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Abstract

Molecular dynamics can provide very accurate tests of classical kinetic theory; for example, un-

ambiguous comparisons can be made for classical particles interacting via a repulsive 1/r potential.

The plasma stopping power problem, of great interest in its own right, provides an especially strin-

gent test of a velocity-dependent transport property. We have performed large-scale (∼ 104–106

particles) molecular dynamics simulations of charged-particle stopping in a classical electron gas

that span the entire weak to strong intratarget coupling regimes. Projectile-target coupling is

varied with projectile charge and velocity. Comparisons are made with disparate kinetic theories

(both Boltzmann and Lenard-Balescu classes) and fully convergent theories to establish regimes of

validity. We extend these various stopping models to improve agreement with the MD data and

provide a useful fit to our results.

PACS numbers: 52.27.Gr,05.20.Dd,52.65.Yy,52.25.Dg
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The nonequilibrium statistical mechanics of particles interacting via long-range forces is

an outstanding challenge. Many-body simulations can provide insight into the wide range of

complex behaviors that result [1–4]. Simulations are particularly valuable for model valida-

tion when precise data is lacking in high energy-density physics (HEDP) experiments [5, 6].

Whereas most transport phenomena represent averages over thermal velocities, charged

particle stopping depends on a single projectile velocity. Thus stopping power provides a

velocity-resolved probe of the underlying collision integrands and offers greater insight into

the accuracy of energy and particle flow models, including temperature relaxation [7–9],

diffusion [10, 11], and electrical and thermal conductivity [12, 13]. Improved knowledge of

stopping power in HEDP environments also directly impacts ion-based fast ignition [14],

alpha particle deposition in thermonuclear fuels [15], and heavy ion fusion [16].

Because molecular dynamics (MD) cannot include quantum scattering and recombina-

tion exactly, we consider a purely classical repulsive Coulomb system of a negatively-charged

point projectile interacting with a one component electron gas target. Theoretical models

can be formulated identically, so the MD provides a rigorous test of stopping power mod-

els [17]; insights can then be extrapolated to real matter. Within this system we vary both

the intratarget and projectile-target coupling over large ranges to provide the greatest insight

into the models. We vary the target temperature at fixed density to span weak to strong

intratarget coupling, and we vary projectile charge and velocity to influence projectile-target

coupling. In effect, we employ three independent coupling parameters.

In this letter, we compare theoretical models of charged-particle stopping [17–21] with

numerically-exact, classical, nonrelativistic MD simulations. The underlying kinetic theories

were chosen from the Lenard-Balescu (LB) class (weak scattering in a dense environment),

the Boltzmann (B) class (strong scattering in a dilute environment), and convergent kinetic

theories (CKT) [22]. We delimit regions of validity for these various models and quantify the

importance of strongly-coupled nonlinear binary collisions and collective phenomena. We

develop nonlinear screening models (beyond Debye-Hückel) to better describe these effects

and obtain accurate expressions for classical stopping. We introduce a new formula for

classical charged particle stopping which is more accurate over a larger parameter space

compared to commonly used expressions.

Our simulations use the massively parallel MD code, ddcMD [23, 24], to treat long range

forces. We varied the target temperature at fixed density ne = 1.03 × 1020 cm−3 to obtain

2



three values for the intratarget coupling parameter Γ = q2e/(rsT ) = 0.1, 1, 10. Here, qe is

the target charge, T is the target temperature in energy units, and rs = (4πne/3)−1/3 is

the Wigner-Seitz radius. Projectile-target coupling was varied by selecting three projectile

charges Z = −1, −2, −10 with projectile and target-particle masses consistent with the

magnitude of the charge: m = mH, mHe, mNe, me. Together these conditions define a matrix

of nine physical conditions. For each of the nine cases, projectile velocities were selected in

the range v/vth ∼ 0.1–40, where vth =
√
T/me is the thermal velocity of target particles.

Converged stopping behavior for the fastest projectiles considered required a numerical

timestep of 10−5 to 10−4 fs. Long simulations were performed, typically 100 fs to relax

transients followed by 300 fs (172 ω−1
p ) of data collection. For fast projectiles, a weak

Langevin thermostat (decay time 30–100 fs) was used to suppress target heating by the

projectile; this did not affect the stopping. Fast charged particles generate wake potentials

of large spatial extent, problematic for a finite simulation domain with periodic boundary

conditions. Prior work [25, 26] corrected for the missing long-wavelength contributions

using a model. To avoid such a model dependence we employed large cubic cells (10–

100 Debye lengths on an edge, or roughly 64K–1M particles) and chose the initial projectile

velocity to be a permutation of v̂ = (1,
√
φ,φ), with φ = (1 +

√
5)/2, the golden ratio,

minimizing overlap/interaction with periodic projectile-wakes. Our MD results are shown in

the figures below. Multiple independent replicas establish error bars; nearly 900 simulations

are included. We plot the stopping power, −dẼ/dx, versus velocity ṽ, where dẼ/dx =

(dE/dx)(1 + g)2/3/(Z2q2e/λ
2
D), ṽ = v/(vth(1 + g)1/3), g =

√
3|Z|Γ3/2, and λD = rs/

√
3Γ is

the Debye-Hückel (DH) screening length.

We find that the stopping rates determined by our MD simulations are accurately de-

scribed by the expression

dẼ

dx
≈ −R(w)

[

G(w) ln

(

e1/2 +
α + w2

g0

)

+H(w)

]

, (1)

where

R(w) =
[M1 + bM2(w)w2](1 + g)2/3

w2(1 + bw2)
,

M1 = s
ln

[
1 + αe−1/2/g(1 + aZ2g)

]

ln (1 + αe−1/2/g0)
,

M2(w) =
1

s2
ln (1 + s3w3/g)

ln (1 + w3/g0)
,
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G(w) = erf

(
w√
2

)

−
√
2

π
we−w2/2,

H(w) =
w4 lnw

12 + w4
− w3

3
√
2π

e−w2/2, (2)

which is a generalization of a form given in Ref. [27]. Here, α = 4 exp(−2γ), γ is Euler’s

constant, 0.577216 . . ., s = d(1+cg)1/3, w = v/vths, and the fit parameters are a = 1.04102×

10−5, b = 0.183260, c = 0.116053, d = 0.824982, and g0 = 2.03301 × 10−3. Equation (1)

may be used for example to describe the light ionic component of heavy ion stopping power.

Over our nine simulation conditions, this fit has a maximum and root mean square error of

0.03 and 0.005, respectively, in units of Z2q2e(1 + g)2/3/λ2
D.

Figure 1 compares Eq. (1) and our MD results to three models that are in wide use: the

result from the NRL Plasma Formulary (NRL) [28], the Brown-Preston-Singleton (BPS)

model [29], and the Li and Petrasso (LP) model [30]. We have evaluated the LP model

with the u appearing in LP given by
√
v2th + v2 and the NRL model using the Coulomb

logarithm Λ = 23− ln[|Z|(T/eV)−3/2(ne/cm−3)1/2]. For Γ = 0.1 and Z = −1 the BPS model

works well, but NRL fails at high velocities, and LP suffers at the peak due to the use of a

Heaviside theta function in its high-velocity correction. Other cases show larger deviations,

particularly at low velocities when their Coulomb logarithms change sign. Only Eq. (1)

matches the simulations for all conditions.

Figure 2 shows MD results for the four extreme limits of our nine cases; other cases

give results between those shown. We compare the MD data with models of the LB class,

which assume weak scattering with dynamical screening, thereby including many-body ef-

fects without invoking an ad hoc long-wavelength cutoff. This allows us to address three

issues: the boundaries of a common LB-class model with respect to the three effective cou-

pling parameters, the appropriate short-range cutoff, since the neglect of strong scattering

in LB models leads to a divergence for classical systems, and the importance of dynamical

screening. We will use these points for constructing improved models below. In Fig. 2 we

plot
dẼ

dx
= − 2

πṽ2

∫ u

0
dω̃ ω̃

∫ Q

0
dq q

Im [ε(q, ω̃)]

|ε(q, βω̃)|2 , (3)

where q = kλD, ω̃ = ω/(kvth), u = v/vth, and Q gives the short-range cutoff. We evaluate

the dielectric response using the random-phase approximation (RPA) [27]; setting β to zero

or one selects static (SRPA) or dynamic (DRPA) screening, respectively. Traditionally, the
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FIG. 1: Comparisons with three models (NRL, BPS, and LP) are made with the MD data for

Γ = 0.1, 1 and two projectile charges Z = −1,−10. The fit of Eq. (1) is given by the thin black

line.

cutoffQ is chosen to correspond to the distance of closest approach, QV IC = λDT/Zq2e = 1/g,

which we will refer to as the velocity independent cutoff (VIC). The VIC fails to produce

the proper Bohr limit [31], dẼ/dx = − ln(u3/g)/ṽ2, so we also examine a velocity dependent

cutoff (VDC) of the form QV DC = QV IC(1+u2) [25, 26]. From Fig. 2 we see that dynamical

screening and a VDC are both needed to reproduce the MD data at high velocity. While

the static screening model (β = 0) is accurate at low velocities for the weakest coupling,

Γ = 0.1, it is not generally useful. As with the models in Fig. 1, the model given in Eq. (3)

tends to fail when either (projectile-target or intratarget) coupling parameter is large, with

the most egregious errors at low velocity.

We now turn to the B class of models, which employ a binary cross section, and thereby in-

clude strong scattering. Because the bare Coulomb cross section has a long-wavelength diver-

gence, we show T-matrix results that include many-body screening effects. This is typically

included [25] with a projectile-target interaction of the DH form Vpt(r) = Ze2 exp(−r/λD)/r.

5



FIG. 2: Three LB-class stopping models, the Bohr model, and the MD data are shown for the

four extreme cases in our data set. MD data (black points) are shown with five theory curves: the

Bohr limit (solid orange), dynamic RPA velocity-dependent cutoff (dashed blue), dynamic RPA

velocity-independent cutoff (dot-dashed red), and static RPA velocity-dependent cutoff (dotted

green). The use of the velocity dependent cutoff with RPA is accurate everywhere except for small

to moderate velocity. The fit of Eq. (1) is given by the thin black line.

We compute the cross section numerically (see Ref. [32]). This DH-based T-matrix model

is limited to weakly coupled plasmas for two reasons: T-matrix assumes an effective binary

scattering among uncorrelated particles, and DH screening is a linear, mean-field result.

We remove the limitation of DH screening by computing the projectile-target interaction

using the nonlinear Poisson-Boltzmann model and solving the hypernetted chain (HNC)

equations [33] for the two-component plasma in the limit of one species (projectile) having

vanishing concentration (see Ref. [34] for a similar usage of HNC). The nonlinear screen-

ing results are shown in Fig. 3, in which we see large deviations from DH for Γ = 1, 10.

It is a limitation of the T-matrix formulation for strongly coupled plasmas that nonlinear

screening potentials are not symmetric with respect to projectile and target. This leads to
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FIG. 3: Differences ∆V in nonlinear screening potentials from the linear mean field (DH), nonlinear

mean field (PB, dashed), and beyond mean field (HNC, solid) are shown for three values of the

Coulomb coupling constant.

an ambiguity in the potential used in the cross section calculation. In the nonlinear case, a

projectile-target binary interaction is different depending on whether the target particle or

the projectile is considered to be screened by other nearby target particles. We chose the

former because it isolates the projectile exchanging energy with the target. However, neither

viewpoint is correct, and when the two predictions differ significantly neither is accurate. In

all cases the screening models are static and the T-matrix method cannot accurately describe

the projectile velocity dependence. We have shown this to be important in Fig. 2; thus, in

Fig. 4 we only show low velocity results. In general we see that the T-matrix results yield

a considerable improvement over those in Fig. 2 at low velocity at all coupling parameters,

a regime important for alpha particle stopping [15].

In the limits of low velocity and large projectile-target mass ratio, Dufty and collabora-
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tors [35, 36] have shown an exact relationship between the stopping power and the diffusion

coefficient, D: dE/dx = −vT/D. Of course, this formula only shifts the difficulty to D,

which can be obtained from MD via the velocity autocorrelation function (VACF). Hughto

et al. [37] already did this calculation and provide a fit to their MD data (Γ > 1). We

use their fit with the mass equal to our target particles [38, 39]. Low velocity stopping is

fundamentally described by a non-binary, nonlinear model, since the VACF contains the

many-body physics of a particle entrained in a collective background. Our results are shown

in Fig. 4, which are in excellent agreement with the MD data at low velocity at Γ = 1

and 10, despite the fact that the D used was for an equal mass system. Because weakly

coupled data was not used to train the fit, the deviations at Γ = 0.1 are not surprising.

To improve upon the poor velocity dependence of the T-matrix models, we also compare

with CKT models [22]. Because of its partial success (see Fig. 2), we modified the DRPA

VDC model to include static local field corrections (SLFC) Gij(k) for the projectile-target

mixture, including both a 1−Gtt(k) in the target dielectric function and a projectile-target

factor 1− Gpt(k) in the numerator of the integrand in Eq. (3): this serves to make the LB

model convergent while also including many-body physics in the short-wavelength cutoff.

We see in Fig. 4 that this greatly improves the low velocity results. Dynamic LFCs would

be needed for the model to apply at all velocities. The Gould-Dewitt (GD) model [40],

which constructs a CKT by employing both LB and B type features, is compared with

the previously presented CKT BPS model. A model developed previously [25, 26, 41] that

employs a velocity-dependent DH screening length is also considered, and we extend that

to our nonlinear potentials. Our velocity-dependent scaling procedure scales all lengths L

in the potential as L → L
√
1 + u2 (1 + Γ3)1/4, which empirically extends the prior work to

strong coupling. The CKT comparisons are shown in Fig. 5 for the four corner cases of our

data set. The models in this class agree very well at weak coupling. The GD model either

offers no improvement over simpler models or does poorly. Comparison with the MD data

reveals that the best model overall is our T-matrix model with HNC screening.

In summary, we have produced accurate molecular dynamics results for charged particle

stopping using simulations that cover a broad range of projectile-target couplings, intratarget

couplings and projectile velocities. These simulations employ orders of magnitude more

particles than previous studies, allowing us to simulate long-wavelength wake structures. Our

simulations utilized a purely classical plasma to allow for a model-independent comparison
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FIG. 4: T-matrix stopping power using three different screening potentials, Debye-Hückel (dot-

dashed blue), Poisson-Boltzmann (dotted green), and HNC (solid red), shown with the diffusion

model (short-dashed purple), SLFC (long-dashed orange), and MD data (points). The T-matrix

model has the (known) defect of being inaccurate at high velocity, although the nonlinear screening

potentials greatly improve the low velocity stopping power whenever the target-projectile coupling

is large.

with theoretical models. We have provided a fit that accurately matches our MD results

across the full range of temperature, velocity, and projectile charge we studied. We have

compared our results with a very large range of differing theoretical models that originate

from disparate branches of kinetic theory. Our data has allowed us to evaluate several
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FIG. 5: A comparison of CKT models are shown, including BPS (dot-dashed red), GD (dashed

blue), and improved T-matrix models that employ velocity-dependent screening lengths of two

types (HNC (dotted green) and DH (solid orange)).

stopping power models that are in wide use. We find that models in the LB class yield

accurate results for high velocity and any coupling parameter, provided that a velocity-

dependent cutoff and dynamical screening are used. However, low velocity stopping is poorly

predicted by LB models for the more strongly coupled cases, which can be improved by the

inclusion of LFCs. In the B class we compared our data with T-matrix models, including

a new model that includes nonlinear screening. While these models yield good results for

low velocity, they are quite inaccurate at even moderate velocities; We find that while the

nonlinear screening is a marked improvement, there are ambiguities in its implementation

because there is no unique nonlinear potential to be used in a binary cross section. To bridge

the gap between LB and B class models we also considered CKT models. We find that the

CKT models are in excellent agreement with each other for weak coupling. For strong

intratarget coupling, the GD and BPS models fail, with the best model being our T-matrix

model that employs HNC screening and a velocity-scaled screening length. Finally, we have
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compared our MD data with a stopping power model that relates stopping to diffusion and

find very good agreement at low velocities, where that relationship should be accurate. Our

MD results can readily distinguish among a very wide range of theoretical models.
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