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Abstract: Zwitterionic polymers as crucial antifouling materials exhibit excellent antifouling perfor-
mance due to their strong hydration ability. The structure–property relationship at the molecular
level still remains to be elucidated. In this work, the surface hydration ability of three antifouling
polymer membranes grafting on polysiloxane membranes Poly(sulfobetaine methacrylate) (T4-SB),
poly(3-(methacryloyloxy)propane-1-sulfonate) (T4-SP), and poly(2-(dimethylamino)ethyl methacry-
late) (T4-DM) was investigated. An orderly packed, and tightly bound surface hydration layer above
T4-SP and T4-SB antifouling membranes was found by means of analyzing the dipole orientation
distribution, diffusion coefficient, and average residence time. To further understand the surface
hydration ability of three antifouling membranes, the surface structure, density profile, roughness,
and area percentage of hydrophilic surface combining electrostatic potential, RDFs, SDFs, and nonco-
valent interactions of three polymers’ monomers were studied. It was concluded that the broadest
distribution of electrostatic potential on the surface and the nature of anionic SO3- groups led to the
following antifouling order of T4-SB > T4-SP > T4-DM. We hope that this work will gain some insight
for the rational design and optimization of ecofriendly antifouling materials.

Keywords: antifouling polymer; zwitterionic; surface hydration; molecular dynamics simulation

1. Introduction

The adsorption and accumulation of fouling organisms on surface of materials,
i.e., marine biofouling, is a major problem faced by ships and offshore facilities [1,2]. The
annual cost of increased fuel consumption, cleaning, maintenance, and repair of ships
caused by marine biofouling is as high as billions of dollars [3,4]. Early marine antifouling
coatings mainly used biotoxic tributyltin (TBT) antifouling paints, which killed marine
organism larvae or spores through the release of antifouling agents to achieve antifouling
purposes [5,6]. However, traditional antifouling paints are highly toxic for many aquatic
organisms and have caused severe damage to the environment. The development of
ecofriendly antifouling coatings is gradually becoming a research hotspot in this field [7–9].

Among them, protein-resistant antifouling material that inhibits the settlement of
proteins is a relatively promising one [10], such as poly (ethylene glycol) (PEG), zwitteri-
onic polymers [11] (poly (Sulfobetaine methacrylate), pSBMA, or poly (Carboxybetaine
methacrylate), pCBMA). For example, Jiang’s group [12–14] has been engaged in biofoul-
ing research for a long period and synthesized a series of zwitterionic polymers. On the
one hand, they used molecular simulation methods to reveal the antifouling mechanism
of materials on the microscopic level. On the other hand, they carried out application
research on this basis to design and synthesize new antifouling materials. Zheng and
coworkers [15–17] investigated the antifouling properties of zwitterionic polymer brushes,
polyacrylamide, and hydroxyalkyl acrylamides using combined molecular dynamics and
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steered molecular dynamics, believing that the carbon space and anionic groups have dis-
tinct effects on their antifouling performance. The state key laboratory of marine corrosion
and protection in China has also synthesized a series of antifouling coatings by grafting
zwitterionic sulfobetaine methacrylate (T4-SB) or anionic sulfonate methacrylate (T4-SP),
which have the property of inhibiting adsorption of proteins on the surface of polysiloxane
material (T4). These materials have a good antifouling effect on fouling organisms such as
diatoms. We found that the static adsorption number of diatoms in the T4-SP antifouling
material is 15/mm2 (4% of the T4 antifouling material) in the experiment; for T4-SB, the
static adsorption number of diatoms is 9/mm2 (2% of the T4 antifouling material), which
significantly improved the antifouling performance of the silicone material.

The adsorption of protein on surface is affected by many factors [18–21], among which
the factors favorable for adsorption mainly include the enthalpy loss from the van der
Waals and electrostatic attraction between protein and surface, and the entropic gain from
the removal of hydration layer at the surface of material and protein. The disadvantages
include the enthalpy gain required for the dehydration of surface and protein, protein’s
conformation adjustment, as well as the entropic loss from protein adsorption and exposure
of hydrophobic regions. The hydration layer above the surface of the antifouling material
plays a crucial role from the antifouling perspective [22] because it provides the physical and
energy barriers that must be overcome during protein adsorption. To confirm the structure
of the hydration layer above the surface of antifouling materials, many experimental
studies have been carried out. For example, Leng et al. [23,24] confirmed that there is
a tightly bounded and regularly ordered hydration layer above zwitterionic antifouling
membrane compared with polymer membrane without antifouling ability using sum
frequency generation (SFG) vibrational spectroscopy. Paul et al. [25] directly observed
the structure of hydration layer above the surface of epoxy organosilane modified silica
nanoparticles and unmodified silica nanoparticles by frequency modulation−atomic force
microscopy. Combined with molecular dynamics simulations, a more continuous and
thicker hydration layer structure was found on the surface of modified silica particles,
which endows the material with a better antifouling ability.

In this work, we will compare the antifouling ability of three polymer antifouling
membranes (T4-DM, T4-SP, T4-SB) using molecular dynamics simulation at the molecular
level through the hydration layer. We hope this work will provide theoretical support for
the subsequent design and optimization of related antifouling materials.

2. Simulation Method
2.1. Model

Three antifouling membranes were constructed according to their molecular struc-
tures (Figure 1). The T4 substrate was neglected considering the main differences between
different antifouling membranes focusing on the grafted polymers. The modeling process
of T4-DM system is illustrated in Figure 2 as an example. The polymer chains with a degree
of polymerization of 15 (Figure 2b) were built from their repeat unit (Figure 2a) using the
Visualizer module in Materials Studio. This was repeated 10 times in the x and y directions
to derive the initial configuration of antifouling membrane in Figure 2c. The initial configu-
rations of the antifouling membranes were then subject to a 21-step molecular dynamics
compression and relaxation [26] to obtain the equilibrium packing structure (which might
not be the optimal one) in Figure 2d. The procedure of the 21-step MD simulation protocol
is listed in Table S1. The simulation boxes were then enlarged two times along the z-axis
to accommodate solvent molecules (Figure 2e). As a comparison, antifouling membranes
without water were also studied (Figure 2g). Finally, all systems were subject to equilibrium
molecular dynamics simulations to derive equilibrium structures (Figure 2f,h).
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Figure 1. Chemical structure of three nonfouling membranes (a) T4-DM, (b) T4-SP, (c) T4-SB. 

 

Figure 2. Modeling process and Simulation protocol of T4-DM system. (a) Repeat unit of DM; (b) 

single polymer chain of DM in simulation box (side view), (c) enlarged 10 times in x and y direc-

tions of (b) (top view); (d) compressed and relaxed configuration of DM membrane (top view); (e) 

initial configuration of DM with water system (side view); (f) final configuration of DM with wa-

ter system (side view); (g) initial configuration of DM without water system (side view); (h) final 

configuration of DM without water system (side view). 
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2.2. Simulation Details 

Figure 2. Modeling process and Simulation protocol of T4-DM system. (a) Repeat unit of DM;
(b) single polymer chain of DM in simulation box (side view), (c) enlarged 10 times in x and y
directions of (b) (top view); (d) compressed and relaxed configuration of DM membrane (top view);
(e) initial configuration of DM with water system (side view); (f) final configuration of DM with
water system (side view); (g) initial configuration of DM without water system (side view); (h) final
configuration of DM without water system (side view).
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2.2. Simulation Details

The repeat unit of each polymer was calculated at B3LYP/def2SVP// B3LYP/def2TZVP
level using Gaussian 16 [27]. Then, RESP charges were derived from Multiwfn 3.8 [28].
All molecular dynamics simulations were performed using Gromacs 2019.3 software pack-
age [29]. Gromos 54a7 force field was used [30]. The total potential energy was given as
a combination of valence terms, including bond stretching, angle bending, torsion, and
nonbonded interactions. The nonbonded interactions between atoms were described by
the Lennard-Jones potential, and the standard geometric mean combination rules were
used for the van der Waals interactions between different atom species. Water molecules
used the SPC model [31].

In the simulations, each of the systems was initialized by minimizing the energies
of the initial configurations using steepest descent method. Following the minimization,
a 50 ns MD simulation under NPT ensemble was carried out for each system, with a
time step of 2 fs. In all simulations, the temperature was kept constant at 298 K by the
v-rescale thermostat algorithm [32]. The pressure was kept constant at 1 atm by the
Berendsen algorithm [33]. Bond lengths were constrained using the LINCS algorithm and
periodic boundary conditions were applied in all directions [34]. Short-range nonbonded
interactions were cut off at 1.2 nm, with long-range electrostatics calculated using the
particle mesh Ewald method [35]. Trajectories were stored every 2 ps and visualized using
VMD 1.9.3 [36].

3. Results and Discussion
3.1. Properties of Antifouling Membranes
3.1.1. Density Profiles

The simulated configurations of three antifouling membranes at dry and hydrated
states are illustrated in Figure S1. We can clearly see that there are no significant differences
between T4-DM membrane under dry and hydrated states, while for T4-SP and T4-SB mem-
branes, many side chains extend to water phase. This indicates that the side chains of T4-SP
and T4-SB have a better hydrophilicity. Besides this, the compression of these chains during
adsorption of foulant would reduce the conformation possibility, which is entropically
unfavorable, subsequently causing steric repulsion and preventing adsorption [10].

To quantitatively study the structure of three antifouling membranes, the density
profile along z-axis was calculated, as shown in Figure 3. The results were derived from
the last 5 ns trajectory. The density profile was symmetrized around the membrane center
to obtain a better result. The density profiles of T4-DM in dry and hydrated states almost
overlapped. As for T4-SP and T4-SB membranes, the density profile of hydrated state
broadened compared with that of dry state (more obvious for T4-SB membrane), which
is consistent with the configurations in Figure S1. The density of water in T4-SB is higher
than that of T4-SP, and even higher than that of T4-DM, which indicates that the side chains
of T4-SB can attract extra water molecules compared with those of T4-SP and T4-DM. We
then deduce that the hydrophilicity of the antifouling membranes follows the order of
T4-SB > T4-SP > T4-DM.

3.1.2. Surface Roughness

Since the density profile is a statistical average of the entire membrane layer, it cannot
reflect the local specific structural information of membranes. To further analyze the de-
tailed surface structure, contour maps of the upper surface of three antifouling membranes
in hydrated states were sketched, as shown in Figure 4. To define the surface of membrane,
the simulation box was divided into grids with 0.4 nm × 0.4 nm resolution in xy plane.
Atoms with the largest or smallest z-axis were selected as the top atoms to define the mem-
brane surface. It can be seen from Figure 5 that T4-DM membrane’s surface is relatively
flat, while T4-SP has more peaks and valleys than T4-DM. As for T4-SB, the contour lines
are the densest, indicating that the order of surface roughness is T4-SB > T4-SP > T4-DM.
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Figure 4. Contour maps of three antifouling membrane surfaces. (a) T4-DM, (b) T4-SP, (c) T4-SB.

To quantify the surface roughness of three antifouling membranes, the root mean
square roughness R was introduced [37]:

R =

√
∑N

i=1
(
Zi − Z

)2

N

where Zi is the z-coordinate of the atoms exposed in the outermost layer in each grid
point and Z is the average value of the z-coordinates of all the atoms exposed on the
outermost surface. Both the up and down surfaces of three antifouling membranes in
dry and hydrated states are calculated and listed in Table 1. The data suggested there is
little difference between dry and hydrated states for T4-DM. The roughness in hydrated
state follows the order of T4-SB > T4-SP > T4-DM, which is consistent with Figures 3 and 5.
Obviously, the greater the roughness of the surface, the more hydrophilic sites were exposed,
and the more water molecules could be bound.
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antifouling membranes. Numbers above the bar means the proportion of hydrophilic area.

Table 1. Root-mean-square roughness of three antifouling membranes.

Root-Mean-Square Roughness R *

Hydrated Dry

Up Down Up Down

T4-DM 2.80 ± 0.074 2.84 ± 0.062 2.79 ± 0.056 2.80 ± 0.068
T4-SP 3.73 ± 0.050 3.83 ± 0.056 2.68 ± 0.037 2.41 ± 0.037
T4-SB 4.28 ± 0.068 4.20 ± 0.059 2.94 ± 0.042 2.98 ± 0.032

* Data derived from the last 1 ns trajectory.

3.1.3. Hydrophilicity

In addition to the influence of surface roughness on surface hydration, the hydrophilic-
ity and hydrophobicity of the surface determine the surface hydration ability directly. The
hydrophilic and hydrophobic surface area of each antifouling membrane were calculated
from the last 5 ns trajectory, as shown in Figure 5. During calculation, the atomic charge
between −0.2 and 0.2 was considered as the hydrophobic surface area, and the other is
the hydrophilic surface area. The hydrophilic surface area and its proportion of all three
antifouling membranes increased in hydrated state. The total surface area does not change
much between dry and hydrated states, which is consistent with the configuration in
Figure S1. The total surface area, especially the hydrophilic surface area, of T4-SP and
T4-SB both increased significantly when immersed in water, which suggests that they have
a strong hydration ability.
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3.2. Properties of Surface Hydration Layer
3.2.1. Structural Properties

After the above structural analysis of the antifouling membranes, it was found that the
surface hydration ability of the three antifouling membranes was T4-SB > T4-SP > T4-DM.
We also noticed that with the increase in surface hydration ability, more water molecules
can penetrate into the matrix of membrane from the density profiles in Figure 3. To examine
the structure of water molecules near the interface of antifouling membranes, we calculated
the cosine of the angle between dipole of water and z-axis at different distances from the
surface, as shown in Figure 6. Obviously, for a random distribution, the cosθ should be
close to 0 [38]. In the T4-DM membrane system, only water molecules close to membrane
have a certain orientation, while water molecules farther away are randomly distributed.
In the T4-SP system, the dipole orientation of surface water molecules slightly decreased
to 0 after 2 nm, while in the T4-SB system, there is still a long-distance arrangement of
water molecules even beyond 2 nm away from the surface. This observation is consistent
with Leng’s experiment [23,24], where ordered water molecules were found at zwitterionic
pSBMA surfaces.

3.2.2. Dynamic Properties

The antifouling membranes can also affect the hydration layer’s dynamic properties
beside the structure of surface water molecules. We calculated the distribution of the
average residence time of water molecules within 0.5 nm of antifouling membrane surfaces,
as shown in Figure 7b. The average residence time means how long water molecules can
stay near the surface of the antifouling membrane on average [39]. It reflects the stability of
the hydration water layer of the antifouling membrane or, in other words, the hydration
ability of antifouling membranes [40]. Figure 7a shows the trajectory of one hydration
layer water molecule above T4-SB membrane. The calculated average residence time is
shown in Table 2. It can be seen that the average residence time increased from T4-DM and
T4-SP to T4-SB, indicating that the binding effect of antifouling membranes on their surface
hydration layers increased.

The diffusion behavior of surface hydration layer water molecules above three an-
tifouling membranes was investigated. The mean square displacement (MSD) of surface
hydration layer water molecules is shown in Figure 8. Their diffusion coefficients were then
calculated according to Einstein’s equation and collected in Table 2. It can be seen that the
diffusion coefficients of surface hydration layer water molecules above three antifouling
membranes gradually decreased from T4-DM and T4-SP to T4-SB, indicating that the mo-
bility of water molecules decreased or the binding effect from the antifouling membranes
increased, which is consistent with the previous analysis.

Table 2. Dynamic properties of hydration layer water molecules above three antifouling membranes
including average residence time and diffusion coefficient.

Antifouling Membranes Average Residence Time (ps) Diffusion Coefficient D ×
10−5 cm2/s

T4-DM 17.85 2.57 (+/− 0.080)
T4-SP 24.98 1.62 (+/− 0.014)
T4-SB 27.16 1.54 (+/− 0.043)

Bulk water - 4.13(+/− 0.15)
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(c) T4-SB.
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Figure 7. Trajectory and residence time of surface hydration layer water molecules. (a) Trajectory
of one hydration layer water molecule above T4-SB surface (connected blue dots). The antifouling
membrane was colored in CPK mode. The surface hydration layer water molecules were modeled
in VDW mode. (b) Residence time distribution of water molecules in the hydration layer of three
antifouling membranes.
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3.3. Hydration Mechanisms—From the View of Monomers
3.3.1. Solvation Free Energy

We have analyzed and compared the structural properties of the antifouling mem-
branes and the structural and dynamic properties of their hydration water layers from the
overall antifouling membranes’ view. The order of surface hydration ability or antifouling
ability, T4-SB > T4-SP > T4-DM, was obtained. Next, we analyze the mechanisms for the
difference in hydration ability from the monomer’s view, which serves as a model for the
antifouling polymer membrane [38].

Solvation free energies were calculated for three monomers at M05-2X/6-31 g* level,
as collected in Table 3. The negative of solvation free energy indicates all three monomers
have a high affinity with water. The order of solvation free energy follows the order of
T4-SB > T4-SP >> T4-DM, which is consistent with previous analysis.

Table 3. Properties of monomer of three antifouling membranes.

Monomer of
Antifouling
Membranes

Solvation Free
Energy (kcal/mol)

Nonpolar Surface
Area (Å2)

Polar Surface
Area (Å2)

Molecular
Polarity Index

(kcal/mol)

Number of
Bonded Water

Molecules

T4-DM −6.16 203.59 63.16 8.58 10.02
T4-SP −71.68 0.00 283.56 67.07 15.43
T4-SB −73.46 24.60 339.35 43.54 18.43

3.3.2. Electrostatic Potential

Electrostatic potentials of the three monomers were calculated and mapped on their
van der Waals surfaces [41], as shown in Figure 9. The molecular polarity, polar, and
nonpolar surface area were also calculated, as shown in Table 3 [42]. The surface area with
|ESP| <= 10 kcal/mol was considered as nonpolar surface area while the others were
considered as polar surface area. It can be seen that the negative charge center of T4-DM
monomer is located at the N atom. Since T4-SP monomer has a negative charge, the overall
electrostatic surface is negative, and mainly concentrated on the sulfonate group. In the
zwitterion T4-SB monomer, the negative charge center is located in the sulfonate group
and the positive charge center is located at the N atom. Though the MPI of T4-SP was
the largest, the T4-SB has the largest polar surface area, which can combine with more
water. Combining with the distribution of areas occupied by different electrostatic potential
regions in Figure 9b, it can be seen that the distribution of electrostatic potential on the
surface of T4-SB monomer is the broadest, which is conducive to the electrostatic interaction
with other polar molecules such as water [43].

3.3.3. Radial Distribution Function

To further understand the hydration ability of antifouling polymers’ monomers, an-
other molecular dynamics simulation was conducted. Three monomers were solvated in
4 × 4 × 4 nm3 water box, respectively; then, 50 ns NPT simulations were performed. After
that, the radial distribution functions (RDFs) of the water molecules or Na+ around the po-
lar groups of three monomers and their coordination number were calculated, respectively,
as shown in Figure 10. The RDFs can reflect the intermolecular structure and interactions
between center atoms and surrounding water molecules. Two peaks were found in the
RDF curve, indicating that two hydration layers were formed, which corresponded to the
first hydration layer that consisted of bound water and the second hydration layer made
up of trapped water; this agrees with Paul’s experiment [25]. According to Figure 10a,b,
SO3

− groups in T4-SP and T4-SB have similar hydration ability and are stronger than the
N group in T4-DM and T4-SB. Meanwhile, the peaks of g(r)N-OW in T4-DM were lower
than those in T4-SB and also the coordination number of the first hydration shell from
Figure 11c,d, indicating a better packed hydration shell around N in T4-SB. The number
of water molecules tightly bonded to three monomers were also calculated and collected
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in Table 3. Consequently, the T4-SB antifouling membrane presents a more hydrophilic
behavior than T4-SP and T4-DM.
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3.3.4. Spatial Distribution Function

Though the RDFs can reflect the hydration effect of hydrophilic groups in three
monomers on water molecules, the calculation of RDFs is based on the spherical averaging
of the water molecules around the hydrophilic group, which neglects the spatial distribution
of the water molecules. Therefore, the spatial distribution function (SDF) of water molecules
around hydrophilic groups was calculated, shown in Figure 11. From this, we can see that
there is only a ribbonlike distribution around the carbonyl oxygen in DM monomer, while
the distribution of water molecules around the N atom cannot be shown under current
isosurface. In the SP monomer, there are three spherical crown water molecule distribution
areas in the direction of three S–O bonds, which is obviously caused by the hydrogen bond
formed between the O atom in SO3

− group and the water molecules. Similar structures
were also found in SB monomer. Besides this, there is a ribbonlike distribution of water
molecules around the N atom.

3.3.5. Noncovalent Interactions

To fundamentally understand the different hydration ability of three antifouling
monomers, aNCI (averaged noncovalent interaction) analysis [44,45] was conducted, shown
in Figure 12. The green area in the figure indicates that van der Waals interaction is
dominant. Blue area indicates that there is a strong hydrogen bond interaction. The red
area indicates that there is a strong steric hindrance effect. In DM monomer, as the negative
charge center N atom was shielded by surrounding methyl groups, it can only interact with
water molecules through weak vdW interactions. In T4-SP and T4-SB monomers, water
molecules can directly form hydrogen bonds with the exposed O atoms, which plays a key
role in their strong hydration ability. Besides that, the extra positive charge center N atom
can also interact with water molecules through weak vdW interactions such as N in the
T4-DM monomer. Therefore, the hydration abilities of three antifouling polymers are in the
order of T4-SB > T4-SP > T4-DM.
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4. Conclusions

In this work, we investigated the surface hydration of three antifouling membranes—T4-DM,
T4-SP, and T4-SB—by a series of molecular dynamics simulations. Dipole orientation
distribution, diffusion coefficient, and average residence time revealed an orderly, packed,
and tightly bound surface hydration layer above T4-SP and T4-SB antifouling membranes.
The surface structure, density profile, surface roughness, and area percentage of hydrophilic
surface provide further details regarding the strong surface hydration of T4-SP and T4-SB
from the membranes’ aspect. The side chains of T4-SP and T4-SB were more stretched in
hydrated state due to their high hydration ability, which can cause steric repulsion and
prevent adsorption. Their surfaces are relatively rough, which can bind much more water
or even let water penetrate into the internal voids of the membrane.

To further understand the surface hydration ability of three antifouling membranes,
solvation free energy, electrostatic potential, RDFs, SDFs, and noncovalent interactions
of three monomers were analyzed. T4-SB monomer has the broadest distribution of
electrostatic potential on the surface, resulting from the separated negatively and positively
charge center and largest water coordination number for its zwitterionic architecture. Its
exposed negative charge center SO3

− group can form hydrogen bonds with surrounding
water molecules and the shielded positive charge center N can also bind water molecules
through weak vdW interaction.

The simulation data suggest the hydration ability of monomers ranks in terms of
T4-SB > T4-SP > T4-DM. Since the surface hydration layer serves as a physical and energy
barrier during the prevention of protein adsorption, we believe their antifouling ability
ranks in terms of T4-SB > T4-SP > T4-DM, which is consistent with experiments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27103074/s1, Figure S1: Final simulation configuration
of three antifouling membranes under dry and hydrated states; Table S1: 21-step MD compression
and relaxation schemes.
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