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Molecular-dynamics simulation of thermal conductivity in amorphous silicon
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The temperature-dependent thermal conductivity ~(T) of amorphous silicon has been calculated
from equilibrium molecular-dynamics simulations using the time correlations of the heat flux opera-
tor in which anharmonicity is explicitly incorporated. The Stillinger-Weber two- and three-body Si
potential and the Wooten-Weaire-Winer a-Si model were utilized. The calculations correctly pre-
dict an increasing thermal conductivity at low temperatures (below 400 K). The ~(T), for T) 400
K, is affected by the thermally generated coordination-defect states. Comparisons to both experi-
ment and previous calculations will be described.

I. INTRODUCTION

In spite of extensive studies, a number of outstanding
problems do remain in understanding the low-
temperature properties of amorphous materials. Among
the intriguing features have been the linear specific heat
of glasses, which is generally believed to be due to the
presence of localized two-level states. The nature of the
vibrational modes in glasses and the excess vibrational
density of states at low frequencies is also an interesting
aspect. In this paper we study the thermal conductivity
of amorphous materials, using amorphous silicon as a
prototype.

The temperature-dependent behavior of the thermal
conductivity is amorphous materials has the following
three characteristic regimes. (1) At low temperatures
(T( 1 K), tc( T) is proportional to T', which was ex-
plained by Anderson, Halperin, and Varma' as being due
to the scattering from localized two-level states; (2) at in-
termediate temperature (1 ( T ( 30 K), a plateau was
seen, which has attracted many theoretical investiga-
tions; (3) at high temperature (T ~ 30 K), where tc(T) in-
creases smoothly to a limiting value, in contrast to the
crystalline insulators where it decreases with 1/T. Birch
and Clark and Kittel gave qualitative explanations of
regime (3) using the kinetic formula tc=Cvl/3 that is
applicable only in the Boltzmann regime where one can
assign velocities U to propagating modes. Allen and Feld-
man (AF) have examined the validity of the kinetic for-
mula in their recent calculation of the thermal conduc-
tivity in amorphous silicon. Cahill and Pohl argued,
based on Einstein model, that regime (3) can be explained
by locally uncorrelated harmonic oscillators with relaxa-
tion times of the order of the period of vibration. How-
ever, this model is only valid in the limit of highly disor-
dered crystals. In this study we will study regime (3) with
a different approach from previous works.

There exist many theoretical models for the structure
of amorphous Si. A convenient theoretical model is the
four-coordinated Wooten-Winer-Weaire (WWW) a-Si

model. Biswas et al. obtained a vibrational density of
states for the WWW model that agreed well with experi-
ment. They have also obtained amorphous silicon
configurations with molecular-dynamics (MD) simula-
tions by cooling the molten silicon configuration. It is
also known that Stillinger-Weber (SW) potential is valid
for a wide range of properties of a-Si.

Since the WWW model has only four-coordinated sil-
icon atoms, this will be a more convenient starting point
for the thermal-conductivity calculations than molecular
dynamics models of a-Si (Ref. 8) that have coordination
defects. In addition, the use of the WWW model togeth-
er with the SW Si potential allows a direct comparison
with the recent calculation of Allen and Feldman.

Allen and Feldman have used the novel procedure of
using the Kubo formula for calculating thermal conduc-
tivity in a-Si. Matrix elements of the heat-current opera-
tor were calculated between harmonic vibrational states.
Although the zero-temperature WWW structure was
used, the temperature entered through the quantum oc-
cupation of the vibrational states. AF obtained a tc(T)
that increases in temperature up to 300 K and then satu-
rates at a value close to experiment. Low-temperature
values (T (300 K) for tc(T) were significantly smaller
than experiment. We present in this paper an alternate
approach that explicitly incorporates anharmonicities
and accounts for temperature-dependent structural
changes. Theoretical techniques developed by AF have
served as a useful guide in the present work.

II. THEORY

Thermodynamic response functions are related to the
appropriate time-correlation functions by the
fluctuation-dissipation theorem. Specifically, the thermal
conductivity is related to the time-correlation function of
the heat-fiux operator' S(t),

tc(T)= I dt( ( S).0(tS)) . (1)
0

The heat-Aux operator is defined by
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S(r)= gr, E;,
1

where r,- is the position of the ith atom and
E, =E, (t) E,—is the excess site energy of the ith atom.
We have derived in the Appendix the expression for the
heat Aux in terms of the atomic variables to be

S(t)= gv, E, + g (F,.&.v, )r;I .

Here v, is the velocity of the ith site; F,-&, the force on the
ith atom due to the lth atom; r,&, the relative distance be-
tween i and I atoms. This holds for both two- and three-
body interactions. We have assumed that the three-body
energy V; k can be assigned to the vertex atom j for the
site-energy calculations. The energy partition is not
unique, however, since the temperature gradient varies
on a scale much larger than interatomic distances, the de-
tails of the energy partition do not inAuence our results.
The first term is the convection term which is a measure
of atomic diffusion, and becomes appreciable only at
higher temperatures. The second term describes the
correlations between neighboring atoms and explicitly in-
cludes anharmonic effects. All quantities in Eq. (3) can
be directly obtained from our molecular-dynamics simu-
lations. This procedure of evaluating the thermal con-
ductivity from equilibrium time-correlation functions is
more well defined than the computation of a heat current
produced by a temperature gradient in an amorphous
network. Generally it is much more dificult to define ap-
propriate boundary conditions or heat baths that would
simulate a temperature gradient than using the equilibri-
um simulation performed here.

There are two ways of evaluating the integral of Eq.
(1). One is a simple integration over some finite time.
However, in practice the time correlations of S(t) decay
very slowly with time, leading to difficulty in estimating
a(T) from the integral of Eq. (1). A way of avoiding this
difhculty is to take the Fourier transform of the heat-fIux
operator defined by

kg( TMD — de D Q) ill 71 +
2

where D(co) is phonon density of states and the phonon
occupation number,

1

fi /k T
e

Thus the temperature is rescaled and the MD tempera-
ture is related to the quantum temperature. This relation
is shown in Fig. 1(a) explicitly. At high temperature
there is almost no difference between TMD and T so that
the classical molecular dynamics directly provides the
high-temperature limit. However, since the temperature
regime we are mostly concerned with is below the Debye
temperature (about 500 K for amorphous silicon), ' the
temperature rescaling is necessary.

In addition to the temperature rescaling, the tempera-
ture gradient, BTMD/BT multiplies the thermal conduc-
tivity since the gradient is implicitly associated with the
thermal conductivity such that

Q =a(BT/Bx) =a(BT /Bx)(BT/B)T )

where Q is the heat fiux. Thus the thermal conductivity
is rescaled in addition to the temperature scaling. As
shown in Fig. 1(b) the gradient decreases very rapidly at
low temperature and this will be the dominant eff'ect at
this temperature regime. This is expected because the
phonon occupation number increases as the temperature
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S(a))=f dt S(t)e' ' .

0
(4) 200—

Then one can easily show that temperature-dependent
thermal conductivity is the zero-frequency limit of the
frequency dependent a(co, T),

~( T)=x(co, T)i =o= iS. (co) i =o .
1

3Vk~T

All variables in Eqs. (1)—(5) are purely classical quanti-
ties. It is important to take into account quantum
corrections in the low-temperature regime in order to ac-
count for the different quantum occupation of phonon
states from the classical Boltzmann distribution. %'e
note that the energy of the classical oscillator in a MD
simulation is different from that of a quantum oscillator
in the real system. %"e correct this di8'erence by requir-
ing that the mean kinetic energy in the classical MD sys-
tem is equal to that of the real quantum system, "
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FIG. 1. (a) Relationship between classical temperature TMD
used in molecular-dynamics simulation and quantum tempera-
ture [Eq. (6)]. (b) Corresponding relation between temperature
gradient of the classical temperature and quantum temperature.
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rises and thus this should increase thermal conductivity.
The energy per particle is different in the classical and
quantum cases, and so is the gradient of the energy or the
derivative of the energy with temperature. As displayed
in Fig. 1(b) this difference is largest in the low-
temperature regime, where the gradient correction plays
a dominant role. This thermal effect is distinguished
from the temperature-induced generation of defects,
which will be discussed later. In fact, this gradient multi-
plied by 3Nk~ is equivalent to the heat capacity and this
heat capacity increases slowly up to 1000 K even above
the Debye temperature.

A complementary approach to the calculation of the
thermal conductivity has been presented by AF, based
on the Kubo-Greenwood formula. In that approach the
eigenfrequencies and eigenvectors of the harmonic nor-
mal modes of the WWW a-Si network were obtained with
the SW Si potential. The frequency-dependent thermal
conductivity ~(co) is related to the eigenfrequencies, occu-
pation of eigenmodes, and matrix elements of the heat-
current operator between the eigenstates. An advantage
of this approach is the explicit inclusion of quantum
statistics of the phonons, so that low-temperature proper-
ties are apparent. However, this approach neglects
anharmonic interactions, which may be important at
high temperatures. It is also based on using the zero-
temperature relaxed static amorphous silicon network for
calculations at all temperatures, which does not take into
account changes in the structure or coordination defect
densities with temperatures.
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FIG. 2. Thermal conductivity vs temperature of fcc crystal
with the simple repulsive potential. + are our calculations.
Points as well as the dotted line are from Ref. 14. T is the
melting temperature. Dimensionless units have been used.

III. RESULTS AND DISCUSSION

A. Crystalline fcc lattice

In order to test our method, we calculated the thermal
conductivity of a fcc crystal and compared to the results
obtained previously by Ladd, Moran, and Hoover
(LMH). ' As in the work of LMH we used a purely
repulsive inverse-twelfth-power pair potential. The time
correlation of S (t) [Eqs. (1—3)] decayed sufficiently rapid-
ly that the integral of Eq. (1) of the correlation function
was well behaved and could be evaluated directly to ob-
tain the thermal conductivity at two temperatures of the
order of ,' T, where T —is the melting temperature (Fig.
2). Since the temperature was high enough, the tempera-
ture and thermal conductivity rescaling were unneces-
sary. We have also verified that the time integral of Eq.
(1) was consistent with extrapolation of i~'(cu, T) [Eq. (5)]
to zero frequency, verifying the validity of our computa-
tional procedure.

As expected for crystalline materials, the high-
temperature thermal conductivity decreases with temper-
ature, due to the increase of the anharmonic effects with
increasing temperature. We now consider the case of
amorphous silicon for which the behavior is quite
different.

B. Amorphous silicon

We have considered the four-coordinated WWW
amorphous-Si configuration that has 216 atoms in a cubic

supercell of 16.13 A. The WWW model was relaxed by a
steepest-descent calculation to a local minimum of the
SW potential. The WWW model was then equilibrated
with the SW potential at various temperatures with runs
of 20 000—40 000 time steps, using a time step
~=0.74 X 10 ' s where energy conservation was
achieved up to eight significant figures. For each temper-
ature T, molecular dynamics runs of 65 536 steps were
employed to calculate the time correlations of S(t) and
~(co). The decay of the time-correlation function
(S(t)S(0)) was very slow, making the direct evaluation
of Eq. (1) unfeasible. Hence we evaluated ~(co) from Eq.
(5) and extrapolated the calculation to the zero-frequency
limit (Fig. 3) for various temperatures.

The frequency-dependent thermal conductivity for
amorphous silicon for various temperatures (Fig. 3) in-
corporates the quantum corrections described in Eqs. (6)
and (7). These corrections renormalize both the effective
temperature and the magnitude of the thermal conduc-
tivity. Without quantum corrections, a much higher
value of the low-temperature thermal conductivity would
be obtained. Each curve is the average over several runs
of 65 536 time-step runs. ii(co) decays rapidly at high fre-
quencies, with the decay much faster than the result of
AF. This is probably due to the inclusion of the anhar-
monic effects in our calculation, as opposed to the har-
monic approximation previously employed. It is also
plausible that v(co) should decrease with increasing fre-
quency, since high-frequency thermal perturb ations
should not lead to thermal current transport. We have
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FIG. 3. Calculated frequency-dependent thermal conductivi-

ty for temperatures 80, 155, 255, and 400 K. Dotted lines show

the extrapolation needed to obtain the static thermal conduc-
tivity at dift'erent temperatures.

FIG. 4. Thermal conductivity vs temperature for amorphous
silicon. Solid circles are from Allen and Feldman (Ref. 5)' and

open circles are from experiment (Ref. 17). Open circles with
error bars are the present calculations.

studied the decay of a(co) by plotting ~(co) as a function of
co and find that v(co)-co '' to u, for the high-
frequency regime of 2 —4 meV in Fig. 3. This suggests
that Rayleigh scattering with a decay of co is a valid
representation of the high-frequency regime. This Ray-
leigh scattering has been suggested by other authors. '

The absence of long-wavelength modes due to the finite
size of the simulation box in our calculation severely de-
pletes the contribution to the static thermal conductivity
and leads to the dip in the calculated v(co) at low frequen-
cy. The v(co) whose mean free path is less than the sys-
tem size (16.13 A) is explicitly included in our time-
correlation function of heat-ffux operator [Eq. (3)j. How-
ever, the thermal propagating modes that are not scat-
tered by the phonons and have a mean free path greater
than the system size, have been lost due to the finite sys-
tem size. In principle if we used an infinite size simula-
tion system, the low-frequency dip would vanish. The
position of our peak in yc(co) is similar to the result of AF
and is approximately independent of temperature.

The dip of a(co) at low frequencies below 1 meV is also
associated with two other practical limitations in MD
simulation. Firstly, the finite time of the computer run
(48.5 ps) leads to a cutoff'frequency of 0.09 meV. Second-
ly, the finite size of the system leads to a cutoff frequency
of approximately 6 meV, below which there are no ex-
tended modes. If the size of the system is bigger, we
would have higher peaks. This was confirmed by AF. '

In the limit of an infinite size system and an infinite sirnu-
lation time, peak of ~(co) would occur at exactly co=0.
AF have argued that the a(co) curve may be smoothly ex-
trapolated to zero frequency to obtain a reasonable
theoretical estimate for the static thermal conductivity.
We adopt this ansatz to obtain the temperature depen-
dent a(T) in Fig. 4. We also estimate numerical errors
both from the extrapolation procedure and from the finite
time runs, and display these in Fig. 4.

Illustrated in Fig. 4 is the temperature-dependent be-
havior of the thermal conductivity which was obtained
from the extrapolation of frequency-dependent thermal

conductivity in Fig. 3 together with values derived by
AF, and experimental values by Cahill et al. ' The ex-
perimental values of ~(T) show a gradual increase from
50 to 150 K and indicate a saturation of a(T) for higher
temperature. The physics of the experimentally observed
saturation at high T for glasses is that the phonons are so
strongly scattered at high T that their mean free path
reaches a limiting lower value of the order of an intera-
tomic spacing a, leading to a saturation value of the
thermal conductivity at x-(1/3)C, va. This is very un-
like the case for crystals where the mean free path l is
much larger and decays as 1/T at high T, due to increas-
ing phonon-phonon scattering, leading to a(T) ~ 1/T at
high T.

Our calculated value of ~( T) rises slowly with tempera-
ture, reaches a maximum near 300 K and shows a small
decrease above 400 K. The essential behavior of the
feature is basically similar to the experiment' and also to
previous theoretical work. In this temperature regime,
the static phonon mean free paths l can be assigned to its
maximum value which is the phonon wavelength k or the
scale of disorder, ' while the heat capacity still increases
and reaches a saturation value at high temperature. Thus
the thermal conductivity basically follows the heat capa-
city which was explicitly introduced in Fig. 1(b). This
effect must be emphasized since it was not clear from
both the experiment and the theoretical calculation. In
addition, our results are consistently lower than AF's.
This is expected since our MD simulation includes anhar-
monicity. The anharmonicity leads to more phonon-
phonon scattering and lowers the thermal conductivity,
relative to values of AF. This anharmonicity is expected
to be larger at higher temperature.

An aspect that needs discussion is the decrease of the
calculated w(T) above 400 K. The thermal eff'ect of in-
creasing occupation of phonon modes is expected to lead
to an increase in the thermal conductivity for higher tem-
peratures. This implies that there must be another mech-
anism affecting the thermal conductivity. In our MD
simulation, the WWW a-Si configuration was equilibrat-



43 MOLECULAR-DYNAMICS SIMULATION OF THERMAL. . . 6577

ed by the SW Si potential at various temperatures. We
explicitly found temperature-induced structural changes.
To illustrate the structural changes, we performed a
steepest-descent quench to the nearest local minimum,
for equilibrated configurations at the various tempera-
tures. This led to an inherent structure that eliminates
the effects of thermal disorder. The potential energy of
these inherent configurations, Fig. 5(a), shows a decrease
with temperature, indicating the thermal annealing of the
WWW model. Also the number of coordination defects
increases with temperature. There is an increase in both
the number of dangling bonds (three-coordinated atoms)
[Fig. 5(b)] and the number of floating bonds (five-
coordinated atoms) [Fig. 5(c)] with temperature. In fact
the WWW model has only one dangling bond and one
fioating bond at low temperatures (below 100 K). The
number of Aoating bonds is approximately twice that of
dangling bonds. The over-coordinated a-Si model from
the higher temperature runs is very similar to the slow
melt-quenched model generated by Luedtke and Land-
man. ' We also observed that the location of the coordi-
nation defects changes with temperature, suggesting de-
fect diffusion. The temperature-induced coordination de-
fects act as new scattering centers for phonons and lead
to the decrease in thermal conductivity above 400 K. We
refer to this as the defect effect.

In addition to the increase in defect densities above 400
K, we need to consider the alternative mechanism of in-
creasing phonon-phonon scattering at higher T which
can also lead to decreasing v(T). We take into account
here two sources for the phonon lifetimes. These are (i)
scattering from static structural disorder with a lifetime
~,—the analogue of impurity scattering in crystals, and
(ii) phonon-phonon scattering with a lifetime of rz, which
is temperature dependent. If the average phonon lifetime
from both processes is ~, then

processes in the system, the thermal effect and the coordi-
nation defect states. At low temperature, the thermal
conductivity increases due to the fact that the thermal
effect increases the heat capacity. The quantum correc-
tions are necessary. Thus the thermal effect is dominant
at the low-temperature regime. At high temperature
above 400 K, the coordination defects increase as shown
in Fig. 5 and reduce the thermal conductivity. However,
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In crystalline materials one expects the impurity con-
tribution ~, to the lifetime to be much larger than ~2 at
room temperature, so that the high-temperature ~ is
governed by phonon-phonon interactions. Alternatively,
in strongly disordered systems, such as a-Si, one expects
~, &~z at room temperature, i.e., much stronger scatter-
ing from the static structural disorder —an inference also
suggested by the calculation of AF. The harmonic AF
calculation includes 7 j processes but neglects anharmoni-
city or ~2 scattering processes and yet reproduces reason-
able values of v(T) for T —300—400 K. This argues for
~& (~z and implies that disorder scattering lifetimes can
account for the thermal conductivity of a-Si at 300—400
K. Also the mean free path U~ has not reached its lower
limit (of the interatomic spacing) yet at 400 K since v(T)
is still increasing. Since ~& &~2 an increase in density of
coordination defects (as in Fig. 5) should decrease r& and
decrease v(T) —with the defect centers having a larger
effect in decreasing ~ than the phonon-phonon scattering.

We have thus far found that there exist two competing
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FIG. 5. All configurations were obtained by a steepest-
descent quench of a-Si models, equilibrated at various quantum
temperatures. (a) shows the potential energies of the
configurations, whereas (b) and (c) show the increasing number
of dangling-bond and Aoating-bond defects.
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in this case the increase in defect states dominates the
thermal eFect and thus the thermal conductivity de-
creases. The coordination defects are a property of the
SW Si potential. A similar high density of Aoating bonds
has also been observed in melt-quenched a-Si models gen-
erated by Luedtke and Landman. ' The decrease in ir( T)
above 400 K is mainly a consequence of these coordina-
tion defects, and was not present in the AF calculation.
Beyond 1100 K the amorphous network may melt and
the thermal conductivity decreases further.

Our calculated values of the thermal conductivity are
lower than those of experiment in the low-temperature
regime 50—200 K, but they approach values in good
agreement with experiment at 300—400 K. In fact, the
classical MD simulations are supposed to yield the
correct high-temperature limit. The discrepancy between
experiment and theory at low temperatures is due to the
absence of long-wavelength propagating modes in our
model that have mean free paths longer than our simula-
tion cell size, and hence can e%ciently transport heat.
However, we do account for long-wavelength modes
(below 6 meV) that have mean free path smaller than the
size of the cell. We expect a better comparison with ex-
periment can be achieved in simulations using a larger
cell.

We can make a simple estimate of the thermal conduc-
tivity arising from the missing long-wavelength modes.
Generally the thermal conductivity ir(T) can be written
as

i~(T) = —,
' f +f den D (cv)C, (ai)l (ai)v (co) . (9)

(10)

The contribution l&Ls from two-level states varies as cu

whereas lz is a constant, independent of frequency. For
our estimate of ir(T) we neglect contributions from the
two-level states and the boundary scattering for the fol-
lowing reasons: (i) The two-level states lead to extra
scattering at low frequencies that may be approximately
accounted for by redefining the co;„parameter. (ii) To

The cutoF frequency m, is 6 meV in our simulation mod-
el. Here D(ai) is the density of vibrational states, C, is
the specific heat, l (co) is the mean free path and v (co) the
velocity of the modes with frequency co. The contribu-
tion above m, has already been considered in the simula-
tion. One way to estimate this contribution was proposed
by AF by approximating l(ai) to be either a constant or

, and this approach fits the high-temperature limit
but the calculated ir( T) is considerably lower than experi-
ment below 150 K.

We may estimate the contribution of (9) below co, by
assuming a D (~v) —co and assuming that
l(co) —lo(ai;„/co) (=lR,„), i.e., Rayleigh scattering for
frequencies co;„&co&co, . More generally we should in-
clude the contributions from two-level states and bound-
ary scattering which have mean free paths l~Ls and l~,
respectively. Then

the best of our knowledge, a plateau in the thermal con-
ductivity has not been observed in a-Si and hence the
density of two-level states is not expected to be
significant. (iii) Including either two-level states or
boundary scattering introduces further unknown parame-
ters.

Hence for the estimate of the low-frequency modes to
the thermal conductivity we include just the Rayleigh-
scattering contribution that involves the scattering by
local-density Auctuations or bond-length Auctuations of
the system, which alter the local sound velocities. The
Rayleigh scattering has also been inferred by other au-
thors. ' We find that we can integrate (9) from ai,„ to
ai, to account for the experimental value of ir(T) at 40 K
Pc(40 K) =0.62 W/mK], if we assume values of co;„=0.4
meV, and lo =4. 1 X 10 m, and use an average sound ve-
locity of 8.4X10 m/s from crystal Si data. Similar
values of co;„and lo have been inferred for several
glasses by Graebner, Golding, and Allen (GGA), from
fits of the low temperature x(T) to experimental data.
This suggests that our inferred values are physically
reasonable and consistent with previous estimates. This
simple analysis indicates that the long-wavelength modes
with large mean free paths significantly contribute to the
low-temperature thermal conductivity in a-Si. A full
theory of the low-temperature a must incorporate (i)
physically reasonable temperature dependences of cu;„
and l„and (ii) merge satisfactorily with the high-
temperature a already calculated. These are aspects for
further work.

Our calculations may be extended in a straightforward
way to amorphous germanium (a-Ge), which is con-
sidered to have an amorphous network and structural
disorder very similar to a-Si. The main diA'erence is the
heavier mass, which leads to a softening of the entire vi-
brational density of states by I /v'M which is 0.62 from
the a-Si values. The lower-frequency phonons directly re-
normalize the thermal conductivity by the same amount
so that a.( T) experimentally saturates at =0.6
Wm ' K ' for a-Ge. '

IV. CONCLUSIONS

In summary, we have calculated the thermal conduc-
tivity of amorphous silicon as a function of temperature
using equilibrium molecular-dynamics simulations. Our
method is based on relating the thermal conductivity to
the time-correlation function of the heat-Aux operator.
We have derived a form for the heat-Aux operator in
terms of interatomic positions, velocities, and forces, that
is appropriate for both two- and three-body interatomic
potentials. The expressions for the thermal conductivity
Eqs. (1)—(5) may be applied directly to other physical
properties. To the best of our knowledge, this is the first
demonstration that thermal conductivity may be calcu-
lated from molecular-dynamics simulations for systems
described by many-body potentials.

We have presented detailed results for the
temperature-dependent thermal conductivity of amor-
phous silicon and limited results for fcc metals. Our cal-
culations for a-Si are in the temperature range 50 to 800
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K, above temperatures where either two-level states or a
plateau in thermal conductivity may be important. We
demonstrate that in this temperature range, the thermal
conductivity a(T) of a-Si increases with temperature,
whereas the thermal conductivity of an fcc crystal de-
creases with temperature consistent with experimental re-
sults. The increase in a(T) is typical for most amorphous
solids and due to an increase in the vibrational modes
that can transport heat current. The decrease in v(T) for
crystalline materials is related to the decreasing phonon
mean free paths with temperature.

Our results for a-Si in the 50—400 K range agree well
with previous calculations of AF using the Kubo-
Greenwood formula. Our calculated values are lower
than those of AF, consistent with the inclusion of anhar-
monicity in the present calculations. The present calcula-
tions indicate a decrease in ~ above 400 K due to the in-
creasing number of coordination defects generated at
higher temperature.

The calculated values of a(T) are still lower than ex-
periment between 50—200 K, but approach experimental
values in the 300—400-K range. We emphasize that the
absence of long-wavelength propagating phonon modes
in our calculations, with mean free paths larger than our
cell size, accounts for the difference between calculated
values and experiments at lower temperatures. Larger
simulation systems may be needed for better comparison
with experiment.
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APPENDIX

In this appendix we derive the expression for the heat-
fiux operator [Eq. (3)]. Starting from the definition of the
heat-flux operator S (t) [Eq. (2)], we express S (t) as

BE,S(t)=gv, E, +gr, gv&. + gF&.
BE;

Here the time derivative has been reexpressed as a deriva-
tive of the positions and velocities. We introduce here
the force on atom l due to atom I,, FI;=BE,/BrI, and
write S(t) as

S(t)= g v;E;+ g —(FI; vI )r;+ g (F; v, )r, ,
1 i, l l

which is equivalent to

S(t)= gv, E, + $( —
F&,

.v&+F;~.v;)r; .
i, I

(12)

(13)

The i =1 term vanishes in the summation. We may
then interchange the i and l indices of the second term to
get

S(t)= g v, E, + g (FI, v&)(r& —r;) . (14)
1 i, l, i&1

The first term is the convection term describing atomic
diffusion and is expected to be significant only at high
temperatures near melting. The second term describes
the correlations between neighboring atoms, including
anharmonic eff'ects. Equation (14) is easier to interpret
physically. The thermal current from the second term
directly depends on the scalar product of the velocity vI
of atom l and the force F&, exerted by atom i on atom l,
consistent with the physical picture of heat transport.
Equation (14) also provides the correct direction of heat
transport and is equivalent to Eq. (3) in the text.
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