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Molecular-dynamics simulation study of the glass transition in amorphous polymers

with controlled chain stiffness
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We report computation results obtained from extensive coarse-grained molecular-dynamics simulations of

amorphous ensembles of polymer chains at constant density. In our polymer model, we use bending and torsion

potentials acting along the polymer backbone to control the chain stiffness. The static and dynamic properties

of the polymer bulk have been analyzed over a large temperature interval in search for the onset of the glass

transition. The glass transition temperatures Tg, for different types of chain stiffness, have been determined

from the dependence of the self-diffusion coefficient D on the temperature T as the limiting value where the

diffusion vanishes. Increasing the chain stiffness induces an increase of the glass transition temperature. The Tg

values estimated from diffusion are confirmed by analyzing the relaxation times of the autocorrelation func-

tions for the torsion angle and for the end-to-end vector. The dependence of the diffusion coefficient D on the

chain length N is strongly affected by temperature for chains with bending and torsion stiffness. For systems

with relatively short chains �N�50�, the exponent � from D�N−� increases from the value ��1 expected in

the Rouse regime to ��2 as the temperature is lowered towards Tg.

DOI: 10.1103/PhysRevE.76.011807 PACS number�s�: 61.41.�e, 64.70.Pf, 83.10.Mj

I. INTRODUCTION

The glass transition temperature Tg is one of the most

important attributes of amorphous polymers for two main

reasons. First, Tg characterizes the local chain dynamics and

represents an intrinsic signature of the internal structure. Sec-

ond, below this temperature, in the glassy state, amorphous

polymers find countless technical applications. However, the

complex process of the glass transition is still not yet com-

pletely understood, motivating Philip W. Anderson �Nobel

Laureate in Physics� to state in 1995: “the deepest and most

interesting unsolved problem in solid state theory is probably

the theory of glass and the glass transition temperature. This

could be the next breakthrough in the coming decade.

Whether it will help make better glass is questionable” �1�.
Computer simulations—here we refer in particular to

molecular-dynamics �MD� methods—of polymeric systems

at low temperatures can help in the development and valida-

tion of a theory of glass transition by allowing a large palette

of virtual “experiments” in which different factors can be

investigated separately. A significant advantage over labora-

tory experiments is that MD simulations make possible a

much more detailed analysis of both material structure and

local dynamics. However, the time range accessible to com-

puter simulations is, inevitably, very short and the number of

direct experimental techniques that can cover it is very re-

duced. This limits the set of observable properties that can be

monitored both by experiment and by computer methods and

obtaining comparable Tg values remains difficult.

Due to this insurmountable time limitation, only relatively

high temperatures are feasible in MD simulations. This frus-

trates comparison between simulation results and the predic-

tions of early Tg theories involving low critical temperatures

�2,3�. Fortunately, more recent theories �4� deal with con-

cepts at smaller time scales and higher critical temperatures

where computer simulations can indeed be a powerful test.

We refer the interested reader to a few extensive review ar-

ticles on the theoretical concepts underlying Tg and their cor-
respondence with simulation and experimental results �5–7�.

The majority of MD simulation studies have tried to iden-
tify Tg by monitoring changes of certain macroscopic or mi-
croscopic properties during cooling. Early works, using a

united-atom polyethylene model �8–11�, have investigated

the static and dynamic properties of polymer chain en-

sembles and the most important signs indicating a glass tran-

sition were a distinct kink in the temperature dependence of

the specific volume and a continuous change in the time

dependence of the chain mean-square displacements at de-

creasing temperature values. Using the same polyethylene

model, very similar values of Tg have been obtained from

nonequilibrium MD simulations of stress relaxation in poly-

mer melts �12,13�.
More recently, other studies have predicted the glass tran-

sition temperature for specific polymer species by including

more chemical details in the simulations �14–17�.
Polymers with very different chemical configurations go

through glass transition, thus rendering it a universal phe-

nomenon. Therefore, it is appealing to study the glass tran-

sition using a simple and elegant coarse-grained polymer

model that is safe from chemical details and is computation-

ally efficient. The well-known coarse-grained model intro-

duced by Kremer and Grest �18� is very convenient, giving

access to long simulation times, and it has already been used

with success in many polymer dynamics studies. Here, we

will also use the Kremer-Grest model, but augmented with

bending and torsion potentials to control the chain stiffness,

and we systematically investigate the effect of temperature

on polymer melt behavior.

In the Kremer-Grest model, each polymer chain is repre-

sented by a sequence of beads connected by unharmonic

springs while all beads in the system interact via a purely

repulsive Lennard-Jones �LJ� potential. The dynamics of a

polymer melt is determined by the entanglement between the

chains of the ensemble, and this has direct implications on
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the physical properties of the system, including phase transi-
tions and Tg. The authors of the model suggested themselves
that the temperature at which all the simulations were per-
formed, T=1.0� /kB, is “at least a factor of 2 above Tg.”

The most cited papers when referring to the glass transi-
tion temperature Tg of systems based on the Kremer-Grest
model are Refs. �19,20�. These assign the glass transition to
“just below 0.6� /kB” by looking at the shear response in thin
polymer films. However, these simulations are conducted at
constant null pressure and the LJ potential includes an attrac-
tive part. The Tg value was also estimated for polymer bulks
�at constant pressure and volume� �21� and for random poly-
mer network with cross-links �22� by simulations that in-
clude as well an attractive part of the LJ interaction.

A recent temperature study using the Kremer-Grest �re-
pulsive LJ� model has been performed by Yamamoto and
Onuki �23� which by simulating supercooled polymer melts
in shear flow have not seen any characteristics of the glassy
state even for T=0.2� /kB.

It is very difficult to compare all these values of Tg be-

cause they have been computed for bulks, films, or networks

and the simulations were run under different conditions �con-

stant pressure versus constant volume�, with different values

of the LJ cutoff distance �including or not attractive interac-

tions� and, especially, involving various polymer chain

lengths or densities. On the other hand, a methodic analysis

of the temperature effects in polymer bulks for finding clear

evidence of glass transition in polymer bulks was still

needed. We focus our study on polymer melts simulated at

constant volume using purely repulsive LJ interactions. The

first aim of the current paper is therefore to systematically

cover this middle ground that remained to some extent insuf-

ficiently studied until the present. Accordingly, we perform

an exhaustive study of the influence of temperature on the

static and dynamic properties of polymer melts in search of

evidence for the glass transition. The second and most im-

portant goal of our work is to study the influence of chain

stiffness on Tg. We will use bending and torsion potentials to

control the chain stiffness, and we will analyze their effect,

combined with the temperature, on polymer melt dynamics.

Bending stiffness has been used also in Refs. �24,25�. In a

previous study �26�, we analyzed the effect of bending-

torsion stiffness on polymer behavior and entanglement at

constant temperature T=1.0� /kB. Here we extend our inves-

tigation to a large temperature interval T= �0.05–10.0�� /kB.

From diffusion results, we determine the Tg values

for three types of chain stiffness and confirm them by inves-

tigating the time autocorrelation functions for the dihedral

angle and for the end-to-end vector. A comparison is made

between results obtained using repulsive versus attractive LJ

interactions.

Another contribution of the present paper is the analysis

of the chain length influence on polymer dynamics: how

chain length affects the glass transition temperature and how

the D-versus-N dependence is modified by the temperature.

Before presenting and discussing how the static and dy-

namic melt properties change with temperature, we first

briefly review the computational model and the methods

used for the generation and equilibration of the polymer

systems.

II. MODEL AND SIMULATION METHOD

We perform MD simulations of ensembles of entangled

polymer chains using a coarse-grained polymer representa-

tion based on the Kremer-Grest model �18�. Each chain is

constituted by a linear string of beads connected by springs

and all the beads interact via a repulsive LJ potential. We

have extended this basic model by including bending and

torsion potentials to control the chain stiffness and studied

their effect on the entanglement length �26�. Here we per-

form an augmented analysis of the combined effects of tem-

perature and chain stiffness.

The simulated systems consist of M chains, each chain

containing N beads, and the bead number density is �
=0.85�−3. The potentials governing the interactions between

the beads are given in Table I, and the parameter values used

in our simulations are given in Table II. All beads, connected

or not, interact through a repulsive Lennard-Jones potential

truncated at rc=�62� �see fourth equation in Table I�. In ad-

dition to the LJ potential, adjacent connected beads also in-

teract through a finite extensible nonlinear �FENE� potential,

given in the first equation in Table I. This combination of

potentials and parameters prevents the chains from crossing

each other during MD and yields entangled ensembles with

realistic dynamics for polymer melts �18�.
We control the chain stiffness by using a bending poten-

tial VB and a torsion potential VT acting on three and four

consecutive connected beads, respectively; see second and

third equations in Table I. It is important to note the novelty

of the torsion potential VT: it depends not only on the torsion

angle �i, but also on the bending angles 	i−1 and 	i �26�. In

this way the computational instabilities arising when two

successive bonds align are naturally eliminated. We gain the

essential advantage that the torsion angles are controlled by

an efficient continuous potential, rather than by using com-

TABLE I. Potentials used in simulations to represent the inter-

actions between beads.
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putationally expensive rigid constraints. This helps to man-

age large systems for long simulation time in order to per-

form diffusion studies.

Figure 1 shows a surface plot of the combined bending-

torsion potential VCBT=VB+VT. The dynamics of the poly-

mer chains will always tend to evolve towards the three local

minima that correspond to the equilibrium bending angle 	0

and the three equilibrium states of the dihedral angle �
�trans, gauche+, and gauche−�.

While most of our simulations are run using a purely re-

pulsive LJ potential with a cutoff distance rc=�62�, we will

also present, for comparison purposes, some results obtained

by including also the attractive part with a doubled cutoff

distance rc=2�62�. These two cases will be termed, for sim-

plicity, LJ repulsive and LJ attractive.

The samples for the MD runs are carefully prepared to be

compatible with the subsequent simulation conditions.

The initial chain conformations are generated in conformity

with the type of stiffness that will be induced along the back-

bone �26�:

�i� Freely jointed chain �FJC�—intrinsic stiffness only
�neither bending nor torsion potentials�: initial chains gener-
ated as nonreversal random walks.

�ii� Freely rotating chain �FRC�—bending stiffness �bend-
ing potential, no torsion potential�: initial chains generated as
random walks with fixed bending angle 	0=109.5° between
consecutive bonds.

�iii� Rotational isomeric state �RIS�—combined stiffness
�both bending and torsion potentials�: initial chains generated
as random walks with fixed bending angle �	0=109.5° � and

fixed dihedral angles �0=60° �gauche+, 20% probability�,
180° �trans, 60% probability�, and 300° �gauche−, 20%
probability�.

After generation, the chains are randomly placed inside
the simulation box and then a packing procedure spreads the
chains as uniform as possible using random moves �rotation,
translation, reflection�, while treating the chains as rigid ob-
jects. A preequilibration run follows, employing a capped LJ
potential with the aim to eliminate the initial bead overlaps.
More details can be found in Refs. �27,26�.

The MD runs are performed at constant volume V and
constant temperature T with periodic boundary conditions.
The temperature is controlled by coupling the system to a
heat bath �28�: the friction coefficient is 
=0.5�−1 and the
strength of the Gaussian white-noise force is 6kBT
.

The equations of motion are integrated using the
“velocity-Verlet” algorithm �29� with a time step related to
the temperature values: generally, �t=0.01�, but for high
temperatures, �t=0.006� or even �t=0.003� has been used.

To extract the static and dynamic properties of the poly-
mer system at a chosen temperature, two types of equilibra-
tion procedures were utilized: �i� the systems were generated
and equilibrated at that particular temperature or �ii� the sys-
tems were cooled in steps from a higher temperature to the
desired one by allowing them to equilibrate at each step. We
did not find any significant difference between these two
techniques �which might be due to our judicious initial gen-
eration method�.

Results will be presented mainly for systems of M
=1000 chains �unless otherwise specified� with different
chain length �N�50� and stiffness. The simulation of a

system with long and stiff polymer chains �RIS� at the lowest
temperature required at least 20
106 MD steps, or almost
6 weeks of CPU time on a 2.8 GHz/1 GB Pentium 4

processor.

III. RESULTS AND DISCUSSION

Since the glass transition is associated with a dramatic

slowing down in the motion of chain segments, we focused

our in silico study on the temperature dependence of the

dynamic properties, with the major goal of finding clear evi-

dence for such internal motion retardation. However, we start

out by investigating the static properties not because the

glass transition would have a noticeable effect on the long-

range static structure, but primarily to prove that the systems

are still in the amorphous state even at low temperatures.

A. Static properties

We consider first the temperature dependence of the char-

acteristic ratio CN, which is a measure of the spatial exten-

sion of the polymer chains, defined as
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FIG. 1. Surface plot of the combined bending-torsion potential

VCBT=VB+VT. In order to obtain a bivariate function VCBT�	 ,��,
we considered 	i−1=	i=	 �deg�. The chain conformation during

dynamics will evolve towards the three local minima.

TABLE II. Parameters used in simulations.

Parameter In MD units

Lennard-Jones length � 1

Lennard-Jones minimum energy � 1

Lennard-Jones cutoff distance rc �2��62

FENE elastic constant k 30

Maximum bond elongation R0 1.5

Bending constant k	 25

Bending equilibrium angle cos 	0 −0.333

Torsion constant k� 1

Torsion polynomial coefficients in the third

equation in Table I

a0 3.00

a1 −5.9

a2 2.06

a3 10.9
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CN = �R2�N��/Nb2, �1�

where R is the chain end-to-end distance, N is the number of

beads in the chain, and b the mean bond length. Figure 2

shows the variation of CN with the temperature for systems

with M =1000 chains of N=50 beads for the three types of

chain stiffness investigated here. The temperature has no sig-

nificant influence on FJC and FRC chains, as observed also

in other studies �8,21�. The explanation for this behavior re-

sides in the fact that both the bond �FENE+LJ� and the

bending potentials have one energetic minimum. The tem-

perature modifies only the amplitude of the oscillations

around this minimum and, as a result, the total effect on CN

is negligible.

For the RIS case, however, CN is strongly dependent on

temperature. This was previously evidenced by the atomistic

simulations of Rigby and Roe �8�, yet their results appeared

to have a strong deviation from the theory at low tempera-

tures. Our results from Fig. 2 are in good agreement with the

theoretical predictions of the classical three-state RIS model

�30�. To illustrate this, let us consider the very simple case of

a polymer with a fixed bending angle �	=109.5° � and three

discrete states S allowed for the torsion angle: gauche+,

trans, and gauche− ��S=60°, 180°, 300°�. The occupancy

probability for each state S is given by the Maxwell-

Boltzmann distribution

pS =
e−VS/kBT

Z
, with Z = 	

S

e−VS/kBT, �2�

where VS is VT from the third equation of Table I for specific

�S values for each state and for 	i=	i−1=109.5°. The theo-

retical CN for infinitely large chains C� is then computed

as �30�

C� =
1 − cos 	

1 + cos 	

1 − cos �

1 + cos �
, cos � = 	

S

pScos �S, �3�

and its dependence on T is drawn as the solid curve in Fig. 2.

It is notable that this theoretical inference reproduces quali-

tatively very well the experimental results for the entire tem-

perature interval considered in the MD simulations. The dif-

ference between the predicted curve and the experimental

data points can be explained on the basis of the disparity in

complexity between the simulated systems and the presented

theoretical model. Three opposing effects play a major role,

altering C� according to Eq. �3�: �i� in the simulated systems

the chain length is finite �N=50�; �ii� while the initial con-

figurations of the polymers are generated with fixed torsion

angles corresponding to the discrete states gauche+ �20%�,
trans �60%�, and gauche− �20%�, later during MD the tor-

sion angles take continuous values, because the torsion po-

tential itself is continuous; �iii� the torsion potential VT influ-

ences the equilibrium bending angle 	0 and pushes the

distribution of bending angles towards larger values.

Nevertheless, the three-state RIS model captures the tem-

perature influence very well: as temperature increases, the

probability for trans state decreases, while the probabilities

for the intermediate torsion angles increase, thus naturally

leading to shorter chains, as observed in simulation. For very

high temperatures, all dihedral angles become equally prob-

able and CN tends to the value of the FRC case. This

asymptotic behavior at high temperatures can indeed be ob-

served in Fig. 2. At the opposite end, towards low tempera-

tures, the increase in CN with decreasing temperature contin-

ues without any sign of cessation of the trans-gauche

conformational transitions. Our results disagree with the ob-

servations reported by Rigby and Roe �8�, who measured an

almost constant CN below a certain temperature, contrary to

the theory.

We have also investigated the pair-distance correlation

function g�r�, given in Fig. 3, in order to see how the tem-

perature affects the local structure of the polymer melt. It is

important to observe from the beginning that the peaks

present in the calculated pair-distance functions are due ex-

clusively to the bonds along the chain backbone and to the

LJ coordination shells. There are no intermediary peaks that

would have signaled the presence of crystallization. The first

sharp peak represents the cumulated contributions of the

polymer bonds �b=0.96�� and the first LJ shell �rc=�62�

�1.122��. At high temperatures, these distances merge to

become a collective peak around r��. Upon cooling, this

peak splits more and more evidently into two separate peaks,

as observed also in Ref. �21�. The dashed curves in Fig. 3

�FJC� were obtained by including also the attractive part of

the LJ potential �rc=2�62��: for decreasing temperature, the

peak due to the first LJ shell surpasses the peak due to the

bonds and the remaining LJ peaks become more evident. The

second LJ coordination shell is visible in a peak at �2.2�.

The bending potential in FRC chains induces an addi-

tional peak at �1.6� �see Fig. 3, FRC�. This peak is more

distinct at low temperatures and for higher values of the

bending constant k	. This bending peak is attenuated for RIS

T (units of ε/k
B
)

C
N

0 1 2 3 4 5 6
1

2

3

4

5

6

RIS

FRC

FJC

C
∞

FIG. 2. Dependence of the characteristic ratio CN on the tem-

perature for systems of M =1000 chains with N=50 beads/chain,

subjected to intrinsic stiffness �FJC�, bending stiffness �FRC�, or

combined bending-torsion stiffness �RIS�. The solid curve is the

theoretical prediction for C� versus T �Eq. �3�� derived for the clas-

sical three-state RIS model �30�.
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chains, because the torsion potential tends to straighten the

bending angles.

The direct effect of the potentials controlling the chain

stiffness can be clearly observed in the histograms of the

bond lengths, bending angles, and torsion angles. For FJC

and FRC chains, lower temperatures result in higher and

sharper peaks around the equilibrium bond length and bend-

ing angle �see Fig. 4�. For high temperatures, when the dis-

tributions are broad, an asymmetry can be observed with

respect to the maximum: this is the expression of the asym-

metry of the underlying potentials acting on the bonds

�FENE � LJ� and on the bending angles �VB�. For RIS

chains, the probability of intermediate torsion angles in-

creases with increasing temperature, at the expense of the

trans, gauche+, and gauche− states. All values for the torsion

angles tend to become equiprobable, and this leads to more

coiled chains with lower characteristic ratio CN �fact already

noticed above�.

B. Dynamic properties

In this subsection we analyze how the temperature influ-

ences the polymer chain dynamics by studying the chain

self-diffusion and the time decay of the autocorrelation func-

tions for torsion angle and for end-to-end distance.

Diffusion strongly depends on the temperature that di-

rectly affects the accessible free volume, the chain stiffness,

and the type of chain motion inside the polymer bulk. Ac-

cording to the Rouse model �31�, the diffusion coefficient D

depends on temperature and chain length as

DRouse =
kBT

�N
, �4�

with � the effective bead friction coefficient. For long en-

tangled chains, reptation theory �32,33� predicts a different

formula for D, implying a drastic slowing down of chain

motion:

Dreptation =
1

3

dT
2

l2

kBT

�N2
, �5�

where dT is the reptation tube diameter and l is the effective

bond length. Both Eqs. �4� and �5� include an explicit linear

T dependence as well as an implicit one via the friction co-

efficient � or the reptation tube diameter dT. The dependence

on T of these parameters has not been predicted on pure

r (units of σ)

g
(r

)

1 2 3 4 5

T = 0.01

T = 0.1

T = 0.4

T = 0.7

T = 1.0
FJC

r (units of σ)

g
(r

)

1 2 3 4 5

T = 0.1

T = 0.4

T = 0.6

T = 1.0

T = 1.4
FRC

r (units of σ)

g
(r

)

1 2 3 4 5

T = 0.1

T = 0.3

T = 0.8

T = 1.0

T = 1.4
RIS

FIG. 3. Pair-distance correlation function g�r� at different temperatures �in MD units� for the three types of chain stiffness. All systems

contain M =1000 chains, N=50 beads/chain. The dashed lines correspond to LJ attractive case for FJC chains. The curves for higher

temperatures are shifted upward for better visualization.
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�M =1000 chains, N=50 beads/chain�.
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theoretical grounds and remains to be determined empirically

by physical experiments and computer simulations.

The self-diffusion coefficient D, characterizing the mac-

roscopic transport of the chains inside the polymer melt, is

calculated from the mean-square displacement g3�t� of the

chain center of mass rc.m.,

g3�t� =
1

M
�
rc.m.�t� − rc.m.�0�
2� , �6�

using the Einstein relation

D = lim
t→�

1

6t
g3�t� . �7�

A proper value for D can only be obtained from MD

simulations after the chains have diffused over distances

larger than their radius of gyration. We have ensured that the

computing times were long enough for this condition to be

met even for the longest stiff chains and for the lowest tem-

peratures. During the MD runs the center of mass of the

whole melt was held fixed to eliminate its drift due to the

stochastic force that models the thermostat.

Let us first consider the behavior of g3 as a function of

time for a relatively short time interval at the beginning of

the diffusion process. Figure 5 presents results for g3 corre-

sponding to all three types of chain stiffness studied at dif-

ferent temperatures in a short-time window early in the simu-

lation. For all three cases, g3�t� shows two clear regimes: one

at very short times �when g3 grows approximatively as t2�
and one at very long times �when g3� t1, allowing the actual

calculation of the limit value for D�. Between these two ex-

tremes, for rather low temperatures, a third transitional re-

gime appears as an intermediary plateaulike region for FRC

and RIS chains. This type of effect, considered a sign of the

glass transition, was observed previously in computer simu-

lations using other polymer models �11,14,21�. However,

when one inspects the graphs in Fig. 5, the estimation of the

glass transition temperature from this effect seems daring, to

say the least. The intermediary plateaulike regime caused by

decreasing temperature does not appear for the FJC chains
when only the repulsive part of the LJ is considered. How-
ever, when the calculations are repeated for the LJ attractive
case we do observe this effect �results not shown here�, as

reported previously by Bennemann et al. �21�.
The main results of our simulation work are presented in

Fig. 6, showing the temperature dependence of D, for all

three types of chain stiffness. At each temperature, the values

of D were obtained in two ways: �a� generating and equili-

brating the system at the desired temperature �solid symbols�
and �b� generating the system at a higher temperature and

then cooling it down in steps and equilibrating until the de-

FIG. 5. Close-up view in the short relaxation time region of the time dependence of the mean-square displacement of the chain center of

mass �g3�. For all three stiffness cases the temperatures are indicated in the inset. Only a relatively short time interval, at the beginning of

the simulations, is depicted to distinguish more clearly the plateaulike intermediary regime that appears at lower temperatures for FRC and

RIS chains.
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sired temperature is reached �open symbols�. Within statisti-
cal fluctuations, these two techniques yield the same results.

In Fig. 6, the dependence of the diffusion coefficient D as

a function of the temperature T follows an expected behav-

ior: higher temperatures lead to higher diffusion coefficients.

This qualitative trend is independent of chain stiffness. The

essential feature captured in the present results is that, for

sufficiently low temperatures, diffusion coefficient seems to

vanish as the polymeric systems freeze into the glassy state.

The glass transition temperature Tg is estimated by extrapo-

lating D�T� to D=0—i.e., an apparent cessation of diffusion

with respect to the observation time. The resulting values of

Tg for the three types of polymer chains under consideration

are given in Table III. The systems are not likely to undergo

a sharp transition at these temperatures that should be con-

sidered as a estimate of the temperature interval associated

with the glass transition. We are more interested in the stiff-

ness effects on the glass transition than in very accurate val-

ues for Tg itself.

Another possible way to estimate Tg would be the fitting

of D-vs-T curves with different empirical or theoretical equa-

tions �4,34� that provide an inferior limit for Tg. Since these

are very much dependent on the temperature interval used

for the fitting and since we consider that the MD simulations

are not accurate enough to distinguish between exponentially

small and strictly zero values of the diffusion coefficients

close to the glass transition temperature, we do not perform

such a fitting.

It is important to observe that Tg increases with polymer

stiffness from FJC to FRC, and further to RIS chains, by

controlling the elastic constants of the bending �k	� and tor-

sion �k�� potentials. This is consistent with the observation

that, at a given temperature, D decreases when the chain

stiffness increases �a result already reported in our previous

paper �26� for T=1� /kB�.
The D-T graphs in Fig. 6 show two linear regimes with

different slopes: a fast regime specific to the liquid �melt�
phase and a slower regime corresponding to supercooled and

highly viscous systems situated between the glassy and the

liquid states. The crossover temperature Tc between these

two regimes increases also with increasing stiffness: Tc

�0.4� /kB for FJC, Tc�0.8� /kB for FRC, and Tc�1.5� /kB

for RIS.

An essential element influencing the polymer dynamics is

whether the LJ potential is purely repulsive �rc=�62�� or in-

cludes also an attractive part �rc=2�62��. For comparing with

the work of Bennemann et al. �21� where an attractive LJ

potential was used for systems with FJC chains �N=10

beads/chain�, we have also simulated identical systems for

both values of the LJ cutoff distance rc. The resulting D�T�
for FJC systems shown in Fig. 7 agree very well with the

results in Ref. �21�. We observe that for temperatures below

T=1.0� /kB, the diffusion coefficients are significantly

smaller when the attractive LJ interaction is considered.

Above this temperature, there is no difference in the diffu-

sion coefficients, as stated previously by Kremer and Grest

�18�. The reduced diffusion for an attractive LJ interaction

can be explained by observing that the second LJ coordina-

tion shell falls within the attractive region of the potential.

This will reduce the motion of the beads of the first LJ co-

ordination shell, thus diminishing the overall diffusion. Con-

sequently, the glass transition temperature for systems with

attractive LJ �Tg�0.4� /kB� is considerably higher than for

systems with only a repulsive LJ interaction.

The effectiveness of the bead mobility in controlling the

glass transition depends not only on temperature and chain

stiffness but also on the chain length N. Tg increases with the

chain length to a plateau value Tg
�, specific to infinitely long

polymer chains following an universal relation well estab-

lished in the literature �35,36�:

TgN = Tg
��N − const� , �8�

where the constant depends on the particular polymer type.

Figure 8�c� shows our results for the chain length depen-

dence �N�50� of Tg for FRC and RIS chains as well as the

D-T dependences at different chain lengths from which the

glass transition temperature was obtained �a� and �b�.
Tg

� and the constant from Eq. �8� are estimated by linearly

fitting the TgN-vs-N dependence and the resulting curves are

included in Fig. 8. This is an elegant method to estimate Tg

values for systems of long polymer chains, avoiding other-

TABLE III. Estimated values of the glass transition temperature

Tg for the three types of chain stiffness FJC, FRC, and RIS. These

approximate Tg values are consistent with the diffusion results

shown in Fig. 6 and with the relaxation times shown in Fig. 11.

Tg

�� /kB�

FJC �k	=0, k�=0� 0.05

FRC �k	=25�, k�=0� 0.4

RIS �k	=25�, k�=1�� 0.7
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FIG. 7. Temperature dependence of the self-diffusion coefficient

D for systems with M =1000 chains, N=10 beads/chain, with FJC

�intrinsic� stiffness. Solid symbols are obtained from simulations

with repulsive LJ potential �rc=�62�� and open symbols are ob-

tained for attractive LJ potential �rc=2�62��. The glass transition

temperature for the attractive LJ case is Tg�0.4, as reported earlier

in Ref. �21�.
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wise extremely time-consuming simulations. The specific Tg
�

values ��0.47� /kB for FRC and �0.75� /kB for RIS� are

very close to Tg for N=50 beads per chain, indicating this

considered length as a good choice to compromise between

accuracy and computing time.

The chain length dependence of the diffusion coefficient

is, in turn, strongly influenced by stiffness and temperature.

We show now in Fig. 9 the dependence of D on N for tem-

peratures ranging, for each type of stiffness, from the vicinity

of Tg to well above Tc—i.e., in the full liquid phase.

Due to the excessive computational time required by

simulations at low temperatures and high stiffness for rather

large systems of M =1000 chains needed for stable statistical

results, we had to limit our study to short chains N�50 for

which Rouse behavior is expected; i.e., D�N−� with �=1 in

concordance with Eq. �4�.
Similar to prior work in this field, �18,24,26� rather than

D vs N, we plot 6DN vs N in logarithmic scales since this

allows for an easy distinction between the horizontal plateau

of the Rouse regime and the slanted dependence ���1�
characteristic for reptation.

At relatively high temperatures, above Tc, the chains be-
have according to the Rouse theory for all three types of
chain stiffness. However, with increasing stiffness, higher
temperatures are needed to obtain the nearly horizontal de-
pendence. A noteworthy observation from Fig. 9 is that, for
FRC and RIS chains, at temperatures approaching Tg, the
DN-vs-N dependence becomes progressively inclined, thus
testifying to the dissolution of the Rouse regime for super-
cooled polymer melts.

For each temperature, the data in Fig. 9 have been fitted to
D�N−�; the values of the exponent � for the three types of
chain stiffness are gathered in Table IV.

Our results for the temperature effects on the D-vs-N de-
pendence can be put in a more general theoretical and ex-
perimental context. A modified free-volume theory has been
proposed by von Meerwall et al. �37,38� that combines the
Rouse theory with free-volume effects due to the chain ends.
This combined Rouse-free-volume theory predicts a gradual
change of the exponent � in D�N−� with temperature, which
has been tested experimentally �38� and in atomistic simula-
tions �39� for n-alkanes. Our results agree qualitatively with
these previous studies when the coarse-grained model is aug-
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mented with additional bending and torsion stiffness.

We find further evidence of the glass transition by inves-

tigating the time autocorrelation functions �ACFs� of the tor-

sion angle and of the end-to-end vector.

The torsion angle autocorrelation function R� has the fast-

est relaxation time, and we expect to reflect the dramatic

slowing down of the local chain dynamics induced by the

glass transition. For its calculation, we preferred to use Eq.

�9� �proposed in Ref. �9�� because this formulation uses co-

sine functions and avoids the expensive computation of the

actual values of the dihedral angles:

R��t� =
�cos �i�t�cos �i�0�� − �cos �i�0��2

�cos �i�0�cos �i�0�� − �cos �i�0��2
, �9�

where �i�t� is a dihedral angle at time t and the averages are

calculated over all dihedrals in the system and over several

time references. The R��t� plots in Fig. 10 reveal the same

trend for all three stiffness: as the temperature decreases, R�

relaxes more slowly, to the limit of almost no relaxation at

very low temperatures during the observation time.

The relaxation time �R specific for each situation was es-

timated as the time at which R� has decayed to 1/e from its

initial value. In this way we deliberately avoid employing

any theoretical or empirical models since there is no clear

evidence that they are appropriate to both below and above

Tg regimes �40�. The temperature dependence of the relax-

ation time �R is shown in Fig. 11 �solid symbols, left scale�.
The calculated relaxation time for the torsion autocorrela-

tion function increases monotonically with decreasing tem-

perature until a specific temperature is reached. At this tem-

perature a sudden increase of the relaxation time occurs,

indicating a strong slowing down of the torsion dynamics.

By identify this temperature with the glass transition tem-

perature, we obtain, for all chain types, very similar Tg val-

ues with the one obtained from the vanishing of the diffusion

coefficient D; cf. Fig. 6.

We have also investigated the time autocorrelation func-

tion of the end-to-end vector �R�t� ·R�0�� / �R2�0��. The relax-

ation times �E, computed as described above, are given in

Fig. 11 �open symbols, right scale�. We observe a remarkable

resemblance of the results, indicating almost the same Tg

values, even though time scales of these two processes are

completely different. The autocorrelation function of the

end-to-end vector has the slowest relaxation time that is

needed for the end-to-end vector to lose the memory of its

initial orientation.

IV. CONCLUSIONS

We have presented comprehensive results from extensive

molecular dynamics simulations of ensembles of polymer

chains. The computations are based on a coarse-grained

chain representation, in the spirit of the Kremer-Grest model,

but with additional bending and torsion potentials to control

the chain stiffness. Our study covered a large temperature

interval and we focused our analysis on the behavior of the

polymer systems undergoing glass transition as the tempera-

ture is lowered.

First, the static properties of the systems were investi-

gated as a function of temperature. We found that the char-

acteristic ratio is strongly dependent on temperature for RIS

chains: the simulation results are in good agreement with the

theoretical three-state model, proving the suitability and ef-

fectiveness of our novel combined potential that controls the

bending and torsion angles. The peaks in the pair-distance

distributions corresponding to the LJ coordination shells

t (units of τ)

T
A

C
F

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

T = 0.01

T = 0.05

T = 0.1

T = 0.2

T = 0.4

T = 1.0

FJC

t (units of τ)

T
A

C
F

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

T = 0.1

T = 0.2

T = 0.3

T = 0.4

T = 0.5

T = 0.6

T = 0.8

T = 1.0

T = 1.2

FRC

t (units of τ)

T
A

C
F

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

T = 0.1

T = 0.4

T = 0.5

T = 0.6

T = 0.7

T = 0.8

T = 1.0

T = 1.2

T = 1.8

RIS

FIG. 10. The decay in time of the torsion angle autocorrelation function R� at various temperatures for FJC, FRC, and RIS chains. The

temperatures are indicated in the inset in � /kB �M =1000 chains with N=50 beads/chain�.

TABLE IV. Influence of the chain stiffness and temperature on

the exponent � in the power law D�N−�. The exponents have been

calculated by fitting the data from Fig. 9.

FJC FRC RIS

T �� /kB� � T �� /kB� � T �� /kB� �

0.05 1.12 0.3 1.97 0.8 2.00

0.10 1.16 0.5 1.59 1.0 1.92

0.20 1.19 1.0 1.41 1.5 1.65

0.50 1.19 1.5 1.33 2.0 1.59

1.00 1.17 3.0 1.25 6.0 1.32

1.50 1.17 6.0 1.21 10.0 1.23
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were used to verify that the polymer ensemble remains in an

amorphous state at the lowest temperatures studied. Histo-

gram analysis showed that, by decreasing the temperature,

the distributions of bond lengths, bending angles, and torsion

angles become more narrow around the equilibrium values

due to the retardation of the bead mobility.

The most important aspect treated in the paper is the ef-

fect of temperature and chain stiffness on the polymer dy-

namics monitored through the chain self-diffusion coefficient

D. For the three type of stiffness considered—FJC, FRS, and

RIS—the D-vs-T curves were used to identify the glass tran-

sition temperature Tg as the limiting value where diffusion

vanishes. By increasing the stiffness from FJC to FRC and to

RIS chains, the calculated value of Tg increases. Investiga-

tion of the time autocorrelation functions of the end-to-end

vector and of the dihedral angle provided further evidence

regarding the glass transition. The relaxation times of these

autocorrelation functions show a dramatic increase near the

Tg estimates obtained from diffusion. This confirmation is

significant because the time scales involved differ by about

three orders of magnitude. While most of our simulations

were run using a purely repulsive LJ potential, some addi-

tional comparisons with previous studies were performed by

including also the attractive part of the LJ potential. The

attractive LJ interactions change the polymer dynamics at

low temperatures so as to increase the value of Tg.

We also provided here a relevant study regarding how the

temperature affects the D-vs-N dependence for relatively

short chains: with decreasing the temperature, the exponent

in D�N−� increases from ��1 �as expected for short chains

in Rouse regime� to ��2. This “fanning out” of the DN-vs-

N curves at different temperatures, depicted schematically in

Fig. 12, is stronger for systems with added bending and/or

torsion stiffness along the polymer backbone.

Overall, our results indicate that the continuum coarse-

grained model employed in our MD simulations can be very

effectively used to study how the microscopic bead motion

controlled by the temperature thermostat results in the mac-

roscopic transport process of chain diffusion. The glass tran-

sition occurs at temperatures low enough such that the local

random bead motion becomes ineffective in inducing large-

scale chain diffusion. This phenomenon was distinctly cap-

tured in our MD results. The chain flexibility plays a domi-

nant role in polymer dynamics and glass transition, clearly

influencing the sensitivity of chain mobility to temperature.
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