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ABSTRACT 

Double-walled carbon nanotubes (DWNTs) are expected to be useful as elements in improving con-

ventional polymer-based fibers and films.  An extensive molecular dynamics simulation and continuum 

analyses are carried out to estimate the influence of matrix stiffness and the intertube radial displacements 

on free vibration of an individual DWNT.  The effects of nanotube length and chirality are also taken 

into account.  The continuum analyses are based on both Euler-Bernoulli and Timoshenko beam theories 

which considers shear deformation and rotary inertia and for both concentric and non-concentric assump-

tions considering intertube radial displacements and the related internal degrees of freedom.  New inter-

tube resonant frequencies are calculated.  Detailed results are demonstrated for the dependence of reso-

nant frequencies on the matrix stiffness.  The results indicate that internal radial displacement and sur-

rounding matrix stiffness could substantially affect resonant frequencies especially for longer double- 

walled carbon nanotubes of larger innermost radius at higher resonant frequencies, and thus the latter 

does not keep the otherwise concentric structure at ultrahigh frequencies. 
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1.  INTRODUCTION 

Carbon nanotubes (CNTs) are promising materials for 

the creation of novel nanodevices [1,2].  From an me-

chanical point of view, CNTs provide superfibers for 

nanocomposites [3,4].  In addition, CNTs are well 

known for their excellent rigidity, superior to that of steel 

and any other metal.  Such superior properties are suit-

able for use in fabricating nanometre-scale electrome-

chanical systems (NEMS).  On the other hand, a dou-

ble-walled carbon nanotube (DWNT) is usually pro-

duced in conventional synthesis processes.  The DWNT 

is suitable for creating a nano-mechanical element such 

as superfibers for nanocomposites.  The dynamics be-

tween the inner and outer tubes are important to the de-

sign and the manipulation of DWNTs in actual experi-

ments. 

Recently, solid mechanics with continuum elastic 

models have been widely and successfully used to study 

mechanical behavior of CNTs, such as static deflection 

[5], buckling [6-8], thermal vibration [9,10], resonant 

frequencies and modes [11-15].  Moreover, interest in 

DWNTs is rising due to the progress in large-scale syn-

thesis of DWNTs [16,17].  In many proposed applica-

tions and designs, however, CNTs are often embedded in 

another elastic medium [18], or constrained periodically 

[19], or of smaller aspect ratios [20].  Quantitative 

theoretical studies have also been carried out for DWNTs.  

An artificial DWNT gigahertz oscillator has been theo-

retically investigated by Zheng and Jiang using a static 

continuous model [21] and by Legoas et al. using a mo-

lecular dynamics (MD) simulation [22].  

In this paper, a quantitative study of vibration of 

DWNTs by numerical simulation is reported.  To reduce 

the calculation cost, a classical molecular dynamics me-

thod is applied to analyze interaction between tubes.  

The calculation is carried out for both molecular dynam-

ics and continuum mechanics approaches. 

2.  MOLECULAR DYNAMICS SIMULATION 

2.1  Interatomic Potential 

* Medi????  **???, corresponding author  *** Ph????  
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In MD simulations, the potential used in the model is 

the key to describing the system realistically.  We ap-

ply a Tersoff-Brenner (TB) potential [23] to describe a 

covalently bonded pair of atoms.  The TB potential 

has been developed to describe bond forming and 

breaking during chemical vapor deposition, so the po-

tential has good transferability to various carbon struc-

tures.  On the other hand, we apply the Lennard-Jones 

potential in Eq. (1) to a non-covalent pair of atoms as 
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where, rij is the distance between atoms i and j, and 

uLJ(rij) is the Lennard-Jones potential between them.  

We use the parameters ε, σ which have been given by 

Gilifalco et al. for the graphene-graphene interaction 

[24].  The van der Waals interaction for the entire 

DWNT is evaluated by summing uLJ(rij) over all inter- 

tube i, j-pairs: 

 ( ) .VDW LJ ij

i j

U u r
≠

=∑  (2) 

2.2  Initial and Boundary Conditions 

The DWNT model is simply constructed by placing 

two SWNT models coaxially.  In order to examine the 

effects of length-to-radius aspect ratio and chiralities on 

the fundamental vibrational frequency, we perform the 

analysis for three different DWNTs, (5, 5)/(10, 10),   

(5, 5)/(17, 0) and (5, 5)/(15, 4), with the same inner tube 

structure and different outer tube chirality owning same 

diameter.  For each simulation, the canonical (NVT) 

ensemble with a fixed temperature (300K) is first used 

to equilibrate the structure and both the center-of-mass 

velocity and total angular momentum of each tube are 

equal to zero.  The C-end atoms of the inner and outer 

tubes within 5
o

A  from the edge are fixed in all simula-

tion steps. 100,000MD equilibration steps (with a fixed 

time step 1fs) are carried out until the system has 

reached ambient temperature, 300K.  The displace-

ment histories of carbon atoms are recorded in the next 

1ns, from which the lateral vibrational frequencies are 

calculated by using fast Fourier transform (FFT). 

Since MD analyses yield explicit information, in or-

der to overcome its length- and time-scale limits, sim-

ple continuum-based models are needed to closely du-

plicate the atomistic simulation.  Yet it is unclear 

whether there exists a synergism between MD and con-

tinuum modeling on the dynamic behavior of DWNTs.  

3.  CNTs CONTINUUM-BASED MODELS  

Many researchers have shown that classic elastic- 

Euler beam offers a reliable model for overall me-

chanical deformation of CNTs [6,9-11,20].  In par-

ticular, because elastic-Euler-beam models give simple 

general formulas in many important cases, such as 

resonant frequencies and modes, they have the potential 

to identify the key parameters, explain or predict new 

physical phenomena, and stimulate and guide further 

experiments and molecular dynamics simulations.  So 

far, most of the elastic-Euler-beam models used for 

CNTs are based on the classic single Euler-beam model 

[6].  The single elastic-Euler-beam model assumes that 

all nested individual tubes of a MWNT remain coaxial 

during deformation and thus can be described by a sin-

gle deflection curve and it also neglects the effects of 

shear deformation and rotary inertia.  As will be 

shown by the current work, rotary inertia and shear de-

formation, incorporated by Timoshenko-beam model, 

do have a substantial effect on carbon nanotube-   

reinforced composite’s frequency analysis results.  

Therefore, depending on the stiffness of the matrix, an 

appropriate theory for nanotube-reinforced composite's 

frequency analysis should be chosen. 

Since the inner and outer diameters of three different 

DWNTs, (5, 5)/(10, 10), (5, 5)/(17, 0) and (5, 5)/(15, 4), 

considered in this paper are almost the same, a double- 

elastic beam model developed by both Euler-Bernoulli 

and Timoshenko theories is considered, in which each 

of the nested, originally concentric nanotubes of a 

DWNT is described as an individual elastic beam, and 

the deflections of two nested tubes are coupled through 

the van der Waals interaction between two adjacent 

tubes. 

3.1  Euler-Bernoulli Model 

3.1.1  Single-Elastic Beam Model 

Since the single-beam model assumes that two 

originally concentric tubes of a DWNT remain coaxial 

during vibration and thus can be described by a single 

deflection curve as 
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where I = I1 + I2 and A = A1 + A2 are the total moment of 

inertia and cross-sectional area related to the inner (A1, 

I1) and outer DWNT tubes (A2, I2).  It is assumed the 

two tubes have the same Young’s modulus E = 1 Tpa 

and shear modulus G = 0.373Tpa (with Poisson ratio υ 

= 0.34), with the effective thickness of single-walled 

nanotubes 0.35nm and the mass density of ρ = 1.3g/cm3. 

−kw(x, t) is the Winkler-like model of the pressure per 

unit axial length acting on the outermost tube due to the 

surrounding elastic matrix [25,26] and k is a constant 

determined by the material constants of the elastic me-

dium, the outermost diameter of the embedded MWNT, 

and the wave-length of vibrational modes.  This sim-

ple model is especially relevant if the constant k is al-

lowed to be dependent on the wave-length [25,26].  

For example, for an elastic medium (such as polymers) 

of a Young’s modulus of 2GPa [27], the dependency of 

k on the mode number n has been denoted in [25], Eqs. 

(53-54).  In our present analysis, the parameter 

(nπd/L), where n, d and L are mode number, outermost 

diameter and length of the DWNT respectively, is be-
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Abstract 
 

Double-walled carbon nanotubes (DWNTs) are expected to be useful as 

elements in improving conventional polymer-based fibers and films. An 

extensive molecular dynamics simulation and continuum analyses are 

carried out to estimate the influence of matrix stiffness and the intertube 

radial displacements on free vibration of an individual DWNT. The effects 

of nanotube length and chirality are also taken into account. The 

continuum analyses are based on both Euler-Bernoulli and Timoshenko 

beam theories which considers shear deformation and rotary inertia and for 

both concentric and non-concentric assumptions considering intertube 

radial displacements and the related internal degrees of freedom. New 

intertube resonant frequencies are calculated. Detailed results are 

demonstrated for the dependence of resonant frequencies on the matrix 

stiffness. The results indicate that internal radial displacement and 

surrounding matrix stiffness could substantially affect resonant frequencies 

especially for longer double-walled carbon nanotubes of larger innermost 

radius at higher resonant frequencies, and thus the latter does not keep the 

otherwise concentric structure at ultrahigh frequencies.  

 

Keywords: Carbon nanotubes; Molecular dynamics; Continuum models; 

Vibrational analysis  
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1. Introduction 
 

Carbon nanotubes (CNTs) are promising materials for the creation of 

novel nanodevices [1,2]. From an mechanical point of view, CNTs provide 

superfibers for nanocomposites [3,4]. In addition, CNTs are well known 

for their excellent rigidity, superior to that of steel and any other metal. 

Such superior properties are suitable for use in fabricating nanometre-scale 

electromechanical systems (NEMS). On the other hand, a double-walled 

carbon nanotube (DWNT) is usually produced in conventional synthesis 

processes. The DWNT is suitable for creating a nano-mechanical element 

such as superfibers for nanocomposites. The dynamics between the inner 

and outer tubes are important to the design and the manipulation of 

DWNTs in actual experiments. 

Recently, solid mechanics with continuum elastic models have been 

widely and successfully used to study mechanical behavior of CNTs, such 

as static deflection [5], buckling [6-8], thermal vibration [9,10], resonant 

frequencies and modes [11-15]. Moreover, interest in DWNTs is rising due 

to the progress in large-scale synthesis of DWNTs [16,17]. In many 

proposed applications and designs, however, CNTs are often embedded in 

another elastic medium [18], or constrained periodically [19], or of smaller 

aspect ratios [20]. Quantitative theoretical studies have also been carried 

out for DWNTs. An artificial DWNT gigahertz oscillator has been 

theoretically investigated by Zheng and Jiang using a static continuous 
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model [21] and by Legoas et al. using a molecular dynamics (MD) 

simulation [22].  

In this paper, a quantitative study of vibration of DWNTs by numerical 

simulation is reported. To reduce the calculation cost, a classical molecular 

dynamics method is applied to analyze interaction between tubes. The 

calculation is carried out for both molecular dynamics and continuum 

mechanics approaches. 

 

2. Molecular dynamics simulation 
 

2.1 Interatomic potential 
 

In MD simulations, the potential used in the model is the key to 

describing the system realistically. We apply a Tersoff–Brenner (TB) 

potential [23] to describe a covalently bonded pair of atoms. The TB 

potential has been developed to describe bond forming and breaking during 

chemical vapor deposition, so the potential has good transferability to 

various carbon structures. On the other hand, we apply the Lennard-Jones 

potential in Equation (1) to a non-covalent pair of atoms as  
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4
ijij

ijLJ
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 , (1) 

where, ijr  is the distance between atoms i and j, and  
ijLJ ru  is the 

Lennard–Jones potential between them. We use the parameters  ,   

which have been given by Gilifalco et al. for the graphene-graphene 
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interaction [24]. The van der Waals interaction for the entire DWNT is 

evaluated by summing  
ijLJ ru  over all inter-tube i, j-pairs: 

 



ji

ijLJVDW ruU . (2) 

 

2.2 Initial and boundary conditions 
 

The DWNT model is simply constructed by placing two SWNT models 

coaxially. In order to examine the effects of length-to-radius aspect ratio 

and chiralities on the fundamental vibrational frequency, we perform the 

analysis for three different DWNTs, (5,5)/(10,10), (5,5)/(17,0) and 

(5,5)/(15,4), with the same inner tube structure and different outer tube 

chirality owning same diameter. For each simulation, the canonical (NVT) 

ensemble with a fixed temperature (300 K) is first used to equilibrate the 

structure and both the center-of-mass velocity and total angular momentum 

of each tube are equal to zero. The C-end atoms of the inner and outer 

tubes within 5
o

A  from the edge are fixed in all simulation steps. 100,000 

MD equilibration steps (with a fixed time step 1 fs) are carried out until the 

system has reached ambient temperature, 300 K. The displacement 

histories of carbon atoms are recorded in the next 1 ns, from which the 

lateral vibrational frequencies are calculated by using fast Fourier 

transform (FFT). 

Since MD analyses yield explicit information, in order to overcome its 

length- and time-scale limits, simple continuum-based models are needed 
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to closely duplicate the atomistic simulation. Yet it is unclear whether there 

exists a synergism between MD and continuum modeling on the dynamic 

behavior of DWNTs.  

 

3. CNTs continuum-based models  
 

Many researchers have shown that classic elastic-Euler beam offers a 

reliable model for overall mechanical deformation of CNTs [6, 9-11, 20]. 

In particular, because elastic-Euler-beam models give simple general 

formulas in many important cases, such as resonant frequencies and 

modes, they have the potential to identify the key parameters, explain or 

predict new physical phenomena, and stimulate and guide further 

experiments and molecular dynamics simulations. So far, most of the 

elastic-Euler-beam models used for CNTs are based on the classic single 

Euler-beam model [6]. The single elastic-Euler-beam model assumes that 

all nested individual tubes of a MWNT remain coaxial during deformation 

and thus can be described by a single deflection curve and it also neglects 

the effects of shear deformation and rotary inertia. As will be shown by the 

current work, rotary inertia and shear deformation, incorporated by 

Timoshenko-beam model, do have a substantial effect on carbon nanotube-

reinforced composite's frequency analysis results. Therefore, depending on 

the stiffness of the matrix, an appropriate theory for nanotube-reinforced 

composite's frequency analysis should be chosen. 
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Since the inner and outer diameters of three different DWNTs, 

(5,5)/(10,10), (5,5)/(17,0) and (5,5)/(15,4), considered in this paper are 

almost the same, a double-elastic beam model developed by both Euler-

Bernoulli and Timoshenko theories is considered, in which each of the 

nested, originally concentric nanotubes of a DWNT is described as an 

individual elastic beam, and the deflections of two nested tubes are coupled 

through the van der Waals interaction between two adjacent tubes.  

 

3.1. Euler-Bernoulli model 

 

3.1.1 Single-elastic beam model 
 

Since the single-beam model assumes that two originally concentric 

tubes of a DWNT remain coaxial during vibration and thus can be 

described by a single deflection curve as  

     txkw
t

txw
A

x

txw
EI ,

,,
2

2

4

4








  , (3) 

 

where 21 III   and 21 AAA  are the total moment of inertia and 

cross-sectional area related to the inner ( 1A , 1I ) and outer DWNT tubes 

( 2A , 2I ). It is assumed the two tubes have the same Young’s modulus   

E=1 Tpa and shear modulus G=0.373 Tpa (with Poisson ratio =0.34), 

with the effective thickness of single-walled nanotubes 0.35 nm and the 

mass density of  =1.3g/cm
3
.  txkw ,  is the Winkler-like model of the 
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pressure per unit axial length acting on the outermost tube due to the 

surrounding elastic matrix [25,26] and k is a constant determined by the 

material constants of the elastic medium, the outermost diameter of the 

embedded MWNT, and the wave-length of vibrational modes. This simple 

model is especially relevant if the constant k is allowed to be dependent on 

the wave-length [25,26]. For example, for an elastic medium (such as 

polymers) of a Young’s modulus of 2 GPa [27], the dependency of k on the 

mode number n has been denoted in [[25], Eqs. (53-54)]. In our present 

analysis, the parameter ( Ldn ), where n, d and L are mode number, 

outermost diameter and length of the DWNT respectively, is between 0.06 

and 1. It can be seen that the constant k almost linearly increases with the 

mode number n in this range [25]. On the other hand, because k is 

proportional to the Young’s modulus of the surrounding elastic medium, 

the value of k for other Young’s moduli can be easily obtained by the 

following form 

   GpaE875.0
L

dn
125.3Gpak 


















, when 1
L

dn
06.0 


. (4) 

     

Since both nested individual nanotubes of the DWNT have the same 

end boundary conditions. Thus, it can be verified that all nested tubes share 

the same vibrational modes 

  xcoshcxsinhcxcoscxsincxY nnnnn  4321  . The value n  can 

be determined by considering         0LY0YLY0Y nnnn   as the fixed 
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end boundary conditions. The first three n  values are 4.730/L, 7.853/L 

and 10.995/L. Thus, for the n-order vibrational mode, the frequency-

equation can be obtained as,  

21
4










 


A

kEI n

n 


 . (5) 

 

3.1.2 Double-elastic beam model 

 
In contrast to the previously Euler-Bernoulli coaxial modelling, by 

applying Equation (3) to each of the inner and outer tubes of the DWNT to 

demonstrate essential ideas of intertube vibration, transverse vibration of 

the DWNT is described by the following two equations 

        txwtxwc
t

txw
A

x

txw
EI ,,

,,
122

1

2

14

1

4

1 






  , (6) 

          txkwtxwtxwc
t

txw
A

x

txw
EI ,,,

,,
2122

2

2

24

2

4

2 






  , (7) 

 

where indexes 1 and 2 denote the inner and outer tube parameters of the 

DWNT, respectively. To prevent slippage among the tubes, the horizontal 

motion of carbon atoms along the tubes are restricted. Moreover, it is 

noticed that the deflections of the two tubes are coupled through the van 

der Waals intertube interaction     txwtxwc ,, 12  , where the van der 

Waals interaction coefficients c for interaction pressure per unit axial 

length can be estimated based on an effective interaction width (2R1) of the 

tubes as [28]  
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160

2200

d.
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 , (8) 

 

 where R1 is the inner radius of DWNTs and d=0.142 nm [28].  

Assuming that all nested tubes share the same vibrational mode  xYn  

and also considering     xYeWt,xw n

ti

n
n

11   and    xYeWt,xw n

ti

n
n

22  , 

one can derive two coupled equations for two unknowns 1W  and 2W  as  

12
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. (9) 

 

The two lower and upper n-order critical frequencies in contrast with 

the only n-order resonant frequency given by single-elastic Euler-Bernoulli 

beam model are determined by the condition for existence of non-zero 

solution of (9) in the following form 

2

1

2

1 4
2

1





  nnnn  , 

2

1

2

2 4
2
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  nnnn  , 

(10) 

 

where 
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(11) 
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3.2.1 Single-elastic beam model 

 
To study the effects of shear deformation and rotary inertia on the 

frequency analysis in individual carbon nanotubes, one can consider 

Timoshenko beam equation as  
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 (12) 

 

where   for the thin-walled circular cross-sections of DWNTs defined 

as the cross-sectional shape factor, can be determined by [29]   
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By considering     xYWet,xw n

ti

n
n  and    xet,x n

ti

n
n  , where 

W and   represent the amplitude and slope due to bending of the DWNT, 

one can easily obtain 

  xsincxcoscxsinhcxcoshcxY nnnnn  4321  , (14) 
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where  
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For fixed end conditions (         0L0LY0Y nnnn   ), the lower 

and upper n-order critical frequencies are determined by the condition for 

existence of non-zero solution for the following determinant to be solved 

using Matlab software programming 
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3.2.2 Double-elastic beam model 
 

The double-elastic Timoshenko beam model is the most complex but 

accurate model which considers interlayer radial displacements and the 

effects of shear deformation and rotary inertia within the DWNT 

simultaneously. Thus, each of the inner and outer tubes of the DWNTs is 

modelled as a Timoshenko-elastic beam as follows  
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Here we consider the case in which all nested individual nanotubes have 

the same fixed end boundary conditions. Thus, it can be obtained that both 

two nested tubes of an individual DWNT share the same vibrational and 
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rotational modes. By substituting    xYeWt,xw n

ti

n
n

11  , 

   xYeWt,xw n

ti

n
n

22  ,    xet,x n

ti

n
n 

11  , and 

   xet,x n

ti

n
n 

22   into (21) and (22), where  xYn  and  xn  

represent the  vibrational and rotational modes of the DWNT and are 

assumed to be defined by (14) and (15) obtained by single-elastic 

Timoshenko beam model. The unknown coefficients ic  and frequency 

determinant are given as follows 

4cc ii   , 321 ,,i   (23) 

  0det   , 21,  , 2,1  (24) 
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Furthermore for the first three vibrational bending modes of a DWNT 

fiber, an auxiliary condition can be defined as follows 

0
2







 L

n  , for the first and third mode 

0
2







 L

Yn
 , for the second mode 

(27) 

 

n , n  and n  can be obtained by considering (20), (24) and (27) 

simultaneously to be solved using Matlab software programming.   

 

4. Numerical Simulation and Discussion 

In order to investigate the effects of matrix stiffness, nanotube length 

and chirality on the selection of the appropriate method for the frequency 

analysis of carbon nanotube fibers embedded in composite materials (see 

Fig. 1), all above mentioned theories were applied to three different 

DWNTs, (5,5)/(10,10), (5,5)/(17,0) and (5,5)/(15,4), with the inner and 

outer diameters nm 68.0id  and nm 36.1od , respectively. In this 

section, these different models are compared and the lower and upper n-
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order critical frequencies are shown for different aspect ratios ( dL ), mode 

numbers (n) and matrix stiffness (k) in Figs. (2) and (3).  

When the matrix spring constant k is much smaller than the intertube 

interaction coefficient c (i.e., 0010.ck  ), the lower n-order resonant 

frequency given by non-coaxial Timoshenko theory LDT  is close to the 

resonant frequency given by coaxial Timoshenko beam model ST . The 

relative error is less than 3% for n=1 and less than 15% for n=3. In this 

case, the lower n-order Timoshenko resonant frequency LDT  can be 

estimated by coaxial Timoshenko beam model but on the other hand, the 

higher n-order intertube Timoshenko and Euler-Bernoulli resonant 

frequency which is always above 13 THz, and thus much higher than the 

lower n-order resonant frequency, should be obtained by non-coaxial 

Timoshenko beam model (see Figs. (2) and (3)).  

However, as the ratio ck  increases and approaches 1, the ratio of the 

higher n-order intertube resonant frequency to the frequency given by 

single Euler-Bernoulli beam model will drastically decrease and the lower 

n-order resonant frequencies predicted by single and double Timoshenko 

beam models move towards the Euler-Bernoulli beam model prediction 

results (see Figs. (2) and (3)). In this case the lower n-order resonant 

frequency can be estimated by coaxial Euler-Bernoulli beam model for the 

lower mode numbers (i.e. n=1,2), while for the higher modes (i.e. n=3), the 
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DWNTs does not keep their otherwise concentric structure and non-coaxial 

Euler-Bernoulli beam should be considered to improve the accuracy and 

reliability of the results. On the other hand, for the higher n-order intertube 

resonant frequencies, the resonant frequencies predicted by Timoshenko 

beam models move towards those of Euler-Bernoulli beam model only for 

DWNTs of lower aspect ratio (i.e. 10dL ). For the prediction of higher 

aspect ratio DWNT fragments (i.e. 50dL ), non-coaxial Timoshenko 

beam models should be considered to obtain more reliable frequency 

results. 

By more increasing the ratio ck  to 100, when 10dL , the ratios of the 

higher n-order resonant frequencies for both Euler-Bernoulli and 

Timoshenko double beam models to the single Euler beam model 

converges to 1.21 for all three modes which denotes that the single Euler 

beam model predicts the higher n-order resonant frequency instead of the 

lower one and it is anticipated that this certain number is mainly 

determined by the aspect ratio dL  of the DWNTs. The lower n-order 

resonant frequency for Euler-Bernoulli and Timoshenko double beam 

models tends to 2.93THz and 2.83THz when n=1, and to 3.03THz and 

2.87THz when n=2, and to 3.31 THz and 3.18 THz when n=3, 

respectively. It can be seen that the lower n-order resonant frequency given 

by Timoshenko and Euler-Bernoulli beam models are in a good agreement 
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with each other. While, both are nearly about one order of magnitude 

smaller than the frequency SE  given by the single Euler beam model. 

Therefore, when the stiffness of the matrix is high enough (i.e. 100ck ), 

non-coaxial Euler beam model can reasonably predict the lower n-order 

resonant frequencies and mode shapes of a DWNT fiber. 

As it can be seen from Figs. (2) and (3), the molecular dynamics frequency 

analysis results of three different DWNTs, (5,5)/(10,10), (5,5)/(17,0) and 

(5,5)/(15,4) having different outer tube chiralities but the same diameter, is 

almost compatible with each other  and also with the results of  continuum 

theory, which clarify that the effects of chiralities on frequency analysis of 

DWNTs are negligible. 

Table 1 shows the effect of matrix stiffness on appropriate carbon 

nanotube embedded composites frequency analysis theories for different 

ratios ck  and dL . 

 

 

5. Conclusion 
 

The effects of the matrix stiffness, nanotube length and chirality on the 

resonant frequencies of DWNT fibers were studied by considering MD 

simulations and four different elastic models namely, Timoshenko and 

Euler-Bernoulli beam models and for both coaxial and non-coaxial 

assumptions. The effects of shear deformation, rotary inertia and 
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concentricity of the tubes on the accuracy and reliability of the DWNT 

fibers frequency analysis results were determined. It was found that for soft 

matrixes (i.e., 001.0ck ), the lower n-order Timoshenko resonant 

frequency LDT  can be estimated by coaxial Timoshenko beam model but 

on the other hand, the higher n-order resonant frequency should be 

obtained by non-coaxial Timoshenko beam model. However, for hard 

matrixes (i.e., 1ck ), the lower n-order resonant frequencies predicted 

by single and double Timoshenko beam models move towards the Euler-

Bernoulli beam model prediction results and can be estimated by coaxial 

Euler-Bernoulli beam model for the lower mode numbers (i.e. n=1,2) and 

non-coaxial Euler-Bernoulli beam model for the higher modes (i.e. n=3). 

For the prediction of higher n-order resonant frequencies, non-coaxial 

Timoshenko beam models should be considered to obtain more reliable 

frequency results. When using extremely hard matrixes (i.e., 100ck ), 

non-coaxial Euler beam model can reasonably predict the lower n-order 

resonant frequencies of a DWNT fiber. Molecular dynamics frequency 

analysis results of three different DWNTs, (5,5)/(10,10), (5,5)/(17,0) and 

(5,5)/(15,4) denotes that the effects of chiralities on frequency analysis of 

DWNTs are negligible. 
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Table 1 

 

 

 

 

 

 

 

 

 

Table 1-  The effects of matrix stiffness ( ck ) and carbon nanotubes aspect 

ratio ( dL ) on appropriate carbon nanotube embedded frequency analysis 

theory. 

 ck  10dL  50dL  

Lower n-

order 

resonant 

frequency 

<0.01 Coaxial Timoshenko 
Coaxial 

Timoshenko 

<1 Coaxial Euler
*
  Coaxial Euler 

>>1 Non-coaxial Euler 
Non-coaxial 

Euler 

Higher n-

order 

resonant 

frequency 

<0.01 Non-coaxial Timoshenko 
Non-coaxial 

Timoshenko 

>0.01 Non-coaxial Euler 
Non-coaxial 

Timoshenko 

* Non-coaxial Euler theory should be used when n=3. 
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Fig. 1- Double-walled CNT model embedded in an elastic matrix by a 

spring constant k. 

 

Fig. 2- Molecular dynamics and continuum analysis of (5,5)/(10,10), 

(5,5)/(17,0) and (5,5)/(15,4) DWNTs owning aspect ratio 10dL  against 

the matrix  stiffness (k), for different mode numbers  (a) first mode (n=1), 

(b) second mode (n=2) and, (c) third mode (n=3).  

 

Fig. 3- Molecular dynamics and continuum analysis of (5,5)/(10,10), 

(5,5)/(17,0) and (5,5)/(15,4) DWNTs owning aspect ratio 50dL  against 

the matrix  stiffness (k), for different mode numbers  (a) first mode (n=1), 

(b) second mode (n=2) and, (c) third mode (n=3).     
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Fig. 1 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 
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Fig. 2a 
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Fig. 2b 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 2b 
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Fig. 2c 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 2c 
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Fig. 3a 
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Fig. 3b 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 3b 
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Fig. 3c 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 3c 
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