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Abstract

We compare systematically the threshold displacement energy surface of 11 interatomic potentials in Fe. We discuss in detail different
possible definitions of threshold displacement energies, and how they relate to different kinds of experimental threshold displacement
energies. We compare the threshold results to experiments, and find that none of the 11 tested potentials agrees fully with experiments.
However, all the potentials predict some qualitative features in the same way, most importantly that the threshold energy surface close to
the 100 crystal direction is flat and that the largest threshold energies occur around very roughly the 123 crystal direction.
� 2006 Elsevier B.V. All rights reserved.

PACS: 61.80.Fe; 61.82.Bg; 61.72.Cc
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1. Introduction

One of the basic quantities defining the radiation resis-
tance of a material is the threshold displacement energy,
i.e. the energy needed to displace an atom in a material
to create a stable Frenkel pair. The concept of threshold
displacement energy was probably devised by Wigner in
the early 1940s, as reported by Burton [1], and already in
1949 it appeared as a functional parameter in Seitz’s model
to treat elastic collisions [2], where it was assessed as equal
to the sum of the cohesive energy plus the formation energy
of the Frenkel pair (in total about 25 eV). Since then it has
played a key role in radiation damage theory. For example,
if the amount of radiation-induced defects increases line-
arly with energy, the damage level can be well predicted
by the Kinchin–Pease (or its variation NRT [3]) equation
0168-583X/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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which states that the amount of damage is proportional
to the ratio of the nuclear deposited energy and an effective
threshold displacement energy E�d [4]. Even in materials
where the Kinchin–Pease equation is not valid, typically
dense metals, the damage level is often given in terms of
a cascade efficiency which is the actual number of defects
compared to the Kinchin–Pease prediction [5,6]. Because
of this, it is of importance to know the value of the thresh-
old displacement energy in any material where irradiation
effects are of interest.

The threshold displacement energy has been studied
both experimentally and by computer simulations in a wide
range of materials (see e.g. [7–10] and references therein).
From an application point of view, of particular interest
is the threshold displacement energy in Fe. Radiation dam-
age in Fe-based materials is of great interest because the
main structural materials in fission and fusion reactors
are steels. In addition, it is possible to use ion implantation
to harden steels. Thus it is surprising that the threshold
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displacement energy in Fe has in fact been studied less than
in many other materials. The average threshold displace-
ment energy most frequently used for Fe, the so-called
NRT or ASTM standard, is 40 eV [11]. Its source in liter-
ature review papers [7,8] is often cited to be [10], but this
paper is also a review and bases its value on the MD sim-
ulations carried out by Erginsoy et al. in 1964 [12]. There is
one experiment by Lucasson which gives an average thresh-
old energy of 24 eV for Fe [13], but in his later review
papers even Lucasson himself does not use this value
[10], apparently because the result is dependent on the
choice of the damage model. The experiments which do
exist give only the threshold energy along the low-index
lattice directions 10 0 [14], 110 and 111 [15,16], not the
average over all directions, that would be most appropriate
for the effective threshold displacement energy used in the
Kinchin–Pease formulation.

There have been significant advances in not only com-
puter capacity but also in the understanding of interatomic
interactions since 1964 [17–19], including additional theo-
retical works on the threshold displacement energy in Fe.
Agranovich and Kirsanov [20] studied the threshold ener-
gies close to 100 and 111 including thermal displacements
(in contrast to the work of Erginsoy et al. that was carried
out at 0 K) and obtained threshold energies of 18 eV
around 100 and 26 eV around 1 11, in fairly good agree-
ment with the experiments of Lomer and Pepper [15].
Apparently the first systematic simulations of threshold
energies in Fe employing many-body potentials were
carried out by Bacon et al. [21] who in 1993 simulated
threshold energies with the Finnis–Sinclair potential [17],
modified in the repulsive part [22]. They obtained thresh-
olds of 18 eV around 100, 30 eV around 110 and >70 eV
around 111 at 0 K. Soon after this, Doan and Vascon
[23] adjusted another Fe potential [24] with a repulsive
potential in a manner which gave good agreement with
experiments [23]: 21 eV around 100, 31 eV around 110
and 18.5 eV around 111. Also several other, less detailed,
studies of the threshold displacement energies have been
carried out in the context of adjusting the repulsive part
of the potentials to have a realistic high-energy part (see
Section 2.3). However, none of the works on the threshold
energy in Fe have affected the NRT standard. Moreover,
the works have used slightly different (and sometimes
poorly documented) definitions of what the threshold
energy is, especially regarding whether it is calculated in
the exact crystallographic direction, or in some angular
interval around it to account for electron beam spreading.
Hence it is of interest to review the threshold energies given
by different models using the same threshold energy defini-
tions for all the potentials.

In the current paper we systematically reexamine the
issue of the threshold displacement energy in Fe. We simu-
late the full three-dimensional threshold energy surface
using 11 different interatomic potentials, taking care that
all non-physical simulation parameters (such as the simula-
tion cell size) are chosen so that they do not affect the
end result. We compare the results of all potentials with
each other and experiment. We also discuss the original
simulations by Erginsoy et al. in view of the present
simulations.

2. Method

2.1. Definition of threshold displacement energy

It might seem to be straightforward to define a threshold
displacement energy of a material. However, one can in
fact define several different threshold displacement energies
depending on the viewpoint and the experimental situation
one wishes to model. Since distinguishing between these is
important for understanding some of the results of this
paper, we review here different possible definitions.

The most straightforward distinction comes from con-
sideration of irradiation geometry. First of all, it is possible
to define a direction-specific threshold for each lattice
direction, Ed(h,/). This can be measured by electron irradi-
ation of a thin single crystal specimen [25]. The full func-
tion Ed(h,/) forms the threshold energy surface. An
average threshold energy Eave

d can be defined as the average
of the function Ed(h,/) over all angles.

However, this picture is not the end of the story.
Because of thermal and zero-point lattice vibrations [26]
atoms never reside exactly on perfect lattice sites. Hence
even for the exact same lattice direction, it is possible that
a given energy sometimes produces a defect, sometimes
not. This lead Malerba and Perlado to introduce the con-
cept of lower and upper thresholds, lower ðEl

dÞ being the
value where a defect sometimes is produced, upper ðEu

dÞ
being the one where it is always produced [27]. This defini-
tion was useful in their study of SiC, but the quantity Eu

d is
problematic in metals where in-cascade annealing can
cause all damage to recombine with a non-zero probability
even for very high energies. This non-monotonousness of
the threshold displacement energy is illustrated in Fig. 1,
which shows the probabilities to form at least one defect
P i

defðEÞ for individual directions i. Note that in one of the
cases there is sometimes no damage produced even at an
energy of almost 600 eV. Animation of these cases showed
that this is a dynamic annealing effect, where an interstitial
is formed for a short time, but recombines with the vacancy
left at the original site of the recoil before the cell has
cooled down. From simulations of defect production with
all 11 potentials up to 250 eV we found that for a given
direction the probability of a uniform defect production
curve (i.e. where a defect is always produced above the
lower threshold) is in fact only 10%.

Although one could argue that it is the lower threshold
which is the true threshold, the realization of the possibility
of recombination at high energies has consequences on the
definition of the average threshold displacement energy.
Namely, one can choose to either take into account or
not take into account the events above El

d in the calculation
of the average threshold energy. That is, if one uses the
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Fig. 1. Probability to form a defect for four recoils in Fe modelled with
the ABC potential, as a function of recoil energy. Note that the data
illustrates specifically the probability to form at least one defect; at the
higher energies in many cases more than one defect is formed. In each of
the four cases the initial state of the simulation is identical, including
identical thermal atom displacements, except for the initial ion energy
which is raised in steps of 2 eV.
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Fig. 2. Probability to form a defect at a given energy calculated in three
different ways (see text) with the ABC potential.
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value of El
d only, one can of course calculate the average of

this over all angles

Eav
d;ave ¼

R 2p
0

R p
0

El
dðh;/Þ sin hdhd/R 2p

0

R p
0

sin hdhd/
; ð1Þ

where av stands for average. In practice, it is more conve-
nient to select the directions in which the recoils are direc-
ted by proper weighting with h (i.e. ensuring that recoils are
generated in equal amounts per solid angle sinhdhd/),
after which the average can be calculated as a direct arith-
metic average of the El

d values obtained.
To illustrate the probability to form a defect at a given

energy, we form the angle-integrated displacement proba-
bility function [12] of the El

d data. These data are illustrated
in Fig. 2, curve 2.

On the other hand, one can also take the average of
production probability curves of the form shown in Fig. 1,
P defðEÞ ¼ aveiP i

defðEÞ. This gives another angle-integrated
displacement probability curve, which is illustrated in
Fig. 2, curve 1. Note the marked difference between curves
1 and 2: while both start out about similar for low energies,
curve 1 has a much slower rise to the maximum of one at
high energies. This is because curve 1 accounts for the
possibility not to form a defect above El

d, which lowers the
probability. The average threshold energy Epp

d;ave (pp stands
for production probability) of this data can be calculated
in the usual statistical way as

Epp
d;ave ¼

Z 1

0

E dP defðEÞ. ð2Þ
The threshold concepts introduced until now are well-
defined from a mathematical and atomistic point of view.
They do not, however, account for one significant experi-
mental complication. When a single-crystalline sample is
irradiated with electrons, the electron beam spreads in
the sample due to scattering. This effect can be substantial,
for instance in [28] a beam spreading of 20� is mentioned. If
beam spreading occurs, then it is no longer possible to de-
fine a lower threshold El

d in an exact lattice direction, such
as, say, [321]. Instead, one needs to define the threshold
over some angular or Miller index interval, because it is
possible that the scattered electrons find a lower threshold
value next to the desired ideal Miller index, say e.g. at [2.94
2.03 1.02] rather than [321].

It is non-trivial to predict the electron beam spreading in
a sample, and the result depends on the exact experimental
setup (electron energy, beam spreading in the irradiating
beam before it hits the foil and foil thickness). Hence there
is no general way in which one can account for this effect,
and determining it even for exactly known experimental
conditions would require simulation of the electron beam
scattering in the material. In the present paper we will
use a simple approach to give an estimate of how much this
could affect the threshold results. To obtain the angular
minima around the low-index lattice directions 100, 110
and 111 reported in Table 1, we use an interval of D0.2
Miller index to roughly correspond to the reported 20�
spreading.

We also tested the effect of beam spreading for all direc-
tions by determining an average threshold for the ABC
potential by first taking the minimum of the El

d data in each
D0.1 Miller index interval, i.e.

El;min
d ¼ min

0:1 Miller index interval
ðEl

dÞ ð3Þ

then getting the average of the El;min
d data using Eq. (1) to

give Ema
d;ave (ma stands for minimum in angular window).

The effect of this is illustrated in Fig. 2, curve 3. Since
now the lowest value in each interval is taken, naturally
the threshold energies are reduced.



Table 1
Threshold displacement energy results obtained with the different potentials

Potential Ndirections Ed(h,/) Eav
d;ave Eav

d;med

All 100 110 111

ERG 2512 9 9 25 17 22.0 ± 0.2 21
ERG, a = 2.86 Å 7280 15 15 33 25 40.4 ± 0.2 41

ABC 3049 17 17 31 35 44.8 ± 0.4 41
WOL 2284 21 21 27 31 40.8 ± 0.3 37
COWP 2386 19 19 47 29 53.5 ± 0.5 53
MHSa 13,152 15 15 27 25 36.9 ± 0.1 35
AMSa 2699 15 17 33 33 39.0 ± 0.3 35
SP-RB 30,126 15 15 27 19 42.4 ± 0.1 43
HA-VD 2948 19 19 27 19 33.4 ± 0.2 31
HV-TB 3118 17 19 35 19 46.3 ± 0.3 45
JO-GA-SdlR 15,581 15 15 25 29 36.7 ± 0.1 33
FS-CB 4212 15 15 27 29 38.6 ± 0.3 35

Experimentb 16–18
Experimentc 17 17 >30 20
Experimentd 20 20 30

The potential abbreviations and references to them are given in the text. The direction-specific thresholds Ed(h,/) were obtained as the minimum in an 0.2
Miller index interval around the principal direction to account for beam spreading. The uncertainty of Ed(h,/) and Eav

d;med are ±1 eV because the
thresholds were determined with an energy step size of 2 eV (hence e.g. a value of 17 eV means that a defect was detected for 18 eV but not 16 eV recoils).
The average threshold Eav

d;ave is obtained as an average of direction-specific thresholds Ed(h,/) for exact angles. Ndirections is the number of directions for
which a threshold was simulated.

a MHS and AMS differ from each other only slightly in the embedding energy part.
b Direction-independent experiment [13].
c Direction-specific experiments [16].
d Direction-specific experiments [15].
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We also note that for all of these methods of getting the
threshold displacement energies, one can either character-
ize the distribution with the average, as described above,
or the median which is obtained from the data in Fig. 2
as the point where the curves cross the probability 0.5.

All of the threshold energy definitions described in this
section are mathematically well defined, and all except
the last version Ema

d;ave are independent of the experimental
method used to measure them. Which one should be used
depends on the purpose of the study.

For direction-specific threshold energies one should
consider Ed(h,/). In most cases direct measurements of
the threshold energies measure the lowest electron energy
at which a defect signal (measured e.g. by resistivity) is
observed. In this case the relevant threshold is El

d. In com-
paring to experiments, the beam spreading should be
included in the consideration.

The average thresholds are typically used in connection
with the Kinchin–Pease or NRT equations as estimates of
damage levels produced in collision cascades. Then the
beam spreading issue is irrelevant and one should use either
Epp

d;ave or Eav
d;ave or the corresponding medians. At first sight,

one might think that one should account for the high-
energy events not producing defects in the choice, i.e. use
Epp

d;ave. However, the effect leading to no defects being
produced is in-cascade recombination, the very same effect
causing the Kinchin–Pease equation not to be valid in met-
als at high energies. Hence using Epp

d;ave for metals could to
some extent be considered circular reasoning. This leaves
us to consider the quantity Eav
d;ave (the average of all El

d val-
ues) as the most appropriate choice of the effective thresh-
old displacement energy E�d.

2.2. Simulation method

The points raised in the above discussion are important
to realize in choosing a method to simulate the full thresh-
old energy surface. If one wishes to simulate Eav

d;ave, one
should obtain El

d for all lattice directions, i.e. the full func-
tion El

dðh;/Þ. To determine this function, one should of
course simulate thresholds in all directions.

For each direction, one then picks an atom and gives it a
recoil energy in this direction. Because atoms have thermal
or zero-point vibration displacements from their lattice
sites, each atom position is unique even in a Bravais lattice,
and one should either generate new thermal displacements
before each event, or choose the initial atom randomly
from among several different lattice sites. We used the lat-
ter method, choosing the atom position randomly from
within the middle eight unit cells of the simulation cell.
Comparison with a smaller choosing region indicated this
was enough for ‘randomization’ of the initial position.
We tested how large the effect of the initial displacements
can be by simulating the threshold for different atoms in
the exact same direction. We obtained for five events
thresholds between 32 eV and 42 eV, showing that this is
a quite substantial effect. If one would want to determine
El

d in a given direction, one needs to account for this, but
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on the other hand if one takes the minimum over an angu-
lar or Miller index interval (as discussed above) it becomes
automatically taken into account. If one wishes to simulate
an average threshold energy Ed;ave, one should include all
El

d values for non-equivalent atoms. This is because in cas-
cades recoils are given to atoms with all kinds of thermal
displacements.

Since the threshold energy is not monotonously rising,
as described above, one cannot use binary search between
0 and a high energy to find efficiently the minimum El

d

for the given direction. Instead it is necessary to do an
exhaustive stepwise search in energy from 0 eV upwards
to be certain of finding the correct El

d for a specific
(atom,h,/) combination. When a defect-producing event
is found, El

dðatom; h;/Þ is determined and the simulations
can be restarted for a new atom and direction. We chose
to carry out this search in steps of 2 eV, and simulating
at least 2000 combinations of randomly chosen
(atom,h,/) events for each potential studied.

We also carried out another set of runs, where the sim-
ulations were not stopped when El

d was found, but always
continued until an ion energy of 250 eV (600 eV for the
ABC potential). These simulations were used to determine
the defect production efficiency discussed above for the
ABC potential, and the average production of defects used
in Section 3.4.

In total the simulations amounted to several million sep-
arate MD recoil event simulations for the 11 potentials
tested.

The molecular dynamics method used in the simulation
of the atom motion of the recoils has been described in
detail in previous works and hence we only mention here
a few central features. The cells were equilibrated to zero
pressure and 36 K temperature by first running an equili-
bration run with Berendsen temperature and pressure con-
trol [29] for 6 ps prior to the start of the recoil simulations.
The initialized atom positions and velocities were read in at
the beginning of each recoil simulation. Electronic stopping
[30–32] is not included in the calculation because the ener-
gies used are so low. The system size was 4608 atoms; we
also tested a simulation cell size of about 1500 atoms,
and found that there was no statistically significant differ-
ence between the 1500 atom and 4608 atom cell results,
giving confidence the size of 4608 atoms is sufficient. The
simulation time was 6 ps per event; visual observation of
the atom dynamics and monitoring of the temperature in
the cell showed that at this time the cell had cooled down
to the original ambient temperature of 36 K (chosen
because it was also used in [16]). The simulation cell size
of (12 · 12 · 16) unit cells was specifically chosen to be
non-cubic to reduce the possibility of 111 crowdion inter-
stitial self-interaction around the periodic cell borders.
Temperature cooling [29] at the borders was carried out
over a region of one unit cell on each side of the cell border
with a time constant of 70 fs, while the simulation cell
shape and volume was held fixed at the value obtained
from the equilibration run.
To detect the defects automatically, we used a combina-
tion of two methods. Criterion 1 was to flag a defect if the
final potential energy after a recoil event in the cell was
more than 4 eV above the average energy in it at thermal
equilibrium at 36 K. Criterion 2 was based on a Wigner–
Seitz defect analysis [33]. If both of these criteria indicated
presence of a defect, a defect was considered detected. If
one but not the other of the criteria was fulfilled, a defect
was also considered to be detected, but a warning was
issued. This can happen e.g. if a defect is just about
to recombine at the end of the simulation, or if large fluc-
tuations in potential energy still exist at the end of the
simulation. The amount of this kind of warnings was for
all potentials less than 1% of all simulated events, giving
confidence that the simulation time of 6 ps was long
enough.

2.3. Potentials used

The following Fe potentials were considered in this
work, listed in the order in which the simulations were car-
ried out. Some of the potentials are part of a potential
development effort for Fe compounds, in which case we
only used the pure Fe part. In some cases the original
potential was modified to include a high-energy repulsive
part, in which case we mention it here. Usually the repul-
sive potential is either the repulsive potential by Biersack
and Littmark [34] or the very similar ‘‘universal ZBL’’
repulsive interatomic potential [30]. The potential abbrevi-
ations given below are consistent with those used by Mal-
erba in recent related work [35,36].

The pair potential used by Erginsoy et al. in [12], which
we label ‘‘ERG’’. The potential by Ackland et al. [37],
which we label ‘‘ABC’’. The Fe part of the recent FeCr
potential developed by us, which we call ‘‘WOL’’ [38].
The potential developed by Chakarova et al. [39]
(‘‘COWP’’). The potential number 2 of Mendelev et al.
[40] (‘MHS’) as well as its modification number 10 by Ack-
land et al. [41] (‘‘AMS’’). These two differ only in the
embedding energy part. The potential of Simonelli et al.
[42], with the repulsive part modified by Becquart et al.
[43,44] (‘‘SP-RB’’). The potential of Haftel and Andreadis
[24], with a repulsive potential added by Doan and Vascon
[23] (‘‘HA-VD’’) The potential of Harrison et al. [45], with
the repulsive part modified by Becquart et al. [43,44] (‘‘HV-
TB’’). The Oh–Johnson potential [46], to which a repulsive
part was added by Soneda et al. [47] (‘‘JO-GA-SdlR’’). And
finally the Finnis–Sinclair Fe potential [17], which was
modified in the repulsive part by Calder et al. [22] (‘‘FS-
CB’’). For those potentials for which the repulsive poten-
tial addition was not mentioned, the modification was done
by the original potential constructors themselves. All
potentials except ERG are three-body potentials with an
embedding, but no angular terms.

All of these were realized by us in the form of numerical
tables which were read into the MD code ‘‘parcas’’ [33,48]
in the original EAM ‘‘u3’’ potential format [49]. The
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interpolation was done and the forces obtained using cubic
spline interpolation [50].

In Fig. 3 we illustrate the repulsive part of the potentials.
Almost all of the potentials reach the same value at high
energies because they have been joined to the ZBL univer-
sal repulsive potential [30]. Interesting, however, is the high
variation in the energy/distance range where the joining
has been done, and the form that the potential has, in this
range. This clearly illustrates the subjective approach many
groups (including ourselves) have taken to the joining.
Since this energy range is the one that determines the values
of the threshold energies, the results suggest greater care
should be taken at this part in the future e.g. by fitting
the low-energy repulsive part to density functional theory
data. Note also that also the many-body (‘‘embedding’’)
part of the potential affects the strength of the interaction
in this energy regime, which may increase the variations
further.
3. Results and discussion

3.1. Results for different threshold definitions

We used the Ackland potential (‘‘ABC’’) to test how the
different threshold definitions described above affect the
result quantitatively. We obtained values of Epp
d;ave ¼ 63�

1 eV, Eav
d;ave ¼ 44:8� 0:4 eV, and Ema

d;ave ¼ 32:4� 1:2 eV.
The corresponding median values are Epp

d;med ¼ 44 eV,
Eav

d;med ¼ 41 eV, and Ema
d;med ¼ 33 eV. The differences in the

values can be understood as follows. The ‘‘ma’’ values
are always the lowest because they are based on the mini-
mum in an interval. The ‘‘pp’’ values are the largest
because high-energy events not producing defects are taken
into account (leading to the asymmetry seen in Fig. 2). This
is especially well visible in the large difference between the
median and average energy for case pp; the asymmetry
leads to a strong shift of the average upwards.

The value for Ema
d;ave ¼ 33:4� 1:2 was obtained with a

Miller index interval of 0.1. For the same data an interval
of 0.02 gives 42.0 ± 0.5 and an interval of 0.01 gives
43.8 ± 0.5. Comparison of these values with the value of
Eav

d;ave ¼ 44:4� 0:4 eV calculated with no angular window
indicates that in electron irradiation experiments one can
assume that the threshold results correspond to the exact
lattice directions if beam spreading effects are of the order
of roughly 1� or less.

We also compare these average results with the direc-
tion-specific ones given in Table 1. We see that the average
of the minima in the 100, 1 10 and 111 directions is 30 eV,
clearly less than any of the true averages. Inspection of the
results of the other potentials in the table also show that
none of the low-index direction results strongly correlate
with the averages.

These large variations show that it does matter in which
way the average threshold is calculated, and one should be
careful to do it in a manner which best suits the purpose at
hand, as well as clearly define in which way it was done to
make later comparison with other works possible.

3.2. Results of the erginsoy potential

We tried to reproduce the original results of Erginsoy
et al. by reconstructing their pair potential [12]. This poten-
tial is a composite of a screened Coulomb, Born–Mayer
and Morse potential, but restricted in range to first and sec-
ond nearest neighbours only. An exact reproduction of
these simulations was impossible, however, because instead
of the nowadays customary periodic boundary conditions
used in MD simulations [51], Erginsoy et al. had surfaces
in the cell. These were stabilized by so-called surface forces,
which are not well documented [12]. When we used the pair
potential given by Erginsoy et al., together with periodic
boundary conditions and relaxed the pressure in the system
to 0 pressure, we found that the lattice constant obtained
was about 7% larger than in experiments (3.07 Å versus
2.86 Å). The cohesive energy of the system is much too
weak, about 1.4 eV for the equilibrium lattice constant of
3.07 Å and 1.2 eV for the experimental value of 2.86 Å.
The experimental value for Fe is about 4.3 eV [52], so the
value by Erginsoy et al. is more than a factor of three
off. Comparison with the Girifalco–Weizer potential [53]
(also tested by Erginsoy et al.) showed that the reason
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the potential energy is so low is the lack of long-range
interactions: in the Girifalco–Weizer Morse potential a cut-
off of 8.0 Å gives a realistic cohesive energy of about
4.2 eV, but restricting this potential to nearest and sec-
ond-nearest neighbours reduces the cohesive energy to
2.2 eV (for the same lattice constant).

Since the potential gives clearly too weak cohesion and
is thus elastically soft, also the threshold energies are very
low, see Table 1. Since Erginsoy et al. report obtaining a
good description of the lattice constant (contrary to our
finding using pressure relaxation), we infer that the surface
forces stabilized the simulated system to a realistic lattice
constant, which, however, put the inner parts of the system
under a large compressive stress. Our simulations show
that this stress is about 300 kbar. This will naturally
increase the simulated threshold energies. Table 1 also
shows results for the potential of Erginsoy et al. obtained
by forcing the system to the experimental lattice constant
of 2.86 Å. The direction-specific values of 15, 37 and
25 eV are close to the values of 17, 34 and 38 eV reported
by Erginsoy et al., but still do not fully agree.

These results show that the much used ‘‘NRT standard’’
threshold energy for Fe of 40 eV is based on molecular
dynamics simulations which cannot be fully reproduced
and were carried out in a system under a very high pres-
sure. To put things into perspective, we nevertheless
emphasize that the simulations of Erginsoy et al. were a
remarkable achievement in 1964 when the MD method
itself was only some 5 years old, and computer capacity
was extremely limited compared to today’s standards.

3.3. Results of many-body potentials

Table 1 presents the results obtained for the different
potentials considered in this study. The results shown are
compared to threshold energies reported by others in [36]
for the COWP, FS-CB, HA-VD, HV-TB, JO-GA-SdlR
and SP-RB potentials. The results agree within a couple
of eV in almost all cases. The differences found are most
likely due to a different angular window, which as discussed
above can have a large effect on the results.

The results in Table 1 are interesting both in terms of
where they agree with each other, and where they do not.

All potentials except HV-TB give a minimum threshold
energy near the 100 direction, with values ranging between
15 and 21 eV. This good agreement is not a coincidence, as
almost all authors adjusting the repulsive part of the poten-
tial have done that with the experimental threshold value of
about 17 eV in mind.

In the direction-specific thresholds for 11 0 and 11 1,
there are large variations between the potentials. For the
110 direction the minimum threshold is 27 and maximum
is 47, while for 11 1 the range is from 19 to 35. Noteworthy
is that considering all three directions, none of the poten-
tials agree with the experimental values of 16–20, P30
and 20 eV [13,15,16]. The HV-TB potential would seem
to come close, but its minimum does not lie in the 100
direction. Moreover, as is evident from Fig. 3, the high-
energy repulsive part of this potential is quite unrealistic.
The potential which is closest to experiments is SP-RB,
which is one of the few potentials which gives a clearly
stronger threshold in the 11 0 than 111 direction, in agree-
ment with experiments. Its minimum threshold energy of
15 eV is also rather close to the experimental values of
16–20 eV [13,16]. The MHS and AMS potentials (which
are among the few potentials which predict that the 110
dumbbell is the most stable interstitial structure in agree-
ment with recent density-functional theory works [54])
are in reasonable agreement with experiments except that
both predict a too high threshold in the 111 direction.

The average thresholds are in relatively better agreement
with each other, as they range from 33 to 53 eV, and all but
two of the potentials are in the even narrower range 36–
46 eV. The average of all the many-body potential average
thresholds is 41 ± 2, in perfect agreement with the NRT
standard value of 40 eV. This should not, however, be
interpreted to corroborate the NRT standard threshold
value. First, since most authors constructing Fe potentials
and adjusting its high-energy part have been aware of the
value of 40 eV, this may have guided the potential con-
struction. Second, although we find this possibility unli-
kely, one cannot rule out the possibility that all classical
potentials would suffer from a similar systematic error.
Hence although the present results certainly support the
use of 40 eV as the average threshold displacement energy
in Fe, it still would be valuable if new experiments could be
carried out to verify whether the value of 40 eV is indeed
appropriate.

3.4. Defect production efficiencies compared to experiments

We also compared our results with the experimental
defect production efficiencies obtained for polycrystalline
Fe in [13]. This was done by integrating the relativistic dif-
ferential cross section dr(T) with the displacement proba-
bility of primary recoil atoms Pd(T)

rdðEÞ ¼
Z T m

0

P dðT ÞdrðT Þ. ð4Þ

Here Tm is the relativistic expression for the maximum en-
ergy transfer from an electron of energy E to an atom [55],
and dr(T) is given by the McKinley–Feshbach approxima-
tion [56], Eq. (20) in [13]. The integral is over the atom re-
coil energy T. Because Tm and dr(T) are functions of the
electron energy E, so is rd. Since the maximum electron
energy used in the experiments was 1.35 MeV [13], the
experimental and thus also simulated data was normalized
to rd(1.35 MeV).

Lucasson carried out this integral by assuming some
shapes for Pd(T) and adjusting the parameters to fit exper-
iments. We can now instead take Pd(T) from the MD
simulations as a fixed quantity for each potential. By
numerically integrating Eq. (4), using MD data for Pd(T),
we obtain a rd(E) curve which can be directly compared
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to experiments, without the need for any adjustable
parameters.

The remaining complication is which threshold data
should be used for Pd(T). Since the experiments were car-
ried out on polycrystalline Fe, angular beam spreading is
not an issue. On the other hand, the experiments measured
the Frenkel pair resistivities, which means that if a recoil
produces more than one defect, this should be taken into
account in the analysis. Hence we believe the most appro-
priate function to use for Pd(T) is simply the average
number of Frenkel pairs produced as a function of recoil
energy, NFP(T). We obtained this quantity by summing
up the number of vacancies detected in the Wigner–Seitz
defect analysis.

In practice, since the maximum recoil energy is now only
123 eV (corresponding to the electron energy 1.35 MeV)
and the integral giving rd(E) always starts from T = 0,
the results are dominated by the lowest energies.

The results are illustrated in Figs. 4 and 5. Fig. 4 shows
the average number of defects produced for the different
potentials as a function of recoil energy T. Fig. 5 shows
the normalized rd calculated using this data and Eq. (4)
compared to experiments. The figure shows that the defect
production efficiency of the WOL and HV-TB potentials
clearly disagree with experiment, while the MHS, SP-RB,
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Fig. 4. Average number of defects produced as a function of recoil energy
NFP(T) for the different potentials. For clarity the figure is split in two
parts.
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Fig. 5. Atom displacement cross sections rd(E) normalized to the value at
1.35 MeV, as a function of average electron beam energy E. The squares
show experimental data from [13]. The lines show theoretical results
obtained by converting MD simulations of defect formation probability
NFP(T) into displacement cross sections using the McKinley–Feshbach
equations (see text) [56]. For clarity the figure is split in two parts.
JO-GA-SdlR, and FS-CB potentials show good agreement.
These results are related to the minimum threshold. As
explained above, the results are dominated by the lowest
energies. The too small rd(E) values of the WOL potentials
is related to the high threshold, while that of the HV-TB
potential is related to the slow rise of the NFP data just after
the threshold seen in Fig. 4.

3.5. Contour plots of Ed(h,/)

Fig. 6 shows contour plots of the three-dimensional
threshold displacement energy surface obtained from the
MD simulations for the SP-RB and MHS potentials. Also
shown as an inset is the threshold map of Erginsoy et al.
[12]. The map of Erginsoy et al. has much smoother curves
than ours, even though they reported simulating only a few
hundred events, while for the SP-RB potential we simu-
lated more than 30,000. The source of this discrepancy is
not clear to us.

Comparison of the SP-RB and MHS displacement maps
shows that even the qualitative features of the displacement
energy surfaces differ strongly. A few common features can
be noted, however. Both potentials show a relatively



Fig. 6. Contour plots of the three-dimensional threshold displacement energy surface in the triangle of crystallographically non-equivalent crystal
directions. Each contour plot is made by first taking the minimum/average of the threshold data in 0.033 Miller index intervals, then making an
unsmoothed contour plot. The unit for the threshold curves is eV. The thresholds in the 0.033 Miller index interval from the three principal directions are
shown with numbers and arrows: (a) SP-RB potential, minimum of each interval, (b) MHS potential, minimum of each interval and (c) SP-RB potential,
average of each interval. The inset in the upper left of figures (a) and (b) shows the original threshold displacement map of Erginsoy et al. [12].
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smooth behaviour around the principal 100 direction,
while at 110 the threshold very close to the principal direc-
tion is in both much larger than just 0.05 Miller indices off
it. Also around 111 for the MHS potential a similar behav-
iour is observed. This explains why the minima for the
principal directions differ from those reported in Table 1;
note that the values in the table are obtained for Miller
index intervals of 0.2.

All three potentials show that the threshold surface close
to 100 is flat, that the largest thresholds occur around very
roughly the 123 crystal direction, and that a region of lar-
ger displacement energies separates the 100 and 110 direc-
tions. We checked that also all other potentials show these
general features, which clearly are due to simple geometri-
cal reasons independent of the bonding chemistry. No
other general trends common to all potential were noted.

Comparison of parts (a) and (c) of Fig. 6 show that
when the average instead of the minimum in each interval
is considered, a smoother behaviour with similar overall
characteristics is observed. It is interesting to note, though,
that while the average and minimal values differ only little
in the 100 and 11 1 directions, there is a large difference
in the 110 directions. This means that recoils in the 110
direction have for small energies a tiny probability of pro-
ducing a stable defect, but in most cases a much higher
energy is needed to produce a stable defect.

4. Conclusions

We have shown that contrary to a common assumption,
the damage production curve as a function of increasing
recoil energy for a given atom is not a monotonously rising
curve, but can in fact sometimes go to zero after being one
already. The probability of this is large enough that it can
affect an average threshold significantly.

The methodology used here allows systematic testing
of future Fe potentials against threshold displacement
experiments.

In our comparison of threshold energies calculated with
different potentials, we found that none of the 11 tested
potentials agrees fully with experiments, although the
SP-RB potential is fairly close. All 11 tested potentials do
agree on the following qualitative features: the threshold
energy surface Ed(h,/) close to 1 00 is flat, the largest
threshold energies occur around very roughly the 123 crys-
tal direction, and a region of larger displacement energies
separates the 100 and 110 directions.
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