curves have a similar form. This 

leads one to the proposition that the average water polariza­

tion in the system is imposed by the field caused by the solute 

charge distribution. 

It is tempting to derive the effective dielectric constant 

from the extent to which the cumulative solute charge distri­

bution is compensated by the water polarization [Fig. 18 

and Eq. (to)]. This yields a value for E of less than 3! The 

discrepancy with fig. 5 is apparent. When the charge density 

due to the water molecules is directly evaluated from the 

water charges, as has been done in Fig. 5, the compensation 

is complete, indicating a very high dielectric constant. The 
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reason for this discrepancy is that Eq. (7) is incomplete: the 

induced charge density is not only due to the first derivative 

of the dipole density, but also to the second derivative of the 

quadrupole density and higher derivatives of higher multi­

poles. These terms cannot be disregarded in systems where 

gradients occur over molecular distances. The dielectric 

constant, being an expression of dipolar behavior, loses its 

significance in such systems. 

When we correct the polarization of water for the den­

sity function of water in the system, we obtain the time­

averaged z component of the dipole moment pz of a water 

molecule as a function of z. Except for the middle of the 

aqueous layer, where pz is approximately zero, pz has a rela­

tively constant value throughout the membrane, that is ap­

proximately 5% of the physical dipole moment of a water 

molecule. Hence, there is no saturation of the dielectric me­

dium. The distribution of the water molecules is such that 

compensation of the electric field due to the solute charges 

does not require a highly varying value of pz in the mem­

brane. 

F. Effects of Insufficient shielding 

SPC water does not possess polarizability, and owes its 

dielectric properties solely to its permanent dipole moment. 

The value of Er , for SPC water is not exactly known. It was 

estimated by Jonsson et al.27 to be as low as 20, although a 

recent evaluation38 indicates a value of82. The high frequen­

cy value of 1 is in any case smailer than the value of 5 of real 

water. It is therefore questionable whether SPC water can 

sufficiently shield the ions, that are abundant in the system. 

Insufficient shielding of the Na + ions can lead to condensa­

tion of these ions on the decanoate head groups, which in 

turn reduces the repulsion between the head groups, result­

ing in a smaller surface area per head group of a lipid mole­

cule. 

Jonsson, et al.27 investigated the effect of charge reduc­

tion in their simulation of a sodium-octanoate micelle in 

aqueous solution. On reducing all charges to half their origi­

nal values, which effectively increases the relative dielectric 

constant of the solvent to four, which is close to the high 

frequency dielectric constant of real water, they observed a 

substantially sharper water-hydrocarbon interface. A simu­

lation of the sodium-decanoate/decanol/H2 0 system with 

sodium and decanoate charges reduced to half their original 

values has just been completed by us. Results will be report­

ed separately. From a physical standpoint it is clear how­

ever, that a refinement of the water model is the fundamental 

improvement to be made. We therefore conclude that the 

introduction of polarizability into standard MD is a matter 

of great urgency. 39 
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APPENDIX: TREATMENT OF LONG-RANGE FORCES 

The force on atom i at time t is given by 

F,(t) = F;(t) + F:(t), (Al) 

where 

Ff(t) = L Fij (t), for allj with rij (0) ,Rculotr, (A2) 
j 

and where t = 0 is the time of Updating the pair list, 

F
I ~ f;(t) - fJ(t) 
i(t) =q; £,.,qj 3 ' 

j 41rEorij (t) 

for alljwith rij(O»Rcutotr (A3) 

assuming that only Coulomb forces contribute for rij 

>Rcutotr· 
On the assumption that f i and fj are constant during 10 

steps, F,!(t) is given by 

F:(t) =qiRi' independent oft, (A4) 

where R; is given by 

R;= L 
J#-i 

qjfij(O) 

41rEoTij (0)3' 
(AS) 

As pointed out previously, F:(t) is evaluated by means 

of a summation over a cyiindrical region, and is updated 

every 10th time step, i.e., every 0.02 ps. The regions over 

which the long-range forces are evaluated are displayed in 

Fig. 1. A time-averaged charge distribution p*(z) is sup­

posed to be present everywhere outside a cylinder. For rea­

sons of symmetry, the electric field on the cylinder axis due 

to the distribution only has a z component, that is given by 

E (z) = _ i<D 21rrdrf· 00 dz'p*(z')(z' - z) (A6) 
Z R

oyl 
_ QC [r + (z' _Z)2p12' 

withp*(z') = 0 for z',Oand for z'>Box (3), being the unit 

cell dimension along z. 

We have 

i
oo 

rdr (R 2 2)-1/2 

(
_2 2)312 = cyt + a , 

ROYI r +a 

so that 

Ez(z) = -21rf_00_ p*(z')(z' -z)dz' (A7) 
_ [R ~Yl + (Zl - Z)2] 1/2 • 

From this field, evaluated through numerical integra­

tion, the forces on charged atoms and the contribution to the 

potential energy are readily found. 
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