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Using an atom based force field, molecular dynamics (MD) simulations of 54 dodecylphosphocholine (DPC)
surfactant molecules in water at two different concentrations above the critical micelle concentration have
been performed. Starting from a random distribution of surfactants, we observed the spontaneous aggregation
of the surfactants into a single micelle. At the higher DPC concentration (0.46 M) the surfactants aggregated
into a worm-like micelle within 1 ns, whereas at lower concentration (0.12 M) they aggregated on a slower
time scale (∼12 ns) into a spherical micelle. The difference in the final aggregate is a direct consequence of
the system achieving the lowest free energy configuration for a given quantity of surfactant within the periodic
boundary conditions. The simulation at low surfactant concentration was repeated three times in order to
obtain statistics on the rate of aggregation. It was found that the aggregation occurs at a (virtually) constant
rate with a rate constant ofk ) 1 × 10-4 ps-1. This is an unexpected result. On the basis of Monte Carlo
simulations of a stochastic description of the system, using diffusion rates and cluster radii as determined by
separate MD simulations of single DPC clusters, a lower rate constant which diminishes in the course of the
aggregation process had been predicted. Neglect of hydrodynamic interactions, of long-range hydrophobic
interactions, or of spatial correlations in the stochastic approach might account for the descrepancies with the
more accurate MD simulations.

I. Introduction

Above their critical micellar concentration (cmc), surfactants
aggregate spontaneously to form a wide variety of assemblies
ranging from micelles, rodlike structures, and bilayers to more
complex phases such as cubic phases. This self-aggregation
process of surfactants is of fundamental importance to many
biological and industrial processes. Although a lot of work, both
experimentally and theoretically, is directed at an understanding
of the various surfactant phases and the transitions between
them, the actual initial process of self-aggregation has received
little attention. This is primarily due to the fact that it occurs
on a very fast time scale (nanosecond), and on a very short
length scale (nanometer), thus making experimental investigation
difficult.

Theoretically, self-assembly of model surfactants (consisting
of a few beads only) was first studied in the early nineties by
Smit et al.1 for ternary water/oil/surfactant systems, using
molecular dynamics (MD) simulations. They observed the
spontaneous aggregation of simplified surfactants into either
micelles inside a water-like environment, or reverse micelles
in the oil-like environment. In a subsequent study2 they were

able to qualitatively reproduce the experimentally observed
shape of the micellar size distribution. More recently, Lipowsky
and co-workers3 started systematic Monte Carlo (MC) studies
of the self-aggregation of similarly simplified surfactants and
deduced conditions for which micelles, rodlike micelles and
bilayers are formed. Other simplified models that are currently
used to study aggregation processes of surfactant(-like) mol-
ecules include lattice Brownian dynamics simulations4 and MC
simulations of the reaction probability density function.5

Until recently, more realistic modeling of self-aggregation
using all-atom models has not been possible due to limitations
in the required computer power. Hence, all atom MD simulations
usually start with the surfactants in their target phase. After a
suitable equilibration time during which the surfactants can relax
into the phase of the system, various equilibrium properties of
the system can be computed and compared to experimentally
available data. Over the past decade or so it has been possible
to obtain a detailed understanding of the behavior of surfactants
in both bilayer6 and micellar7 phases.

Nowadays, due to the increase in computer power and due
to algorithmic advances it is however possible to simulate the
self-aggregation of surfactants using atomistic MD simulations.
Salaniwal et al.8 simulated the self-assembly of reverse micelles
in water/surfactant/carbon-dioxide systems. They showed a rapid
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aggregation (within a nanosecond) of an initially dispersed
system into a system containing three reversed micelles. Whether
this constitutes the final equilibrium stage of the system remains
unclear for the simulations were not continued. Maillet et al.9

simulated the self-aggregation of both short and long chain ionic
surfactants. They also observed fast aggregation on a nanosecond
time scale, with two small micelles having formed (around 20
surfactants) in accordance with experimental predictions. Al-
though no detailed analysis of the kinetics of aggregation is
given, the authors conclude that the initial self-aggregation
process is an off-equilibrium process which is dominated by
collisions of clusters with different sizes, whereas the subsequent
near equilibrium processes are dominated by single surfactant
exchanges.

In this paper we aim to understand the kinetic processes that
dominate the initial aggregation rate of surfactants in solution
in more detail. We start our simulations from random initial
structures and observe the spontaneous aggregation of surfac-
tants into either spherical micelles or worm-like micelles
depending on surfactant concentration. The kinetics of the
aggregation process are analyzed in detail and compared to
theoretically predicted aggregation rates. The surfactant chosen
for this study was dodecylphosphocholine (DPC), a widely
studied surfactant (mainly as a mimic for bilayer environments;
see, e.g., refs 10 and 11) that forms small spherical micelles of
an aggregation number of between 50 and 60 above a cmc of
∼1 mM.12 Recent MD simulations of DPC micelles have
appeared in the literature,13,14 offering a comparison between
the structure of preassembled micelles and spontaneously
aggregated ones obtained in this study.

The outline of the rest of this paper is as follows. First the
relevant theoretical framework that describes the kinetics of
aggregation is presented. In the subsequent section details of
the simulation and analysis procedures are provided, followed
by the results. A critical discussion of the results and their
implications forms the last section.

II. Theory

The aggregation of surfactants into clusters of surfactants,
and eventually into micelles, can be described, to first order,
using the general framework of (ir-)reversible coagulation
processes (i.e., refs 15 and 16). Within this framework, the
reaction rate for the aggregation/disaggregation process of two
clusters is given by

where [Mn] is the concentration of clusters containgn surfactants
and ki,j

agg, ki,j
dis are the rate constants of aggregation and dis-

sociation. If the dissociation rate is much slower than the
association rate, we can neglect the dissociation process and
the following rate equation can be derived for the aggregation
process of smaller clusters into larger ones:

with ki,j ) ki,j
agg. The positive term in eq 2 describes the

formation of clusters of sizei due to the merging of smaller
ones, and the negative terms describe their disappearance due
to collisions with other clusters. Note the double counting of
collisions with i ) j. In the limit of diffusion-controlled

aggregation, the rate constant is given by

whereDn is the diffusion constant of a cluster ofn surfactants
and Rn its collision radius. For uniform spheres, Stokes’ law
predictsD ∝ 1/R and the rate constant becomes only weakly
dependent on particle size, the factor (Ri + Rj)(Ri

-1 + Rj
-1)

varying between 4 (Ri ) Rj) andRi/Rj (Ri . Rj). Assumingk )
ki,j, i.e., a size independent rate constant, eq 2 can be solved
exactly. With the intial condition that there are only single
surfactants att ) 0, the general solution to eq 2 reads

whereτ ) 2/k[M1](0) is the characteristic time of aggregation.
For the total number of clusters we have

In the case of interacting particles, the expression for the rate
constantk can be modified to include the interaction potential
V(r) of the particles:

If the particles are strongly interacting (V(r) , -kT) once they
approach each other to within a certain distancerc > Ri + Rj,
then eV(r)/kT f 0 for r > rc and the integral of eq 6 can be
replaced by

resulting in

i.e., the effective collision radius is now determined by the range
rc of the strong interaction.

The above equations apply strictly in the thermodynamic limit
only, when the volume approaches infinity and clusters are
distributed homogeneously throughout the volume, neglecting
the effect of correlations and fluctuations. Whether this limit
applies to our system, which is finite containing a limited
number of colliding molecules only, is not immediately clear.
In addition, eq 2 can only be solved analytically for a size
independent aggregation rate. We will therefore also use the
stochastic approach as proposed by Gillespie17 to predict the
kinetics of aggregation in a finite system. Instead of solving
the deterministic set of coupled differential equations in eq 2,
the stochastic method replaces them by a single master equation
describing the time evolution of the reaction probability density
functionP(tdead,µ;t). It considers the time evolution of the system
as a discrete chain of Markov eventsµ that happen in an
infinitesimal time interval dt after an exponentially distributed
dead time intervaltdeadduring which nothing happens:

In our caseµ denotes one of the possible aggregation steps of
cluster sizesi andj, kµ

s ) kµ/V is the stochastic rate constant for
an aggregation taking place in a fixed volumeV, and hµ
describes the combinatorial possibility for the aggregation step

[M i] + [M j] y\z
ki,j

agg

ki,j
dis

[M i+j] (1)

d[M i]/dt ) ∑
j)1

i/2

ki-j,j[M i-j][M j] - [M i]∑
j)1

ki,j[M j] - ki,i[M i]
2

(2)

kij ) 4π(Di + Dj)(Ri + Rj) (3)

[Mn](t) ) [M1](0)(tτ)n-1(1 + t
τ)-n-1

(4)

[Mtot](t) ) ∑
n

[Mn](t) )
[M1](0)

1 + t/τ
(5)

ki,j ) 4π(Di + Dj)/∫Ri + Rj

∞
r-2eV(r)/kT dr (6)

∫Ri + Rj

∞
r-2eV(r)/kT dr = ∫rc

∞
r-2 dr (7)

ki,j ) 4π(Di + Dj)rc (8)

P(tdead,µ;t) dt ) kµ
s hµe

-Σµkµ
shµtdead (9)
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µ. Considering only two clusters combining we havehµ ) MiMj

for i * j andhµ ) 1/2Mi(Mi - 1) for i ) j, with Mi denoting the
number of clusters present inV, i.e., Mi ) V [Mi].

Equation 9 can be solved with a Monte Carlo procedure.17

Given an initial distribution of cluster sizes att ) 0, the
procedure consists of generating a Markov chain of aggregation
events. For each event two random numbersx1 and x2 in the
unit interval are generated from which the next dead timetdead

and the specific aggregation stepµi taking place can be
determined according to the following equations:

and

Repeating the procedure for a suitable number of events, the
time evolution of the aggregation of surfactant clusters is
generated. Averaging over a large number of different random
number sequences provides both the average kinetics and the
expected fluctuations in a finite system. The stochastic method
has recently successfully been applied to study the kinetics of
micellization away from the thermodynamic limit.5

III. Method

A. Simulation Details. We used the GROMACS package
(v2.0)18 for our MD simulations. Details of the DPC force field
can be found in ref 14. The water was modeled as SPC.19 The
system was coupled to an isotropic pressure bath of 1 atm, and
a heat bath of 300 K using standard coupling schemes.20 Using
the fast LINCS21 and SETTLE22 algorithms to constrain the
bond lengths within the lipids and to constrain the water
geometry, respectively, the use of a 5 fs time step was
permitted.23 A group based twin cutoff scheme was employed
for the nonbonded interactions, withRcut ) 1.0 nm for Lennard-
Jones andRcut ) 1.5 nm for electrostatic interactions.

Tieleman et al.14 simulated, at similar conditions, three
differently sized micelles of DPC containing 40, 54, and 65
surfactant molecules. Comparing energies and solvent accessible
surface, they concluded that the most stable micelle size was
likely to be at least 54, in accordance with experimental evidence
based on quasi-elastic light scattering and analytical ultracen-
trifugation.12 Therefore, we choose to simulate 54 DPC mol-
ecules, positioned at initial random positions in a cubic
simulation box which was then filled with SPC water. The first
system simulated contained the same number of waters as
Tieleman’s system,14 i.e., 97 waters/surfactant equaling a
surfactant concentration of 0.46 M. We will label this system
“RANDOM54highA”. As shown in the next section the
periodicity of the system at this concentration favors the
formation of a rod-like micelle rather than a spherical one.
Identical results were obtained when repeated, starting from a
different random distribution of surfactants throughout the box
(“RANDOM54highB”). Therefore, the amount of water was
increased by roughly a factor of 4 (416 waters/surfactant),
implying a surfactant concentration of 0.12 M (“RANDOM54A”).
In this case we observed the spontaneous aggregation into a
single spherical micelle after 12 ns of simulation (see results
section). The simulation was extended for another 6 ns to allow
the micelle to relax toward its equilibrium structure. To increase
the statistics of the initial aggregation process, this system was

simulated three more times up to 6 ns with different initial
random placement of the surfactant molecules. These
three additional simulations are labeled “RANDOM54B ..
RANDOM54D”. Note that all systems have a concentration
much higher than the cmc of DPC (∼1 mM12). The simulations
were performed in parallel on an IBM SP2 supercomputer,
achieving a rate of∼60 CPU hours/ns using 8 nodes.

To study some specific properties of smaller clusters, we also
performed small scale simulations with clusters of one, two,
three, five, and ten DPC molecules in excess SPC water (labeled
CLUS1 ... CLUS10). Using the same simulation parameters as
described above, 50 ns runs of these systems were performed,
from which accurate data on cluster radius and diffusion rates
could be obtained, as well as insight into the stability of small
size clusters. All of these small scale simulations were performed
on single processor Silicon Graphics O2 workstations. A full
list of all the simulations we have performed, including details
about the compositions and the total amount of simulation time,
is given in Table 1. Also listed is the extended 14 ns simulation
of the 54 DPC micelle of Tieleman14 (labeled “MICEL54”) on
which some additional analysis was performed.

B. Analysis Details.To identify the formation of clusters of
surfactants, we need a definition of what makes up a cluster.
As two surfactant molecules have many different ways of
interacting, any definition in terms of number of methyl-methyl
contacts or headgroup-headgroup distance will be too specific.
We therefore have used a general criterium based on the distance
between the centers of mass of the surfactants. Two surfactant
molecules are defined to be in the same cluster if the distance
between their centers of mass,Rcom is smaller than a certain
cutoff distance which we callRagg. On the basis of visual
inspection of the CLUS2 trajectory (which shows occasions
where the two surfactant molecules disaggregate) we findRagg

to be within the range 1.0 nm< Ragg <1.4 nm. A value ofRagg

1.2 nm was used for the analysis, but the results do not depend
significantly on the precise choice ofRagg within the indicated
range. For the stability of a cluster the following definition was
used. IfRcom > Ragg for a period longer than 100 ps, the cluster
is assumed to have fallen apart into two (or more) separate
clusters.

To compare our aggregation rates to theoretically predicted
ones, we need an estimate of both the effective radius of a cluster
as well as its diffusion constant. Assuming that the clusters are
on average spherically shaped, the effective radiusR of the
cluster is related to the radius of gyrationRg via

An accurate value for the average radius of gyration can be
obtained from the 50 ns simulations of separate clusters. Using

tdead) [∑
µ

kµ
shµ]

-1 ln(1/x1) (10)

∑
µ

µi-1

kµ
shµ < x2∑

µ

kµ
shµ e ∑

µ

µi

kµ
shµ (11)

TABLE 1: Overview of MD Simulations

label # DPC # SPC 〈box edge〉 (nm) time (ns)

RANDOM54highA 54 5238 5.8 10
RANDOM54highB 54 5238 5.8 10
RANDOM54A 54 22496 9.0 18
RANDOM54B 54 22488 9.0 6
RANDOM54C 54 22484 9.0 6
RANDOM54D 54 22496 9.0 6
CLUS1 1 582 2.7 50
CLUS2 2 1507 3.6 50
CLUS3 3 1481 3.6 50
CLUS5 5 1438 3.6 50
CLUS10 10 2784 4.5 50
MICEL54 54 5238 5.8 14

R ) x(53)Rg (12)

Kinetics of Spontaneous Micelle Formation J. Phys. Chem. B, Vol. 104, No. 51, 200012167



a similar definition of micelle radius, Bogusz et al.24 obtained
agreement between their MD simulations and the experimentally
determined radius for glucoside micelles. Note that this defini-
tion of a micelle radius is only approximate, as the micelles
are not perfect spheres but rather ellipsoidal, both at low and at
high aggregation numbers.24 The diffusion constant is estimated
from the mean square displacement (MSD) of the center of mass
of the cluster. Because of internal motion within the cluster plus
momentum effects, the MSD displays both a short time regime
with an apparent diffusion rateDshortwhich is somewhat higher
than the limiting diffusion rateDlong of the cluster itself. We
find that for times beyond∼200 ps the internal motion of the
small clusters is averaged sufficiently and does not contribute
significantly to the long time diffusion constant. For the entire
54 surfactant micelle the internal motions take much longer to
average out (>1 ns). Our statistics in this case are not accurate
enough to make the distinction between these two regimes.

IV. Results

A. Aggregation into a Worm-Like Micelle. Figure 1
illustrates the spontaneous aggregation process for 54 DPC
surfactants at high concentration (0.46 M). At this high
concentration the aggregation takes place very rapidly, with a
rodlike micelle formed within 1 ns. The rodlike micelle remains
stable during the remainder of the simulation (10 ns), although
it takes over 5 ns for the rodlike micelle to relax into its final
structure. The same qualitative picture emerged when we
repeated the simulation starting from different random surfactant
positions: again a stable periodic rodlike micelle was formed
within 1 ns. If we assume that the main driving force to form
aggregates is a reduction of the exposed hydrocarbon area, and
that DPC has a bulky headgroup with respect to its hydrocarbon
tail, then one would expect spherically shaped aggregates to be
energetically more favorable as they have the smallest area
compared to volume. However the use of periodic boundary
conditions means it is possible to form periodic aggregates as
a way of avoiding the creation of an additional interface thus
increasing the ratio of volume to surface area. Given the surface
area Asphere and radiusRsphere of a spherical micelle, it is
straightforward to compute the expected relative increase in
surface areaAcyl and radiusRcyl of a periodic cylindrical micelle
with the same volume. Given the length of the simulation
box L, we haveAcyl/Asphere ) xL/3Rsphere and Rcyl/Rsphere )
x4Rsphere/3L.

In Figure 2 is plotted the expected stabilization range of a
periodic cylindrically shaped micelleVs a spherically shaped
one based on the above expressions for the ratios of surface
area and micelle radius. It can be seen that up to box lengths of
approximately 6 nm the area of a periodic cylindrical micelle
is actually smaller than that of a spherical one. However, there
is another limit to the stabilization of a cylindrical micelle,
namely that its radius cannot be smaller than half that of a
spherical micelle, which would require more than fully inter-
digitated surfactants. This limit is reached much further away,
above 10 nm. Given the box length that we used in our first
simulation, i.e., 5.8 nm, one would indeed expect the periodic
cylindrical micelle to be most stable, in accordance with our
findings. Also, inspection of Figure 1 reveals that the surfactants
are to a large extent interdigitated, in agreement with the
predictions of Figure 2 which indicate a cylinderal micelle radius
of =70% of that of a spherical micelle.

Figure 1. Spontaneous aggregation of DPC surfactants into a wormlike micelle at high concentration. Snapshots of the simulation at the start
(t ) 0 ps), intermediate (t ) 400 ps), and micelle stage (t ) 2 ns) are shown. DPC headgroups are drawn in purple, DPC tails in green. Water is
ommitted for clarity.

Figure 2. Stabilization range of periodic-cylindrically vs spherically
shaped micelles. The solid curve represents the ratio of the radius
(circles) and surface area (squares) of a periodic-cylindrically vs
spherically shaped micelle for a given box length, usingRsphere) 2.1
nm (estimated using eq 12 andRg ) 1.6 nm14). The horizontal dashed
lines represent the limits of expected stability for a periodic-cylindrical
micelle; i.e., it cannot have a radius smaller than half that of a spherical
micelle (at which radius the surfactants are fully interdigitated), and
its surface area should be smaller than that of a spherical micelle. The
vertical lines denote the box sizes of the simulated system, i.e., the
small system at 5.8 nm producing a periodic-cylindrically shaped
micelle, and the large system at 9.0 nm producing a spherically shaped
micelle.
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B. Aggregation into a Spherical Micelle.To get rid of the
artificial effect of the periodic boundary conditions, it is clear
that we need to simulate a larger system. From the surface ratio
as shown in Figure 2 we deduced that with an increase of the
box size to 9.0 nm the spherical micelle should be the preferred
phase over a periodic rodlike structure. We therefore simulated
the aggregation process for 54 DPC surfactants at this increased
system size (RANDOM54A), implying an approximately 4-fold
lower concentration of surfactants (0.12 M). In Figure 3 we
show that now indeed a spherical micelle is being formed, rather
than a cylindrical one. The final single micelle first appears
after ∼12 ns. It takes another 5 ns for the micelle to reach its
equilibrium structure. (Where one merely aims to obtain an
unbiased starting structure, one can accelerate the aggregation
rate by draining the system as soon as the number of separate
clusters has dropped considerably. In a separate simulation
(results not shown) one-third of the number of water molecules
were removed randomly after the system had aggregated into
four separate clusters, and once more after only two clusters
remained. Thus, we obtained a single spherical micelle within
6 ns simulation, as opposed to the∼12 ns of the normal
simulation.)

It is interesting to compare the equilibrium structure of the
finally obtained micelle to the equilibrium structure of the
preassembled one (MICEL54) that was simulated by Tieleman
et al.14 It is found that the radial distribution of atoms, the solvent
accessible surface, the average radius of gyration and the ratio
of the principal axes are indistinguisable within the observed
fluctuations.

The simulation at low concentration was repeated three times
(RANDOM54B .. RANDOM54D) for a duration of 6 ns,

starting from different initial random placements of the surfac-
tant, to provide improved statistics. In Figure 4 we display the
decline of the total number of clusters during the simulation.
Although the four different simulations show some scatter, the
general aggregation process seems to be very similarsa fast
initial clustering halving the total number of clusters in about
300 ps, followed by a much slower merging of the remaining
clusters to form either 3 or 4 small micelles after 6 ns in all
cases. In the extended simulation RANDOM54A two of the
remaining three micelles merge after∼8.4 ns, and the remaining
two micelles merge into the final micelle att ) 11.9 ns.

Figure 3. Spontaneous aggregation of DPC surfactants into a spherical micelle at low concentration. Snapshots of the simulation at the start
(t ) 0 ps), intermediate (t ) 200 ps, 500 ps, 2 ns, 5 ns), and micellar stage (t ) 15 ns) are shown. DPC headgroups are drawn in purple, DPC tails
in green. Water is ommitted for clarity.

Figure 4. Reduction of total number of clusters with time for
simulations RANDOM54A .. RANDOM54D. Separate thin lines
indicate different simulations. The thick solid line denotes the average
of the four simulations (up to 6 ns).

Kinetics of Spontaneous Micelle Formation J. Phys. Chem. B, Vol. 104, No. 51, 200012169



In Figure 5 we have plotted the separate time evolution of
the emergence and disappearance of clusters of different
aggregation numbers, averaged over the four simulations. We
distinguish between six different classes of clusters: single
surfactants, small clusters (2-4 surfactants), intermediate
clusters (5-8), large clusters (9-16), small micelles (17-31)
and micelles (g32 surfactants). Apart from the single surfactant
clusters and the micelle, all other cluster sizes display a
maximum as they are first formed by the merging of smaller
clusters and then disappear again when they aggregate into
bigger ones. The shape of the curves is in qualitative agreement
with those predicted by standard aggregation theory (eq 4).

C. Scaling of Cluster Properties.Before we can make a
comparison of the simulated kinetics of aggregation with the
theoretical predicted ones, we need to have an estimate of both
the effective radii and diffusion rates of the individual clusters.
Figure 6 plots these data for various cluster sizes as obtained
from separate MD simulations of isolated clusters (CLUS1 ...
CLUS10). The data for the largest cluster sizes is taken from
the simulations of Tieleman et al.14 The diffusion constants are
based on a linear fit of the MSD curves up to 2 ns.

Both the radius and the diffusion constant clearly show two
different scaling regimes. For clusters larger than 5 surfactants,
the scaling is identical (within errorbars) to the scaling laws
predicted for hard spheres: the radius scales with the number
of surfactantsn asR∝ n0.33(0.01and the diffusion constant scales
asD ∝ n-0.4(0.1 (for hard spheres the scaling is given byR ∝
n1/3, D ∝ n-1/3). The same scaling forR was also observed in
the simulations of octyl glucoside micelles for clusters between
10 and 75 surfactants.24 The estimate of the long time diffusion
constant that we obtain for the micelle of 54 DPC’s (10( 4 ×
10-5 nm2/ps) compares well to the experimentally determined
values of 9.2× 10-5 nm2/ps (analytical ultracentrifugation12),
7.8× 10-5 nm2/ps (quasi-elastic lightscattering12), 9.2× 10-5

nm2/ps (NMR10). One has to bear in mind that the apparent
close agreement might be somewhat fortuitous though. The
experimentally obtained values are based on a micelle size
distribution rather than on a single micelle size. Furthermore,
concentration effects can play a role. Finally the SPC model
for water is known to underestimate the viscosity of real water
by roughly a factor of 2.

Not surprisingly the smallest clusters (n e 5) behave
differently: the radius scales with a slightly smaller exponent,
R∝ n0.21(0.01whereas the diffusion constant scales with a much
larger one,D ∝ n-0.7(0.1. Analysis of the length of the principal
axes of the clusters underlines the difference between small and
larger clusters. Whereas clusters of 10 surfactants and larger
are essentially spherical (with an average ratio between longest
and smallest axis dropping from 1.4 forn ) 10 to 1.1 forn )
54), the smallest clusters are shaped more irregularly. For these
clusters their longest radius remains approximately constant (at
1.1 nm) whereas the two shorter axes stepwise increase upon
addition of another surfactant. These data and visual inspection
of these small clusters reveal that they form microscopic, fully
interdigitated bilayers, with the longest radius approximately
equaling half the length of a DPC surfactant. Nonspherical
objects experience a higher friction which qualititatively explains
the steeper dependency of diffusion rate on aggregation number.
Using shape corrections on the friction coefficient for ellipsoi-
dally shaped objects however we cannot account for the
observed deviation from Stokesian behavior. With axis ratios
between 2 and 3 as obtained from our simulations the predicted
increase in friction is of the order of 5-10% only.

Bogusz et al.24 find that clusters of 5 octyl glucoside are not
stable beyond the nanosecond time scale, whereas clusters larger
than 10 surfactants remain stable over a simulation time of 4
ns. We find that all clusters of DPC surfactants are fully stable
during the 50 ns runs (CLUS2 .. CLUS10), except for the dimer
which dissociated twice. Apparently the interaction between
DPC surfactants is stronger than between octyl glucosides,
probably due to the longer tail of DPC (12 methyl groups)
compared to octyl glucosides (8 methyl groups). Short time
escapes (shorter than 100 ps) of single surfactants occur more
frequently, on average once per 5 ns, without a clear cluster
size dependency. In any case the rate constant for the dis-
aggregation process,kdis, is much smaller than the rate constant
kagg of aggregation, making the assumption of an irreversible
aggregation process on which eq 2 is based valid.

Given the diffusion constantDi and the radiusRi of a cluster
i, the rate constantki,j of aggregation with another clusterj is
given by eq 3. Using the scaling behavior of the diffusion
constant and cluster radius with the number of surfactants as
apparent from the single cluster simulations (i.e., Figure 6), the
aggregation rate constants for any pair of clusters can be
predicted. In the left panel of Figure 7 rate constants based on

Figure 5. Appearance and disappearance of clusters of various sizes
during simulations RANDOM54A .. RANDOM54D. Graphs show
average results of the four simulations, for six different cluster sizes:
single surfactants, small clusters (between 2 and 4 surfactants),
intermediate clusters (5-8), large clusters (9-15), small micelles (16-
31), and micelles (32 or more surfactants).

Figure 6. Radius and diffusion constants of surfactant clusters as a
function of the number of surfactants. Circles (R) and squares (D) are
results obtained from the simulations of isolated clusters (CLUS1 ..
CLUS10) or taken from the simulation of Tieleman et al.14 for n ) 40,
54, and 65. Lines are linear fits on a log-log scale, in the rangen e
5 (solid) andn g 5 (dashed). The error bars in the case ofRare smaller
than the symbols.
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eq 3 (expressed as their stochastic value,ks ) k/V) are shown
for pairs of equal size (i ) j) and for pairs with one cluster
having the maximum size, i.e., the complete micelle (i ) 54).
The same rate constants are shown based on the predictions for
hard spheres (R ∝ n1/3, D ∝ 1/R). In the case of hard spheres,
the rate constants for aggregation of equally sized particles is
constant, whereas the hetero aggregation rates are only weakly
dependent on the difference in cluster number. The maximum
ratio observed in the hard sphere approximation isk1,54/k54,54=
1.5. Note that the absolute values of the rate constants based
on hard spheres depend on the reference cluster size (here taken
as n ) 1) but their ratios do not. Clearly, the predictions for
hard spheres are very different from the predictions based on
the simulation data for single clusters, which have a much larger
cluster size dependence especially in the range of the smallest
clusters, with maximum ratios ofk1,1/k54,54 = 2.5 for homo
aggregation (i.e., between equally sized clusters), andk1,54/k54,54

= 3 for hetero aggregation (between clusters of different sizes).
In the right panel of Figure 7 the same data are shown, but
now with the assumption that a strong attractive force exist
between the clusters that accelerates the aggregation. It was
assumed that as soon as two surfactants are within their mutual
cutoff distance as employed in the simulation i.e.,Rcut ) 1.5
nm, the clusters are strongly interacting (V(r) , -kT) and the
rate constants are given by eq 8 instead of eq 3, withrc ) Ri +
Rj + 1.5 nm. Comparing the aggregation rate constants with
interaction to the ones without, it becomes apparent that the
effect is strongest for the collision rate between the smallest
clusters, which increase by a factor of more than 2. As the cutoff
distance becomes smaller compared to the cluster radius, the
effect becomes weaker, dropping to about a factor of 1.5 for
the larger clusters.

D. Comparison to Kinetic Theory. In this section we will
compare the rate of aggregation of DPC surfactants into a single
spherical micelle as observed in the MD simulations to three
levels of theoretical predictions. The simplest level is the
analytical prediction of eq 5 which states that the total number
of clusters diminishes in time with a constant rate constant. This
prediction is based on the assumption that surfactant clusters
essentially behave as hard spheres, and further that finite size
effects can be neglected. The second level is based on a MC

simulation of the stochastic eq 9, using the rate constants of
Figure 7. This level is expected to be more accurate as it uses
variable rate constants which are based on the diffusion constants
and cluster radii of simulated clusters rather than hard spheres.
Besides, it also takes into account the fact that the system is
finite. The third level is a modification of the second level to
include the effect of attractive interactions between the clusters
through the use of the modified rate constants (right panel of
Figure 7).

In Figure 8 we compare the average rate of aggregation
obtained from the four simulations (RANDOM54A- D) to
the theoretical predictions of the second and third level. The
total number of cluster sizesMtot is plotted inversely against
time. Thus, the slope of the curve reflects the effective
aggregation rate constant at any time. For the simplest level of
theory a constant slope is predicted. In qualitative agreement
with this level, the simulated data appear (up to∼3 ns) as a
straight line, with a (virtually) time independent collision rate
ks = 1 × 10-4 ps-1. Given the results of Figure 7, this is
unexpected. Indeed the rates predicted by the stochastic approach
reflect a decrease in the apparent rate constant in a manner
similar to the decrease of the pair collision rates of Figure 7.
Therefore, the MD results and the stochastic results differ
significantly. This is apart from the slope of the curves fort >
3.5 ns from which it is however difficult to draw conclusions
due to the poor statistics of the MD data. The initial slope of
the MD data does compare reasonably well to the stochastic
data assuming a strong aggregating driving force, but in the
range 1 ns< t < 3 ns the observed rate of aggregation is much
higher than predicted by the stochastic approach, by at least a
factor of 2. Inspection of Figure 5 reveals that during this time
interval the aggregation of intermediate clusters into large
clusters and small micelles is the dominant recombination step.

V. Discussion

The results of our simulations show that the spontaneous
aggregation of DPC surfactants is much faster than can be

Figure 7. Comparison of stochastic rate constantsks based on
simulation data from Figure 6 and predictions for hard spheres. The
left set of curves is computed using eq 3, i.e., assuming no interaction
between the clusters, the right set of curves using eq 8 withrc ) Ri +
Rj + 1.5 nm, i.e., the maximum possible direct attractive interaction.
The thick lines are obtained from the fits to the simulation data in fiugre
6; the thin lines represent the hard sphere predictions. Solid lines denote
ki,j with i ) j ) n, dashed lines withi ) 1, j ) n.

Figure 8. Simulated rate of cluster aggregation compared to theoretical
predictions. The bold solid line is the rate of total cluster number
reduction averaged over the four simulations RANDOM54A ..
RANDOM54D. The thin solid line is a linear fit to these data. Two
theoretical lines are shown according to eq 9 with collision rates based
on simulation data as displayed in Figure 7. Dashed lines have no
additional interaction, dotted lines have strong interaction over the
maximum possible distancerc) Ri + Rj + 1.5 nm. Gray area’s denote
the width of one standard deviation as obtained from different
realizations. The inset shows the effective stochastic collision rate,
obtained from the derivative of the curves (multiplied by 2) in units of
ps-1.
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expected based on theoretical models, even if realistic (i.e.,
simulated) scaling of cluster radius and diffusion constant are
taken into account. We now discuss some of the possible reasons
for this discrepancy.

The presence of long range interactions could significantly
enhance the aggregation rate. We tried to capture this effect in
the stochastic modeling by using an effective collision radius
(eq 8) based on the interaction cutoff of 1.5 nm as used in the
simulations. This procedure considers two particles to be
aggregated as soon as the distance between their surfaces lies
within the interaction range set by the cutoff distance, thus
mimicking the effect of an (infinitely) strong driving force.
Although the resulting predicted increase in aggregation rate is
large (roughly by a factor of 1.5; see Figure 8), it is not enough
to account for the simulated rate of aggregation. Moreover, the
decrease in aggregation rate constant for collisions between
larger clusters remains, whereas a constant (or even increasing)
rate constant is observed in the MD simulations. To bring the
simulated and stochastic rates of aggregation into agreement,
one would need even longer range interactions which would
scale with cluster size. To test the hypothesis of a significant
effect of long-range forces, we resimulated the first 3 ns of
system RANDOM54A with a much shorter cutoff length (1.0
nm). As we did not see a significantly different aggregation
behavior, we conclude that the presence of direct long range
attractive forces is not likely to be the origin of the very fast
aggregation. A water mediated hydrophobic attractive force
could possibly offer an explanation.

One of the assumptions underlying eq 3 is that the collision
between two particles is diffusion-controlled. To test whether
this is the case in our system, we made a comparison between
the decay timetV of the velocity autocorrelation function (VACF)
and the average dead timetdeadbetween collisions which is given
by tdead) {dMtot/dt}-1. With an almost constant rate constant
as observed in the MD simulations, eq 5 can be used to obtain
the analytic expressiontdead ) τ/M1(1 + t/τ)2. The apparent
collision rateks = 1 × 10-4 ps-1 implies a characteristic time
of aggregation ofτ ) 2/(ksM1) = 350 ps. This is the time in
which the total number of clusters is halved (compare Figure
4). For t < τ the dead time is almost constant, with a value of
tdead= 10 ps. Fort > τ the dead time increases rapidly,∝t2. At
t ) 3 ns, the time where the simulated rate constant and the
predicted one differ most,tdead= 500 ps. From the simulations
CLUS1 and CLUS2-CLUS10 we computed the VACF of the
center of mass, showing a decay time of aroundtV = 1 ps for
the single surfactant, and 10 ps< tV < 25 ps for the clusters.
The decay time of the VACF for the clusters is comparable to
the initial dead time, which shows that during the initial stages
of aggregation the diffusion-limited approximation is inap-
propriate. The short time aggregation rate using eq 3 will
therefore be underestimated. To quantify this effect, an effective
short time diffusion constant can be calculated from the slope
of the mean squared displacement curves at short times. Fits
up to 100 ps yield diffusion constants for small cluster that are
between 25% and 50% higher. Using these effective short time
diffusion constants, the initial differences between the simulated
aggregation rate and the stochastic one (based on an effective
collision radius) disappear. Compared to the dead time of 500
ps estimated for intermediate times, the decay times of the
VACF of the simulated clusters become small. Therefore, the
diffusion-limited aggregation regime is expected to be ap-
plicable, unless hydrodynamic effects are important. Hydro-
dynamic effects could increase the diffusion speed in the large
systems while being absent in the small scale simulations of

single clusters on which the estimate of the diffusion constants
is based. This we leave for future investigations.

Another assumption underlying both the deterministic for-
mulation (eq 2) and the stochastic approach (eq 9) is the spatial
homogeneity of the system. This can only be achieved for
systems where the collision rate is small compared to the
diffusion rate, i.e., when the system has enough time between
collisions to randomize the distribution of particles. This is
clearly not the case in our system, even around the “critical” 2
ns time: During the estimated dead time interval of 300 ps, a
typical cluster of 10 surfactants has a root-mean-square dis-
placement of 0.6 nm only. Compared to the linear system size
of 9.0 nm this is far too small to be able to homogeneize the
system. Therefore, it seems reasonable to assume that the
distribution of surfactants in our system remains correlated
instead of homogeneous. For a nonuniform system one would
expect a higher collision rate, possibly explaining the difference
between the MD simulations and the stochastic approach. A
more quantitative estimate of the effect of spatial correlations
in cluster concentrations is hard to make, however.

Finally, two other possible factors that could contribute to a
larger aggregation rate in the MD simulations in comparison
with the stochastic predictions are the asphericity of the clusters
and excluded volume effects. Self-evidently, the treatment of
small clusters as spherical objects with a definite radius is an
oversimplification. Although shape corrections based on an
average ellipsoidal structure as observed in the single cluster
simulations are rather small even for the smallest clusters, the
clusters that form during the simulation need a considerable
time to relax toward their equilibrium structure (around 200 ps
for a cluster of 10 surfactants, around 5 ns for a 54 DPC micelle)
which makes the asphericity of the clusters during the aggrega-
tion process possibly significantly larger. Consider the limiting
possible effect of asphericity, i.e., that all the clusters are one
surfactant thick cylinders with an effective collision radius which
is an averaged value of the radius (equal to one surfactant) and
length (scaling linearly withn, the number of surfactants) of
the cylinder. Using this scaling relation for the collision radius
(i.e., R ∝ (2 + n)/3), the stochastic results come close to the
simulated results. However, this scaling law is very exaggerated.
For instance, it assumes a length of more than 10 nm for a
cluster consisting of 10 surfactants. More realistic approaches
fail to bridge the gap. The effect of excluded volume becomes
nonnegligible for the larger clusters. For instance, for a cluster
of 10 surfactants the excluded volume with respect to equally
sized clusters is∼58 nm3 which is 8% of the total volume, and
for a 54 DPC micelle with respect to a single surfactant it is
∼90 nm3 or 12% of the total volume. The effective concentra-
tions of the cluster becomes equally larger, and the collision
rates which take into account exluded volume effects can
therefore be expected in the above cases to be 8% and 12%
higher than the collision rate without this effect. Although
significant, this effect is also too small.

In future work we will hopefully be able to obtain more
insight into the physical origin of the fast aggregation process.
There is a need to study different concentrations and different
surfactants, to determine whether the kinetics of micellization
as observed in this work are universal or constitute a special
case. Considering the observation of subnanosecond aggregation
of such diverse systems as reversed micelles in carbon-dioxide8

and of cationic micelles9 in water, fast kinetics are likely to be
universal. One would also like to simulate larger systems, where
more than one final micelle can be formed, to obtain an
equilibrium micellar size distribution which could be compared
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to experimental values. The kinetics of micelle reorganizations
around the equilibrium distribution are likely to be different
(much slower) from the initial aggregation, as thermodynamic
gradients are becoming much smaller. We are currently
undertaking simulations of a system twice as large in each
dimension, at the same surfactant concentration as the current
system. Simulations of simplified models like the ones used by
Smit2 and Lipowsky3 can further help to understand the
descrepancy between the atomistic approach on one hand, and
the theoretical descriptions on the other.

VI. Conclusion

We have shown the spontaneous aggregation of DPC sur-
factants in water into a spherical micelle using all atom MD
simulations. The aggregation rate is much faster than expected
on the basis of stochastic modeling, especially the rate of
aggregation of clusters consisting roughly of between 5 and 15
surfactants. The total aggregation process for a system consisting
of 54 DPC surfactant molecules and more than 20000 waters
is found to be of the order of 12 ns, with a rate constant ofk =
1 × 10-4 ps-1 and a characteristic time of aggregation of∼350
ps. At higher DPC concentrations, a worm-like micelle appears
more stable than a spherical one, which can be explained in
terms of exposed surface area.
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