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Abstract

A simple fluid, described by point-like particles interacting via the Lennard-Jones potential, is

considered under confinement in a slit geometry between two walls at distance Lz apart for densi-

ties inside the vapor-liquid coexistence curve. Equilibrium then requires the coexistence of a liquid

“bridge” between the two walls, and vapor in the remaining pore volume. We study this equilibrium

for several choices of the wall-fluid interaction (corresponding to the full range from complete wetting

to complete drying, for a macroscopically thick film), and consider also the kinetics of state changes in

such a system. In particular, we study how this equilibrium is established by diffusion processes, when

a liquid is inserted into an initially empty capillary (partial or complete evaporation into vacuum),

or when the volume available for the vapor phase increases. We compare the diffusion constants

describing the rates of these processes in such inhomogeneous systems to the diffusion constants in

the corresponding bulk liquid and vapor phases.

1 Introduction

Fluids confined into pores with diameters on the micrometer scale down to the nanometer scale are

important in a variety of contexts: they control the properties of wet granular matter [1], they play

a role for oil recovery from porous rocks or compactified sands [2], separation processes in zeolites [3],

drying processes of food, wood, or other porous solids [4], nanofluidic devices using fluids in carbon

nanotubes [5], dip-pen nanolithography [6], nanolubrication [7], fluid transport in living organisms [8],

etc. [9–12]. Many of these applications involve nonequilibrium processes such as the flow of fluids in

confined geometry, imbibition of fluids into pores (e.g. [13–17]), surface-directed spinodal decomposition

(e.g. [18–22]) if one considers binary fluid mixtures, or evaporation processes of fluids [4]. While the

evaporation process of bulk liquids (across a flat interface) [23–29] and of small droplets [30–33] has been

studied extensively, liquid-vapor transitions under confinement have been mostly studied emphasizing

equilibrium aspects only [9,12,34–41]. Note that we do not discuss here the inverse process (nucleation of

fluid droplets from the vapor in confined systems, see e.g. [42,43]), and we consider neither the structure

(and possible rupture) of non-volatile confined liquid bridges [44, 45], nor liquid-vapor systems confined

by patterned surfaces (see e.g. [44–47].
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In the present paper we wish to contribute to the understanding of the kinetics of nonequilibrium

processes of confined fluids considering the partial (or complete) evaporation of liquid bridges, resulting

from changes of external conditions, using Molecular Dynamics methods [48–50] to simulate a simple

Lennard-Jones fluid confined between parallel walls. We are particularly interested in elucidating the

consequences of the inhomogeneity of the structure of the liquid bridges (depending on the drying/wetting

boundary conditions at the confining walls [9,51–56], there is also an inhomogeneity of the system in the

z-direction perpendicular to the walls) on the evaporation processes.

In the following section, we shall describe the model that is simulated and give a few comments on the

simulation method, and the quantities, that are computed. In Sec. III, we describe the static structure

of the liquid bridges (as well as the regions of the slit pore where the vapor phase dominates), for various

choices of the strength of the interaction between the fluid particles and the walls, relating the observed

interfacial behavior to theoretical concepts about wetting. In Sec IV, we present some discussion on the

transport behavior of pure coexisting vapor and liquid phases, under confinement in the slit pores. Sec.

V then considers the relaxation of the system after suitable parameter changes that lead to partial (or

even complete) evaporation of the liquid bridges present in the slit pores. The kinetic evolution towards

the new (inhomogeneous!) equilibrium is documented in detail. Finally, Sec. VI contains our conclusions,

and gives an outlook on future work.

2 Model and Simulation Method

In this study we are not addressing a particular material but rather wish to gain insight into the generic

behavior of simple fluids (such as CH4, CO2, etc.) under confinement. Thus, we describe the fluid

particles as point-like, interacting via truncated and shifted Lennard-Jones potential,

U(r) = ULJ(r) − ULJ(rcut),

ULJ = 4ε[(σ/r)12 − (σ/r)6] , (1)

with rcut = 2rmin, rmin = 21/6σ. Note that ULJ(rcut) is chosen such that U(r) is everywhere continuous,

with U(r ≥ rcut) = 0. Mognetti et al. [57] have shown that this model can describe fairly well the

coexistence curves, vapor pressure, and interfacial tension of molecules like CH4 or even C3H8 over a

temperature regime from about 0.7 Tc to Tc, when ε and σ in Eq. (1) are adjusted such that the critical

temperature Tc and critical density ρc are correctly reproduced by the model (ρc, Tc can be accurately

estimated from the model by careful finite size scaling analyses of Monte Carlo simulations of the model

in the grand-canonical ensemble, as discussed elsewhere [57, 58]). Even for CO2 this model yields a fair

description [58], although better accuracy can be obtained for this molecule if the quadrupolar interaction

is included [57], but this is out of consideration here.

For a fluid confined in a slit pore geometry, it is also necessary to specify the boundary conditions created

by the planar walls confining the thin film. Following Ref. [22], we choose an atomistic description of

these walls, setting particles on a regular (and rigid) triangular lattice of lattice spacing σ, in the (x, y)

plane at z = 1 and at z = Lz − 1 (note that henceforth lengths are measured in units of σ throughout).

The interaction between wall particles and fluid particles is chosen also of the form of Eq. (1), but the
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energy parameter ε is replaced by εw = ζε with ζ being varied from ζ = 0.1 to ζ = 0.9. An additional

simulation was made where we made the interaction between the wall and fluid particles purely repulsive:

in this case, the wall particles were placed in the planes z = 0.5 and z = Lz − 0.5, respectively, and

rcut = rmin was chosen in Eq. (1), so that ULJ(rcut) = 0 then. In this case, εw = ε was used. Henceforth,

we shall also measure temperature in LJ units (i.e., ε ≡ 1, kB ≡ 1). Typical linear dimensions in x and y

directions parallel to the walls were at least Lx = 30, Ly = 15, choosing periodic boundary conditions in

these directions, and also Lz = 15 or Lz = 16 was chosen: the reason for choosing Lx = 2Ly is that then

the vapor-liquid interfaces that form in the slit pore for suitable total densities will be oriented in the

yz-plane, perpendicular to the x-direction; to minimize the interfacial free energy cost. No inhomogeneity

in y-direction is then expected, and hence averages of density profiles along the y-direction can be taken.

When liquid bridges occur, the density distribution must then depend on both the x and the z coordinates.

Of course, the choice of the linear dimensions in a computer simulation is a subtle matter, due to finite

size effects [50, 59]. While the finite size effects associated with the two walls defining the finite width of

the slit pore are the physically significant effect that we wish to study, finite size effects due to too small

values of Lx and Ly are simulation artefacts, since the real systems (if they are finite of nanoscopic size in

x and y direction as well) would have other boundary effects rather than periodic boundary conditions.

Choice of the latter makes sense to simulate a system that is truly macroscopic in x and y directions, of

course. While homogeneous systems (containing a single phase) typically approach the thermodynamic

limit rapidly, at least for temperatures or densities outside of the critical region [59], this is not always

the case for systems exhibiting phase coexistence within a finite simulation box [38,59–61]. In particular,

when we have a liquid slab with two interfaces (perpendicular to the x-direction) in our system, we expect

that both interfaces have a finite thickness: the standard description postulates an “intrinsic thickness”

ℓ = 2ξ, where ξ is the correlation length of density fluctuations in the liquid, broadened by capillary

waves [62]. While ξ diverges near the critical point of the fluid, ξ ≈ σ if we are far below criticality.

However, since the broadening caused by capillary waves increases logarithmically with Ly, an interfacial

thickness of 2σ to 4σ must be typically expected. However, the two parallel interfaces separating the

liquid bridge from the surrounding vapor in the simulation box need to be at a distance L ≫ ℓ, in order

that interactions between these interfaces are negligible. Because of the periodic boundary condition in

x direction, Lx must exceed L by a factor of 2 or 3 as well. In order to test for possible finite size effects,

we have done part of our simulations with larger linear dimensions, up to Lx = 90.

All simulations were carried out using Molecular Dynamics methods in the framework of the NVT

ensemble. Applying the ESPResSO package [63], the Newton equations of motion are integrated via the

Velocity Verlet algorithm [48–50], using a time step δt = 0.002τ where the MD time unit τ is defined as

τ = σ(m/ε)1/2, where the mass m = 1 is chosen for the molecules. Temperature was controlled by using

the Langevin thermostat and T ∗ = 0.9366 was chosen throughout.

In order to produce initial states containing liquid bridges surrounded by vapor, we first equilibrated

dense fluids (average density ρ ≈ 0.5813) in a small box with Lx = 30, Ly = 20, Lz = 16 and 9000

particles. The density of the fluid is calculated as ρ = Nσ3/V , where N - number of particles and

V = LxLy(Lz − 2) for attractive walls, and V = LxLy(Lz − 1) for repulsive walls. After an equilibration

run extending over at least 100τ we put this liquid in the center of a box with linear dimension Lx = 60,

Ly = 20, Lz = 16, and simulate this system over a time interval of 20000 τ . The initial stages of such
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a run serve as a simulation of liquid evaporation into vacuum. For time t > 5000τ , the liquid bridge is

essentially well equilibrated with respect to the coexisting vapor, and then averages of the density profiles

ρ(x, z) are taken.

3 Static structure of the liquid bridges

In order to obtain an overview of the behavior, Figs. 1, 2 present contour plots of the density distribution

ρ(x, z) for systems of sizes Lx = 60, Ly = 20 and Lz = 16 and Lx = 90 Ly = 20 and Lz = 16, respectively.

In both cases the color coding goes from dark blue, corresponding to ρ = 0, to red, corresponding to

ρ = 0.65, as indicated by the bar on the top of each figure. The individual pictures illustrate the variation

with εw, while N=9000 particles were used throughout. Thus, the average density in Fig. 1 is ρ̄ ≈ 0.291

(when we use the maximum available volume 60×20×14, remembering that the wall particles are fixed at

z = 1 and at z = Lz−1 = 15, respectively), while in Fig. 2 it is only ρ̄ ≈ 0.194 due to the larger Lx = 90.

Note that at the chosen temperature T ∗ = 0.9366 the coexisting vapor and liquid densities are ρv = 0.109,

ρℓ = 0.565; thus, if the density distribution would be homogeneous in the z-direction across the slit pore,

we could simply expect a two-phase equilibrium with a volume fraction X = (ρ̄ − ρv)/(ρℓ − ρv) of the

liquid phase, and the vapor-liquid interfaces would simply show up as straight lines in the z-direction

in Figs. 1, 2. However, due to the particle-wall interactions, a nontrivial inhomogeneity of the density

distribution in the z-direction results, which readily shows up in Figs. 1, 2.

For small εw one sees in Figs. 1, 2 clear evidence of drying behavior: rather than observing a liquid

bridge connecting the confining walls, there occurs in the center of the slit pore a free standing elliptic

liquid cylinder periodic in y direction, separated by the vapor phase that has intruded in between the

liquid and the wall. It is obvious that the vapor-liquid interfaces in the z-direction actually are distinctly

narrower than along the x-direction. This effect in fact is expected, of course, since confinement has

a strong constraining effect on interfacial fluctuations in the z-direction, while the finite size Lx in x-

direction has much less effect to constrain the interfaces.

While in the case of Lx = 60 the linear dimension of the liquid slab in the x-direction is large enough, so

that in the center of the slab the dependence of any physical properties on the x-coordinate is negligible

small, for εw = 0.1 to εw = 0.4, this clearly is not true for Lx = 90 : as εw increases the linear dimension

of the liquid slab along the x-axis gets smaller and smaller (since a larger fraction of particles now stays

in the gas phase, and for larger εw more and more particles get adsorbed at the walls). The elliptical

shape of the contours of constant density in Fig. 2 clearly imply that the two interfaces separating vapor

from liquid and then liquid from vapor along the x-direction interact with each other. We do expect that

such thin liquid slabs with interacting interfaces can evaporate much easier than thick slabs, where these

interfaces are separated by a thick region of bulk liquid from each other.

For εw = 0.5 the vapor no longer can intrude in between the liquid slab and the walls, rather the

liquid-vapor interface is “cut off” by the walls. In the region from εw = 0.61 to εw = 0.65 (the last one

not shown), the vapor-liquid interface seems to run almost straight along the z-direction, implying (in the

macroscopic limit of very thick slabs) a contact angle of θ = 90o, while for εw ≤ 0.5 one clearly can speak

about a contact angle exceeding 90o (as long as θ < 180o one speaks about “incomplete drying”, while

a thick vapor region in between the walls and the fluid slab should correspond to θ = 180o, complete
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drying). For εw ≥ 0.7 the shape of the liquid slabs, connecting the confining surfaces in Fig. 1 suggest

contact angles θ < 90o, corresponding to incomplete wetting conditions. However, we emphasize that

for nanoscopically thin films the concept of a contact angle is somewhat ill-defined, since it requires that

over distances much larger than the interface thickness its curvature is negligible. This condition clearly

is not satisfied here. This lack of a precise definition of the contact angle in nanoscopically thin slits

corresponds to the fact that wetting transitions in such geometries show finite-size rounding [64].

One can also recognize from Fig. 1 for ε ≥ 0.61 a pronounced layering effect near the walls. This

layering effect obscures the “contact region” where the interface meets the wall. For ε = 0.9, the walls

are coated already with precursors of wetting layers, indicative of the vicinity of the rounded wetting

transition. Note, however, that for εw = 0.9 the total particle number in the system does not suffice

to allow the formation of a well-defined liquid bridge reaching bulk liquid density in the center of the

system. For the larger system (Lx = 90), the liquid bridge already has disappeared somewhere in between

εw = 0.65 and 0.70, since there is enough space for all the particles to either stay in the vapor or get

adsorbed in the precursors of the wetting layers near the walls.

At this point, we mention that in our evaluation of simulation data we always have fixed the center

of mass of all the particles right in the center of the slit pore (i.e., at x = Lx/2). Due to the periodic

boundary condition in x-direction, translational invariance in x-direction is implied of course. Thus,

fixing the center of mass is a convenient precaution against the diffusion of the liquid along the x-axis

as a whole, which would smear our the density inhomogeneity on average, of course; such an undesirable

effect could obscure corresponding experimental observations, where one cannot control the position of

the liquid slab as easily.

Fig. 3 shows two selected profiles ρ(x1, z) and ρ(x2, z) in more detail, choosing x1 such that a cut

through the center of the liquid slab is performed, while x2 is chosen to monitor the density profile through

the slit pore in the vapor region, far away from the liquid slab. In each part of Fig. 3 there are presented

plots of density for 2 system sizes: Lx = 60, Ly = 20, Lz = 16 (solid lines) and Lx = 90, Ly = 20, Lz = 16

(lines with circles). Density profiles for both box sizes Lx overlap for values of parameter εw < 0.65. One

can see that in the region of incomplete drying (εw = 0.1) the liquid density decreases almost linearly

with z over a significant region of z when one approaches either wall. For εw = 0.3 there is already

evidence of a layering effect in the density profile. While in the vapor phase the density is higher in the

layer adjacent to the wall than in the center of the slit pore, in the liquid phase the behavior is different -

the density in this region is significantly higher then in the layer close to the wall. However for εw = 0.5

the density in the center of the slit pore is already lower than in the layers adjacent to the walls. For

εw ≥ 0.7 the layering effect is even more pronounced, leading to a density that is higher even in the

second layer adjacent to the wall than in the center of the slit pore.

In order to characterize the behavior more precisely in the region of those values of εw where the

interfaces between vapor and liquid are approximately planar, Fig. 4 presents magnified plots of the

profiles ρ(x1, z) and ρ(x2, z) vs. z where 5 values of εw from εw = 0.4 to εw = 0.65 are shown. This

situation where the contact angle θ = 90o is the “transition” from incomplete drying to incomplete wetting

[51–56]. We emphasize, however, that even in the thermodynamic limit (Lz → ∞) this “transition”

is a completely smooth change, unlike the wetting transition (where θ → 0) or the drying transition

(where θ → 180o), which become sharp thermodynamic transitions (singularities of the surface excess
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free energies associated with the walls [51–56]) in this limit. We also note that the density profile in the

vapor phase becomes almost horizontal already for εw = 0.4, while the density profile in the center of the

liquid slab becomes horizontal (in the regime of z where the layering oscillations have died out) only for

εw ≈ 0.65, however. Thus, for εw = 0.55 to εw = 0.61, where we approximately have θ = 90o, there is

a clear enhancement of the density in the first two layers adjacent to the walls. Of course, it would be

desirable to study these behaviors varying also Lz over a wide range, but this has not been attempted

since it would involve a major computational effort. We emphasize again, that our simulations for these

rather thin slit pores are not suitable to precisely estimate where drying and wetting transitions occur

{which would show up as macroscopically thick vapor layers at the walls for the liquid profile ρ(x1, z) or

liquid layers at the walls for the vapor profile ρ(x2, z), respectively}.

Another caveat that must be made with respect to the quantitative analysis of our results concern finite

size effects associated with the linear dimension Lx. Comparing e.g. the curves ρ(x1, z) for εw = 0.65

for Lx = 60 and Lx = 90 (cf. Fig. 3) we see that for Lx = 90 the density clearly is smaller: since the

total particle number was N=9000 in both cases, more particles were required for Lx = 90 to create a

vapor phase with the proper density in the box volume, and the remaining particles were only sufficient

for a liquid slab that was too thin to reach the bulk liquid density in its center. This fact is emphasized

in Fig. 5, where the density profiles ρ̄(x) =
Lz−1∫

1

ρ(x, z)dz/(Lz − 2) are shown for 6 values of εw. While

for Lx = 60 there is an (albeit small) region of x where ρ̄(x) is flat in the center of the liquid slab, for

Lx = 90 the right and left interfaces clearly are no longer well separated from each other. This effect

becomes more dramatic, of course, if one reduces the total number of particles in the slit pore (cf. the

curve for N = 4500, Lx = 45 and εw = 0.6, as an example).

Note that the equilibrium conditions for phase coexistence under confinement are equal temperature

and equal chemical potential throughout our systems; the local pressure (and its change due to the

curvature of the interfaces in Figs. 1 and 2) does not play any role in characterizing the equilibrium

conditions here.

We conclude this section by emphasizing that the purpose of our paper is not the study of wetting and

drying transitions, but the study of liquid-vapor coexistence (and evaporation phenomena) in slit pores

that have nanoscopically small linear dimensions. But the purpose of the present section was to clarify

the equilibrium properties of phase coexistence under such conditions, and to give some hints about the

finite size effects that one needs to understand for a proper interpretation of the observed behavior.

4 Effect of liquid-vapor coexistence in slit pores on the trans-

port behavior

Choosing a system in a cubic box geometry of size L × L × L and periodic boundary conditions, it is

straightforward to obtain the self-diffusion constants of the particles from their mean-square displacement

as a function of time, using the Einstein relation [48, 49]. This diffusion constant in the bulk (b) hence

becomes

Db = lim
t→∞

[〈[~ri(t)− ~ri(0)]
2〉/(6t) . (2)

Here is understood that the average 〈· · · 〉 includes an average over all particles (labeled by index i
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in Eq. (2)) in the system, as well as an average over the origin of time (there exists time translation

invariance in thermal equilibrium, of course). Using Eq. (2), the diffusion constants of bulk vapor and

liquid have been obtained, at vapor-liquid coexistence

Dυ,b = 1.059 , Dℓ,b = 0.173 . (3)

When we consider a fluid confined in a slit pore, one needs to consider the following effects: first of

all, the mean-square displacement can diverge only in the x- and y-directions, but not in the z-direction

perpendicular to the walls. This type of anisotropy of diffusion in equilibrium was also studied by Bock et

al. [65] for a system with patterned walls. For every thick slit pores in pure vapor and liquid phases, where

the relative effect of the walls on the diffusion constant can be neglected, we expect that the diffusion

constants in the slit (s) pore become

Dυ,s = (2/3)Dυ,b , Dℓ,s = (2/3)Dℓ,υ . (4)

However, the finite linear dimension of the slit pore in the z-direction does introduce slow transients in

the behavior of the mean-square displacement: a particle starting in the center of the slit pore can also

diffuse into the z-direction over a distance Lz/2 before the confinement becomes effective. In fact, such a

particle hence can diffuse like in a three-dimensional bulk system over a time tD = (Lz/2)
2/(6Db) before

the quasi-two-dimensional diffusion sets in. For this reason, we have defined in terms of the cartesian

coordinates xi(t), yi(t) and zi(t) some effective time-dependence diffusion constants as follows

D(t) = 〈[xi(t)− xi(0)]
2 + [yi(t)− yi(0)]

2 + [zi(t)− zi(0)]
2〉/(6t) , (5)

D(xy)(t) = 〈[xi(t)− xi(0)]
2 + [yi(t)− yi(0)]

2〉/(4t) , (6)

D(xz)(t) = 〈[xi(t)− xi(0)]
2 + [zi(t)− zi(0)]

2〉/(4t) , (7)

and

D(yz)(t) = 〈[yi(t)− yi(0)]
2 + [zi(t)− zi(0)]

2〉/(4t) . (8)

As long as there do not occur any interfaces, the symmetry of the problem requires D(xz)(t) = D(yz)(t),

of course, and this symmetry is in fact nicely obeyed by the numerical data (Fig. 6). On the other hand,

for t ≪ tD confinement is not effective, and then the time variation of D(xy)(t), D(xz)(t) and D(yz)(t) is

similar. However, at late times D(xy)(t) converges to Ds while D(xz)(t) and D(yz)(t) converge to Ds/2,

since at late times these mean- square displacements sample diffusion only in one direction. This leads

to a maximum of D(xz)(t) and D(yz)(t) at intermediate times (Fig. 6). Also D(t) for the confined system

exhibits a maximum at about the same time, while the time-dependence of D(xy)(t) is always monotonic.

From Fig. 6 it is obvious that even in the bulk we must run the system over a time τ ≥ 102 to reach

saturation at the asymptotic values of D. The diffusion constant in the vapor is about 6 times larger

than in the liquid as noted in Eq. (3), but the times for the mean-square displacements to converge

to these values are about the same. In the bulk, no cartesian coordinate is distinguished, and hence
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D(t) = D(xy)(t) = D(xz)(t) = D(yz)(t). This symmetry properly indeed is rather nicely fulfilled, and this

is only a test of the very good statistical accuracy of our data.

While for the confined liquidD(xy)(t) follows rather closely the behavior of the bulk D(t), for εw = 0.59,

for the confined vapor D(xy)(t) is significantly smaller than D(t). Presumably, this is due to the fact that

the vapor phase at εw = 0.59 clearly is rather inhomogeneous (see Fig. 4).

The diffusion constants D(t) of the confined system settle down at 2
3D

(xy)(t → ∞) while the diffusion

constants D(xz)(t) = D(yz)(t) settle down at 1
2D

(xy)(t → ∞). These ratios 2/3, 1/2 trivially follow

from the normalization of the mean- square displacements in Eqs. (5)- (8) and the fact that only mean

square displacements of x and y coordinates diverge. Since the relaxation time τD, defined above, which

measures how long it takes for the particles to feel the confinement does scale inversely with the diffusion

constant, it is plausible that it takes about 6 times longer in the liquid to reach the asymptotic values

of D(t) and D(xy)(t) than it does in the vapor phase. However, the absolute magnitude of these times is

much larger than expected: using Lz/2 = 8 we would estimate that in the liquid tD is of the order of 100

only!

5 Simulation of Evaporation Processes

5.1 Evaporation of Liquid into Vacuum

In this section, we consider nonequilibrium relaxation processes where due to some change of external

conditions the size of a liquid bridge shrinks. E.g., the lateral linear dimension available for the fluid

suddenly increases (we shall not discuss how such a process could be physically realized in an experiment).

Other conceivable changes of external parameters could involve changes of temperature, or of the wall-

particle interaction, etc.

The first process that is studied is the evaporation of liquid into “vacuum”, i.e. we conceive the situation

that a pore is completely filled with liquid, and due to a sudden change of some external conditions (e.g. a

confining wall limiting the lateral extent of the pore in the x-direction is removed) additional pore volume

becomes available. The first situation for which this process is considered refers to pore walls with a purely

repulsive wall-particle interaction (see Sec. 2). In this case we chose an initial box with linear dimensions

Lx = 30, Ly = 15, Lz = 15, walls being placed at z = 0.5 and z = Lz − 0.5, respectively, and periodic

boundary conditions are applied in x and y directions. This system then contains N = 4500 particles

so that the average density of the liquid in the simulation box is 0.388 while the density in the center

of the box (for z ≈ Lz/2) is about 0.598. Then at time t = 0 the periodic boundary condition in the

x-direction is removed, and the system is placed into the center of a box that is twice as large in x-

direction, Lx = 60, leaving all other linear dimensions and boundary conditions invariant. For times

t > 0 a periodic boundary condition in x-direction appropriate for Lx = 60 is reintroduced. The system

(which was in equilibrium and translationally invariant in x-direction for times t < 0) now is far out of

equilibrium, because there occurs “vacuum” (no fluid particles) for 0 < x < 15, 45 < x < 60, while we

have a fluid (inhomogeneous in z-direction because of the repulsive walls, of course) in the region from

15 < x < 45 while at x = 15 and x = 45 there occur sharp fluid-vacuum interfaces at t = 0. Figs. 7a-d

show the resulting time evolution of the local density ρ(x, z̄, t) where we have introduced layers 1,2,3,4,5

such that in layer 1 ρ(x, z, t) is averaged from z = 0 to z = 1.5 as well as from z = 15 to z = 13.5, in
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layer 2 from z = 1.5 to z = 3 and from z = 13.5 to z = 12, in layer 3 from z = 3 to z = 4.5 and from

z = 12 to z = 10.5, in layer 4 from z = 4.5 to z = 6 and from z = 10.5 to z = 9, while layer 5 comprises

the central part of the slit pore (from z = 6 to z = 9). Due to the strongly repulsive wall-fluid particle

interaction, almost never any particles occur in layer 1, and hence only layers 2,3,4 and 5 are shown in

Fig. 7. One can see that the interfacial profile in x-direction rapidly smoothens, and the density in the

central region of the liquid slab also decreases as fluid particles evaporate and diffuse into the region of

the vapor phase. It only takes a few hundred MD steps to establish full liquid-vapor equilibrium (with

a homogeneous density of the vapor in x-direction, away from the liquid-vapor interfacial regions) as

the comparison between curves for t = 500 and t = 20000 MD time steps shows. Note that the fluid

particles that “populate” the volume region which in equilibrium form the vapor phase have to come

from the interior of the liquid slab and move through the region where the liquid-vapor interface forms.

The thickness of this interface gradually increases with time until the equilibrium interfacial thickness is

reached and thus there occur values of x where the time evolution of the local density is nonmonotonic.

Even for the density fully averaged in z-direction, ρ(x, t) = L−1
z

Lz∫

0

ρ(x, z, t)dz, a clear non-monotonic

time evolution occurs for x = 13.5 and x = 14.5. (Fig. 8). This happens because as the thickness of the

liquid slab shrinks the interfacial profile moves inward, away from its initial position at x = 15, of course.

Outside of the wings of the interfacial profile, e.g. for x = 10.5, there is a monotonous density increase

while in the interior of the liquid slab there is a continuous density decrease.

Of course, one can also study how the density profiles in z-direction changes, at different location in

x-direction along the pore (Fig. 9). One can see here that in the region where the vapor forms (Fig. 9a)

there is a monotonic increase of density for all z, but the central region takes longest to equilibrate (for

t = 200 MD time units there is still a clear deviation from equilibrium). In the interfacial region, there is

a pronounced overshoot of the density in the center of the pore, Fig. 9b, while inside the region when the

liquid initially was situated there is a monotonic density decrease. This is large effect near the interfaces

(Fig. 9c) and only a small effect in the central region of the liquid slab (Fig. 9d).

It is of similar interest to study this process when we introduce a non-zero fluid-wall interaction εw

(Fig. 10), as has been studied (with respect to the thermal equilibrium aspects) already in Sec. 3. It

is interesting to note that there is little effect of εw on the time evolution of the total density ρ(x, t)

averaged over all distances z (Fig. 11), as long as the final equilibrium state still contains a thick liquid

slab in the center of the film. This is the case still for εw = 0.59, but no longer for εw = 0.9 (cf. also Sec.

3). Also in the case of nonzero εw a time of about τ = 500 MD time units suffices to establish the new

liquid-vapor equilibrium, with more or less pronounced precursors of wetting layers at the walls of the

slit pore, as described in Sec. 3. In view of our estimate of diffusion time scales in Sec. 4, this relatively

fast establishment of equilibrium is perfectly reasonable.

One may also ask the question whether the time scale of equilibration depends on the z-coordinate

across the film. Figs. 9, 10 indicate that such a dependence, if it exists, is very weak. One could expect,

however, that such an effect should occur for much thicker slit pores under conditions, where the vapor

density is lower in the center of the slit, while the precursors of the wetting layers then can be several

particle diameters thick. In this situation, the relaxation time in the liquid layers adjacent to the walls

could be much larger than in the vapor region. In our case, however, even for εw = 0.9 where pronounced

layering in the dense regions that build up close to the walls is observed (Fig. 10) no significant slowing
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down has been detected.

5.2 Evaporation of Vapor into Vacuum

In the previous subsection we have considered the situation that for a slit pore completely filled with

liquid an additional volume becomes available, into which evaporation can take place, and have presented

data that illustrate how liquid-vapor interfaces form and a vapor-liquid phase equilibrium is established.

In the present subsection, we consider the alternative scenario of a slit pore, in which such a vapor-liquid

phase equilibrium already occurs, and by an external operation additional volume for the vapor phase

becomes available. Of course, when the vapor spreads into the part of the volume which initially is empty,

the average vapor density decreases, and the vapor no longer is in equilibrium with the liquid phase, with

which it has coexisted in equilibrium for time t < 0. As a result, also liquid will evaporate again, driven

by the density gradient that occurs in the vapor region, until the density in the whole region taken by

the vapor has adjusted to the value the vapor density must have at coexistence with the liquid in thermal

equilibrium at the chosen temperature and boundary conditions (i.e., value of εw) at the walls of the

confining slit pore.

Using the final equilibrium states for the system with linear dimensions Lx = 60, Ly = 15, Lz = 15

with purely repulsive walls as an initial condition, we have increased the linear dimension in x-direction

from Lx = 60 to Lx = 72. Due to this rather modest increase of Lx, the liquid slab in the center of

the system does not evaporate completely, but simply gets only a bit smaller, as a consideration of the

average profile ρ(x, t) shows (Fig. 12). One sees that the strong density gradient (where originally the

average density ρ(x, t = 0) jumps from about 0.092 to zero ) at x = 6 and x = 66 (the vacuum takes the

region 0 ≤ x < 6 and 66 < x ≤ 72 at t = 0) smoothes out already during first 10 MD time units, and

for t = 100 the vapor density in the region 0 ≤ x < 12 and 60 < x ≤ 72 is almost independent of x, but

the density in this region is distinctly smaller than the critical coexistence density. The thickness of the

liquid slab has remained almost unchanged. Thus, in this initial regime of times it is basically the vapor

present in the original system that has spread out into the empty region, which is understandable since

the diffusion constant in the liquid region is much smaller, and also the driving force for evaporation of

the liquid slab is clearly not very large. From Fig. 12 one can see that the shape of the interfacial profile

(at least in its central part) does not change with time, it is only the interface position (which we may

characterize precisely from the inflection point of ρ(x, t) in Fig. 12) that shifts in the time regime from

t ≈ 100 to t ≈ 500 with approximately constant velocity, while for t ≥ 500 the vapor density for x ≤ 12

and x ≥ 60 starts to saturate, and then the interface velocity also decreases to zero.

As in the cases studied so far, we have again tried to obtain more detailed information on the spatially

resolved data. At the slabs centered at x = 0.5, 12.5, 24.5 and 34.5 (all slabs have a width ∆x = 1.0)

we have followed the time evolution of ρ(x, z̄, t), defining the positions z̄ of the 5 “slices” in z-direction

in the same way as in the equilibrium case. Since 100 runs needed to be followed for 10000 MD time

units, this part of the study involves a major computational effort, although the statistical fluctuations

necessarily are still rather large (Fig. 13). One can see that for t ≥ 2000 there is no significant relaxation

any more, while times t ≤ 500 clearly are not enough to fully establish equilibrium. While in the center

of the interfacial region (x = 24.5) the relaxation is slow but the density there decreases in a monotonic

fashion, a nonmonotonic density relaxation occurs in the wings of the profile (x = 12.5) far away from

10



the walls. In the regime closer to the walls (layers 1 and 2) the relaxation is always much faster, however.

5.3 Transient Diffusion during Evaporation Processes

It is possible in the simulation to ask the question how the presence of an evaporation process shows

up in the time-dependence of the mean-square displacement of the particles. Experimentally, such a

question could be asked e.g. for colloid-polymer mixtures [66], where a vapor liquid type phase separation

occurs for suitable conditions, and it is possible to follow the motion of individual colloid particles with

fluorescent labels [67]. In Fig. 14, we show representative results for the time-dependent diffusivities

defined in Eqs. (5)- (8) for an evaporation simulation where Lx was changed from Lx = 30 to Lx = 60 at

t = 0. Unlike the situation discussed in Sec. 4, where the choice of the origin of time did not play any

role since the system in equilibrium obeys time translation invariance, this is no longer the case now: all

quantities in Eqs. (5)- (8) depend on two times now, the time chosen for the origin t = 0 there, and the

time t elapsed since then. We have not attempted to study this non-stationary transport problem in full

detail, however, but focus only on the case where the deviation from equilibrium is strongest, i.e. when

the origin of time chosen in Eqs. (5)- (8) coincides with the time where the change of Lx is performed.

While the initial ballistic regime (where D(t) ∝ t) that one can recognize for 1 ≤ t ≤ 6 in Fig. 14, is

not much affected by the fact that the system is out of equilibrium, for t > 6 a very different behavior

occurs: D(yz)(t) becomes slower for some transient time period, while for t > 20 another speed-up

occurs, and near t = 100 a maximum of D(yz)(t) occurs, followed by a slow decay to the asymptotic

value. The precise height and location of this maximum depend on the choice of εw slightly. All other

time-dependent diffusion constants do contain also mean-square displacements in x-direction, and they

show a strong speed up already at times t > 6. We attribute this speed up to the drift that occurs in

x-direction: since it is more likely for the particles to move in x-direction than in any other direction,

D(yz)(t) exhibits a slower increase than in the ballistic regime. This nonequilibrium enhancement of D(t)

and the various choices for D(αβ)(t) [α, β = x, y, z] shown in Fig. 14 leads to maxima in most of the

mean-square displacements that are more pronounced than the corresponding data in the confined pure

phases in equilibrium (Fig. 6). The diffusion constants that the systems relax to, which show up as the

flat plateaus in Fig. 14 for t ≥ 2000, have values in between that of confined pure liquid and vapor phases,

consistent with the (qualitative) expectation. Of course, we are far from a quantitative understanding of

transport phenomena during relaxation in such inhomogeneous two-phase systems in confined geometry,

however.

6 Conclusions

Fluids confined in slit-like pores can form liquid bridges coexisting with vapor at temperatures below

the critical point. In the present work, we have studied for a simple Lennard-Jones model of a fluid the

static structure of such liquid bridges, for several typical cases of fluid-wall interactions, corresponding

to (incomplete) drying and wetting conditions. We have used molecular dynamics simulations to explore

the partial (or complete) evaporation of such bridges resulting from changes of external thermodynamic

control parameters and we have discussed the interplay of finite size effects (associated with the finite

width of the slit pore, or with the finite linear dimensions of the liquid bridge in the directions parallel
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to the slit walls, or both) and surface effects due to the walls.

When one considers the density variation in the direction perpendicular to the confining walls, one

finds that both in the liquid phase and in the vapor phase the density approaches the values of bulk

liquid and vapor at the coexistence curve, after about only 5 Lennard-Jones diameters, if one stays away

from the region where liquid-vapor interfaces run across the slit pore (this condition also requires, of

course, that the liquid bridge is thick enough that the two interfaces separating it from the vapor phase

are non-interacting). This finding holds for all choices of the wall-fluid interaction (only when the slit

width D gets several orders of magnitude larger than the Lennard-Jones diameter and if one is very close

to conditions of complete wetting or complete drying, would be a larger inhomogeneity in the direction

perpendicular to the wall expected). On the other hand, when the two interfaces between the liquid

bridge and the vapor are close enough together so that their interaction cannot be neglected (e.g. the

case εw = 0.9 in Figs. 1, 3; εw = 0.7 in Figs. 2, 3), the density inside the liquid bridge remains

smaller than in the bulk, and one can observe a smooth crossover to the state where the liquid ”bridge”

rather should be described as two wall-attached droplets opposite of each other (Fig. 2, εw = 0.7).

Changing the thermodynamic conditions, in this way a smooth crossover from states containing a bridge

to states without a bridge (Fig. 2, εw = 0.9) are possible, and no sharp phase transitions (in the sense

of a singular behavior of thermodynamic potentials or their derivatives) are involved, when all linear

dimensions considered remain finite.

For the conditions studied, there is a significant (but not too strong) dynamic asymmetry between

the coexisting phases in the bulk (the diffusion constant of the vapor is about 6 times larger than that

of the liquid, Fig. 6). When one considers either pure vapor or pure liquid phases in confinement,

the crossover from three-dimensional to quasi-two-dimensional diffusion already causes slow transients in

the mean square displacements, Eq. (6) of the order of several thousand MD time units (physically, this

may correspond to about 10 nanoseconds). It turns out that this time-scale associated with diffusion

in confined geometry in equilibrium is larger than the time scale on which evaporation processes take

place (Figs. 9- 13). Both the evaporation of liquid into vacuum and of vapor into vacuum is essentially

completed after a few hundred MD time units already. When the vapor that evaporates into the vacuum

still coexists with a liquid bridge in the center of the slit pore, the liquid bridge must somewhat shrink to

maintain local thermal equilibrium: in this way the establishment of a density gradient in the vapor region

of the system can be avoided. During the evaporation process, some of the mean-square displacements

show super-diffusive behavior (Fig. 14).

Of course, our observations are only a first step towards the full clarification of the problem: it would be

interesting to vary both parallel and perpendicular linear dimensions over at least a decade systematically,

to clarify under which conditions the evaporation process becomes much slower (which then would be

relevant for applications). Also a study of the variation with temperature would be interesting. However,

all such extensions need substantial computer resources, and must be left to future work. However, we

hope that the present work stimulates both the development of phenomenological analytical work and

experimental studies on these issues.

Acknowledgements: The first author (K.B.) acknowledges financial support from the Alexander von

Humboldt Foundation.

12



Figure 1: (Color) Density distribution ρ(x, z) for systems with linear dimensions Lx = 60, Ly = 20 and

Lz = 16, for 6 values of εw = 0.1, 0.4, 0.5, 0.61, 0.7, 0.9 (from top to bottom). The z-axis is oriented along

the ordinate and the x-axis along the abscissa. The value of the density ρ corresponds to the color code,

as shown by the bar on the right side of the plots. The temperature is T ∗ = kBT/ε = 0.9366. The system

was simulated for 20000 time units (cf. description in Sec. 2), and then averages were taken over last

15000 MD time units τ .
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Figure 2: (Color) Same as Fig. 1, but for Lx = 90 instead of Lx = 60. Note that the scale along the

x-direction is compressed relative to the scale for the z-direction.
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Figure 3: (Color online) Density profiles ρ(x1, z) and ρ(x2, z) plotted vs. z for 8 values of εw =

0.1, 0.3, 0.5, 0.61 (from top to bottom, left column) and εw = 0.65, 0.7, 0.8, 0.9 (from top to bottom,

right column). Solid lines and lines with circles represent density profiles for the system 60 × 20 × 16

(cf. Fig. 1) and 90× 20× 16 (cf. Fig. 2), respectively. In each frame of the panel the upper curve shows

ρ(z, x1) with x1 being defined via ρ(x1, z) =
35∫

25

ρ(x, z)dx/2, and the lower curve shows ρ(x2, z), with x2

being defined via ρ(x2, z) = [
3∫

0

ρ(x, z)dx+
60∫

57

ρ(x, z)dx]/6. Thus, the upper curve shows the density profile

along a cut through the center of the liquid slab, while the lower curve shows the density profile through

the vapor region far away from the vapor-liquid interface. These averages are carried out for time above

t > 5000 over 15000 MD time units τ . Horizontal broken straight lines show bulk ρl and ρg, respectively.
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Figure 6: (Color online) Log-log plot of time-dependent diffusion constants D(t), D(xy)(t), D(xz)(t) and

D(yz)(t) vs. time, for systems at T ∗ = 0.9366 both in the vapor phase (which in the bulk has a density

ρ = 0.10866) and in the liquid phase (which in the bulk has a density ρ = 0.565032). Both data for bulk

systems (linear dimensions 27× 20× 16 for the pure liquid at coexistence and 140× 20× 16 for the pure

vapor phase at coexistence, with periodic boundary conditions in all three directions) and for confined

systems in single-phase states (confined by walls with εw = 0.59, choosing linear dimensions 34× 20× 16

for the liquid and 240× 20× 16 for the vapor) are included. Lines with circles correspond to bulk results

for vapor, lines with triangles - to bulk results for liquid. Lines without symbols correspond to data for

confined systems.
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