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We present a molecular dynamics scheme which combines first-principles and machine-learning (ML)
techniques in a single information-efficient approach. Forces on atoms are either predicted by Bayesian
inference or, if necessary, computed by on-the-fly quantum-mechanical (QM) calculations and added to a
growing ML database, whose completeness is, thus, never required. As a result, the scheme is accurate and
general, while progressively fewer QM calls are needed when a new chemical process is encountered for
the second and subsequent times, as demonstrated by tests on crystalline and molten silicon.
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The need to produce accurate dynamical representations
of chemical processes has been ever increasing in recent
years. Density-functional theory (DFT) provides a well
established [1,2] framework to do this, notably through
first-principles molecular dynamics (FPMD) simulations
[3]. Standard DFT implementations are typically limited
to a few hundred atoms (a few thousand in linear-scaling
approaches [4–8]), and to the ∼10 ps time scale, dramati-
cally restricting the applicability of the approach. Much
larger model systems and longer simulations are achievable
using force fields (FFs), based on judiciously chosen para-
metrized functional forms fitted on experimental or FP data
[9–14]. However, for many complex chemical situations
accurate “reactive” FFs do not yet exist, would require long
development times, and would be hard to validate system-
atically, particularly for use in truly predictive, extrapolative
situations [15]. More recent approaches based on machine
learning [16] use neural networks [17] or Gaussian processes
(GPs)[18] to fit “once and for all” the DFT potential energy
surface (PES), after which atomic forces are obtained by
analytic differentiation. Similar to classical FFs, a fixed high-
quality parametrized PES simultaneously ensures fast force
evaluation and reliable interpolation. However, accuracy is
still not guaranteed to transfer to chemical situations not
represented in the fitting database.
Here, we propose an alternative machine-learning (ML)

based scheme where we allow a stream of fresh quantum-
mechanical (QM) calculations to augment the ML database
during each MD simulation, enabling safe interpolation.
The scheme could equally be viewed as an efficient FPMD
approach where we seek to compute only the QM informa-
tion necessary to progress the simulation, while retaining

the very broad applicability of FPMD. To minimize the QM
workload of the MD simulation, one can start by noticing
that ML-predicted atomic forces will suffice as long as the
dynamics visits configuration is “well represented” within
the existing database. Thus, an idealMLMD scheme should
not attempt to increase its database through additional QM
calculations until “something new” happens that necessi-
tates this. This is a central guideline for the present work,
significantly improving on an earlier scheme [19,20] where
all QM informationwas used once and afterwards discarded.
Our new scheme has the potential to reduce the cost of
FPMD for the vast range of problems where it is already
applied [2], and to extend its use to problems currently
beyond reach because of prohibitive time and/or length
scales. Here, we test it on standard benchmark physical
systems [3,17,18,20], comprising crystalline and molten
silicon over a wide range of temperatures and bonding
geometries, in both insulating and metallic conditions
(Figs. 1–3).

FIG. 1 (color online). Comparison of the bulk Si phonon
spectrum calculated with DFTB (blue), and SW (black) and
with the ML on-the-fly (MLOTF) approach (red), computed with
the finite displacement Parlinksi-Li-Kawazoe method [21,22]
using a standard σerr ¼ 0.05 eV=Å (dotted lines) and a high-
accuracy σerr ¼ 5 × 10−4 eV=Å value (solid lines) for the ML
data noise parameter. The ML database was constructed from a
300 K MD trajectory.
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The scheme is based on direct ML prediction of atomic
forces, rather than atomic energies or PESs. This ensures
high force accuracy, e.g., allowing systematic convergence
of trajectories to their FPMD limit by enhancing the
QM fitting frequency, and avoiding any “blurring” effect
connected with deriving forces from an intermediate PES
representation. The forces on atoms are predicted by
Bayesian inference using standard GP regression [16,23].
The QM database is progressively built during the MD run
and, at the same time, queried to predict forces for those
time steps where no QM calculation is made, using an
n-time-step predictor-corrector algorithm [19,20]. As in the
previous scheme, (free) energy barriers can be estimated by
accurate thermodynamic integration [24]. Since the ongoing
MD simulation continuously improves the database, as long
as the system remains within the same phase space region,
the accuracy of the predicted forces improves (Fig. 2).
Alternatively, we may fix the target force accuracy so that
the frequency of necessary QM calculations progressively
decreases and n can be increased (Fig. 3).
To construct the covariance matrix required by the

standard GP regression procedure [25], we need a
symmetry-efficient representation to describe atomic con-
figurations, and a function measuring the distance dmn ¼
dðxm; xnÞ between any two such configurations xm and xn
suitable for quantifying their “similarity for force prediction”
[28]. As in PES-learning ML schemes, an efficient repre-
sentation of an atomic environment x should be invariant
under transformations to physically equivalent systems such
as rotations and permutations of atoms of the same chemical
species [29]. A special difficulty associated with a force-
learning ML scheme is that the Cartesian force components
depend on the choice of reference frame, unlike the (physi-
cally scalar, however defined) atomic energies, so that the
best force components to be learned from a database
configuration are only known after a rotation to its optimal
alignment with the target configuration. As will be shown
below, an efficient way to deal with this issue is to define a
rotationally invariant “internal” representation for atomic

configurations and force vectors [30]. After carrying out ML
in this representation, we transform the predicted force back
into theCartesian representation, so that they have the correct
orientation for MD trajectory integration.
For each atom, k independent internal vectors (IVs) Vi

for i ¼ 1;…; k can be uniquely defined by the relative
positions rq of its neighbors, which makes them invariant
under translations and any permutation of neighbors of the
same chemical species. A possible choice is

Vi ¼
XNneighb

q¼1

r̂qexp

�
−
�

rq
rcutðiÞ

�
pðiÞ�

; ð1Þ

where each of these basis vectors is defined by different
values of the parameters p and rcut, chosen within a suitable
range reflecting the decay rate or interaction range of forces
in the system. This vector representation ensures that force
components are null where this follows from symmetry, and
that closer neighbors contribute more than far away ones.
Crucially, to improve the prediction accuracy, this set can be
expanded to include any additional vector presumed to carry
useful information on target QM forces. These are typically
force vectors obtained from well-established classical force
fields or from QM models less computationally expensive
than the current reference Hamiltonian (e.g., an empirical
tight bindingmodel if themainQMmodel is DFT based, see
inset of Fig. 2). This offers a way to include precious

FIG. 2 (color online). Accuracy of forces predicted by the ML
scheme as a function of database size. Teaching points are
sampled from DFTB MD of silicon at 1000 K (blue squares)
and at 2500 K (green diamonds) at 20 fs intervals. Inset: a similar
test, using DFT forces sampled from MD at 1000 K as the target.
Accuracy improves significantly when the set of IVs is aug-
mented by classical or TB force vectors.

(a)

(b)

(c)

FIG. 3 (color online). (a) Average QM calling rate of low- and
high-temperature MD “learning” simulations in bulk crystalline
silicon. Red circles pinpoint QM calls, getting remarkably sparse
after the initial learning phase. (b) Temperature profile of a MD
simulation alternating between 300 and 800 K. (c) Instantaneous
QM call frequency (left vertical axis, red stars) and total call
count within each 800 K cycle (right axis, blue histograms) of
the simulation of panel (b).
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physical insight from established interatomic models in our
descriptor. The directions V̂i ¼ Vi=∥Vi∥ form an internal
coordinate system which, for k > 3, gives an overdeter-
mined description of vector quantities. A representation
for the atomic configuration x is given by the k × k matrix
X with elements Xij ¼ Vi · V̂j ¼ ðVATÞij, where we have
defined the vector and direction matrices

VT ¼

0
B@

j j j
V1 … Vk

j j j

1
CCA; AT ¼

0
BB@

j j j
V̂1 … V̂k

j j j

1
CCA: ð2Þ

The feature matrix X ¼ VAT is invariant under trans-
lations, permutations and rotations of the corresponding
atomic configuration. The similarity between two atomic
environments xm and xn is expressed by the distance

d2mn ¼
1

k

Xk
i;j¼1

�
Xm
ij

χi
−
Xn
ij

χi

�
2

; ð3Þ

where the scale factors χi are the standard deviation over
the database of the Euclidean distance in the internal
representation space between the Vi vectors from different
configurations

χ2i ¼
XN
n;m¼1

Xk
j¼1

ðXm
ij − Xn

ijÞ2
N2

: ð4Þ

This distance is used to build the covariance matrix
[SupplementalMaterial [25] Eq. (S3)], which requires further
tuning the correlation length and data noise hyperparameters
σcov and σerr. The former is always of the order of unity due to
the χi distance normalization in Eq. (3), and σcov ¼ 1.0 is the
value used in this work. For the latter, we typically impose
σerr ¼ 0.05 eV=Å, which has the effect of regularizing
the linear algebra [31]. After predicting the components of
the k-dimensional internal force vector F [Supplemental
Material [25] Eq. (S1)], its Cartesian space coordinates can be
reconstructed as F ¼ AþF using a least squares approach
where the absolute orientation of the testing configuration is
provided by the pseudoinverse matrix Aþ ¼ ðATAÞ−1AT .
As a first, stringent test of the robustness and accuracy of

ourmatrix representation [Eq. (2)],weprobed its performance
in handling highly symmetric target configurations involving
very small or null components of internal vectors and target
forces, by computing the phonon dispersion of crystalline Si
using the supercell approach [21]. The predicted phonon
spectra closely track the target QM benchmark (Fig. 1), here
obtained from a density-functional tight-binding (DFTB)
Hamiltonian [32]. The spectrum obtained from the
Stillinger-Weber (SW) classical potential [33] is also shown
for comparison. In particular, using a standard σerr ¼
0.05 eV=Ådata noise hyperparameter value alreadyprovides
a reasonable approximation to the QM phonon spectrum,
while a stricter σerr ¼ 5 × 10−4 eV=Å value significantly

improves the precision, trading transferability for accuracy in
a controlled fashion, appropriate to this particular application.
Next, we tested the accuracy of our approach for

dynamics using a fixed database of 2000 configurations
sampled at 20 fs intervals along an NVT 1000 K MD
trajectory of a bulk silicon system, generated with the
DFTB Hamiltonian. Testing sets containing up to 2000
configurations were sampled from the same trajectory. The
testing points were chosen at the time midpoints between
consecutive sampling points, to mimic the “locally worst”
positions of a trajectory generated by a predictor-corrector
scheme, where the force error typically reaches its maxi-
mum [34]. For each test point, we sort the database entries
by the distance of Eq. (3). This makes the decreasing force
error converge rapidly with the number N of entries used
for force prediction, significantly improving the efficiency
of the GP learning process, which involves an OðN3Þ
inversion of the covariance matrix.
The results shown by the blue and green solid lines in

Fig. 2 reveal an average force error of 0.1 eV=Å: around 6%
of the average QM force magnitude of 1.8 eV=A. This
“midpoint force error” is about twice the “time-averaged”
error we would obtain when averaging over all the MD
trajectory time steps, consistent withwhat is generally found
in predictor-corrector schemes [34]. For comparison, the
average force error of an SW classical potential fitted to
reproduce the DFTB lattice parameter and bulk modulus is
∼0.5 eV=Å, or almost 30% relative error. For the 2500 K Si
liquid, metallic system (green lines in Fig. 2), our database
configurations are more dispersed in phase space and the
predicted forces are less accurate. However, amidpoint error
below 0.25 eV=Å (∼10% relative error), can be obtained
with the full 2000 configuration database, while the SW
error remains large (∼0.9 eV=Å, or 35% relative error). We
carried out detailed tests of the effect of varying the sampling
density and of using independent teaching and testing
trajectories, finding that acceptable force accuracies can
be achieved provided that∼1000 configurations or more are
included (blue and cyan dashed lines in Fig. 2) [35].
Moving from an empirical QM Hamiltonian to target

forces generated by standard DFT engines [36,37] does not
qualitatively change the results obtained. The inset in Fig. 2
shows that the DFT forces for 1000 K bulk Si can be
reproduced within a ∼0.1 eV=Å midpoint error (relative
error ∼6%) by using just the N ¼ 500 most relevant
configurations for each prediction. Here, the importance
of including additional “relevant” vectors in the internal
vector set can be clearly seen. Namely, the midpoint error
decreases from 0.18 eV=Å (black squares in Fig. 2 inset) to
0.10 eV=Å when SWand DFTB force vectors are included
in the IVs (red circles), which simply increases by two units
the dimension k of all X matrices in the database. This
suggests that force vectors computed from less accurate
Hamiltonians, while typically differing from the DFT
forces by much more than our target tolerance, still encode
very valuable information for their prediction, which can be

PRL 114, 096405 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

6 MARCH 2015

096405-3



successfully incorporated as an improved database metric
structure produced by Eq. (3). Moreover, the initial
“learning rate” (convergence rate of the curves in Fig. 2
inset) is systematically higher when the additional vectors
are included, which helps to reduce the database sizes
needed for any given target force error threshold.
Preliminary work to investigate how robustly our approach
can be expected to extend to more complex, multi-
component systems such as crystalline SiC and amorphous
SiO2 is reported in the Supplemental Material [38].
Next, we test the scheme in MD simulations where the

trajectory is generated by the ML forces. Rather than
assuming that a sufficiently complete database is ever once
and for all available, we allow the on-the-fly addition of
newly computed CPU-intensive QM data to the database,
within a predictor-corrector approach of variable stride
(QM call frequency). This ensures that the corrector-loop
forces are always effectively an interpolation of QM
information relevant to the trajectory they generate, pre-
venting any extrapolation accuracy issues, and enabling the
use of rather strict target force error tolerances, typically
0.1 eV=A or lower. Figure 3(a) shows how the frequency of
necessary QM calculations falls during dynamical simu-
lations of a 64 atom bulk Si system, for two different
temperatures. For the purpose of this test, QM forces are
computed at all time steps but only incorporated in the
database when a 0.09 eV/A threshold average deviation
between predicted and QM-calculated forces at the end of
the predictor stretch is exceeded. This is a safe criterion, as
the “predictor error” is systematically larger than both
the midpoint and time-averaged errors actually incurred
along the final corrected trajectory in predictor-corrector
schemes. Since the calculation starts with an empty data-
base, database incorporation of QM results is initially
needed with high frequency. The different “learning
curves” in the figure reflect—and actually allow us to
measure—the different complexity (needed database size)
of the two systems for MD force learning. In general, how
such complexity depends on the target accuracy will reflect
the smoothness properties of the QM-force vector field in
the system’s phase space region of interest—that is, the
underlying physical properties that enable ML prediction.
At 200 K (red solid line and points), after an initial 1 ps

learning, long time intervals in excess of 1000 MD steps
occur where no QM calculations are required. This sug-
gests that the relatively small database accumulated in the
first ps of dynamics encodes an essentially complete
knowledge of the force repertoire of this system, for the
given target error, making it a “low-complexity system” in
the sense above. The observation that the necessary QM
incorporation frequency approaches zero after this time
simply reflects a lower rate of “chemically new” configu-
rations occurring further along the trajectory [at 2.5 ps,
2.7 ps, and 4.2 ps in this test, cf. Fig. 3(a)]. The
configuration space for the same system at 1000 K (black
solid line) is more complex and force learning is

correspondingly slower. However, we find that after an
initial 2 ps simulation time, the target predictor error can be
met by carrying out QM calculations every 30 fs (black
dotted line). Remarkably, this time interval is at least three
times longer than that required by our previous approach
without ML [39] set to the same target predictor error.
Figures 3(b) and 3(c) illustrate the overall learning

process for a new MD simulation of the same system
where a Langevin thermostat [40] is used to take the
temperature from 300 to 800 K and back in ten identical 5 ps
cycles. While the necessary QM database additions are quite
frequent during the first cycle, their number (blue histogram)
drops significantly in the next two cycles, as the 800 K
system conditions are no more “new” to the learning
algorithm when they are encountered for the second and
third time. New database entries are still occasionally
generated from here on, all within 800 K stretches, either
in a sparse or in a time-correlated fashion (see, e.g., star
symbols in the 4th and 5th cycles, respectively, measuring on
the left axis the “instantaneous learning rate” defined as the
inverse number of time steps between current and last entry).
We expect the present method to be particularly useful

for the simulation of materials processes where complex
but recurring chemical steps are encountered, which can be
learned, while time-localized occurrences of previously
unseen chemical bonding geometries cannot be ruled out
but could be handled by an adaptive approach. Examples
may include bond breaking and reforming during crack
propagation, dislocation motion, or point-defect diffusion,
tribochemical processes, repeated catalytic reaction steps,
or atomic deposition or diffusion processes on surfaces. We
note that the method cannot match purely classical poten-
tials for accessible system sizes and speed to the extent that
it keeps requiring high level “on-the-fly” calculations,
albeit sparsely in space and time, nor can it improve on
the underlying high level approach from which it is
learning. On the other hand, the method is not limited to
learning DFT forces: higher levels of reference theory such
as quantum Monte Carlo or post-Hartree-Fock methods
could equally well be used. Moreover, standard DFT forces
could be substituted by higher level theory forces only in
those systems and configuration space regions where
improvement is clearly mandatory, the hybrid database
so obtained optimally combining the two levels of theory
[41]. In practical MD applications, monitoring the predictor
error can be used to progressively lengthen, or if needed
sometimes abruptly shorten, the predictor-corrector inter-
val, as appropriate for the system investigated. Combining
this with cautious use of an “internally estimated” error
[Supplemental Material [25] Eq. (S2)] could be useful
during system thermalization, or in more exploratory runs
where a reduced accuracy will suffice or the issue of
validation can be temporarily postponed. In all cases, every
QM calculation performed on-the-fly during a dynamical
simulation is automatically and permanently stored for later
use in similar MD runs or across different projects. Scaling
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with database size poses, however, no direct problem, since
the size of the covariance matrix actually used in the
calculations is independent of the database size. The
scheme is also particularly well suited for parallel imple-
mentations, as the QM force calculation and all other parts
of the algorithm scale linearly with system size [34].
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