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Abstract

The Lagrange formalism was implemented to derive the equations of motion for the physics-based
united-residue (UNRES) force field developed in our laboratory. The Cα…Cα and Cα…SC (SC
denoting a side-chain center) virtual-bond vectors were chosen as variables. The velocity Verlet
algorithm was adopted to integrate the equations of motion. Tests on the unblocked Ala10 polypeptide
showed that the algorithm is stable in short periods of time up to the time step of 1.467 fs; however,
even with the shorter time step of 0.489 fs, some drift of the total energy occurs because of momentary
jumps of the acceleration. These jumps are caused by numerical instability of the forces arising from
the Urot component of UNRES that describes the energetics of side-chain-rotameric states. Test runs
on the Gly10 sequence (in which Urot is not present) and on the Ala10 sequence with Urot replaced
by a simple numerically stable harmonic potential confirmed this observation; oscillations of the
total energy were observed only up to the time step of 7.335 fs, and some drift in the total energy or
instability of the trajectories started to appear in long-time (2 ns and longer) trajectories only for the
time step of 9.78 fs. These results demonstrate that the present Urot components (which are statistical
potentials derived from the Protein Data Bank) must be replaced with more numerically stable
functions; this work is under way in our laboratory. For the purpose of our present work, a
nonsymplectic variable-time-step algorithm was introduced to reduce the energy drift for regular
polypeptide sequences. The algorithm scales down the time step at a given point of a trajectory if the
maximum change of acceleration exceeds a selected cutoff value. With this algorithm, the total energy
is reasonably conserved up to a time step of 2.445 fs, as tested on the unblocked Ala10 polypeptide.
We also tried a symplectic multiple-time-step reversible RESPA algorithm and achieved satisfactory
energy conservation for time steps up to 7.335 fs. However, at present, it appears that the reversible
RESPA algorithm is several times more expensive than the variable-time-step algorithm because of
the necessity to perform additional matrix multiplications. We also observed that, because Ala10
folds and unfolds within picoseconds in the microcanonical mode, this suggests that the effective
(event-based) time unit in UNRES dynamics is much larger than that of all-atom dynamics because
of averaging over the fast-moving degrees of freedom in deriving the UNRES potential.

* Author to whom correspondennce should be addressed. Phone: (607) 255-4034. Fax: (607) 254-4700. E-mail: has5@cornell.edu.

NIH Public Access
Author Manuscript
J Phys Chem B. Author manuscript; available in PMC 2008 October 8.

Published in final edited form as:
J Phys Chem B. 2005 July 21; 109(28): 13785–13797. doi:10.1021/jp058008o.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



1. Introduction

This paper describes an effort to increase the time scale of molecular dynamics (MD) so as to
be able to simulate protein folding and unfolding1–3 in real time. Atomistically detailed
simulations with explicit inclusion of solvent are limited at present to studying unfolding
pathways of native proteins starting from the native state followed by subsequent refolding2–
4 or by the umbrella-sampling method in which the change of selected reaction coordinates
(usually the fraction of native contacts and the radius of gyration) is controlled along the folding
pathway.4 The reasons for these limitations are (i) the high computational cost of energy
evaluation and (ii) the short values of the time step of molecular dynamics simulations, which
are on the order of femtoseconds, while the shortest folding times of proteins are on the order
of microseconds.5 Nevertheless, in connection with experimental data, atomistically detailed
unfolding simulations provide valuable insights into folding pathways.3 A stochastic
difference equation approach has also been devised recently to study folding pathways at the
all-atom level; however, this method requires a priori knowledge of both the unfolded and the
folded state.6,7 Ab initio folding simulations of even small proteins are still rare. One example
of such a successful simulation is that performed by Duan and Kollman on the 36-residue villin
headpiece;8 they observed short-lived folding intermediates in a 1-μs-long run. However, the
advent of distributed computing promises that this might improve soon.9 When the solvent is
considered at the mean-field level, larger systems can be treated in real time; a recent example
is the ab initio folding simulation of the B-domain of staphylococcal protein A carried out by
Jang et al.10 with the AMBER force field11,12 and the generalized Born (GB) model13,14 of
water that treats this solvent as a high-dielectric continuum.

Reduced (mezoscopic) models of proteins, in which each amino acid residue is represented by
only a few interaction sites, in principle offer further extensions of the time scale of simulations.
However, although simulations with reduced models have contributed significantly to our
understanding of the events that occur in the folding process, the interaction potentials are not
usually meant to reproduce the detailed features of the protein energy surface, but rather to
study general properties of folding.15–18 Quite often the interaction potentials are intentionally
biased toward the experimental structure (the Gō-like models).19–21 Reduced models, applied
with some success to folding simulations of real proteins by using molecular dynamics, can
be termed semimezoscopic because the backbone is represented at the all-atom level, while
the side chains are treated as united interaction sites.22–27 Monte Carlo dynamics on high-
resolution lattices is also used together with knowledge-based potentials for protein-structure
predictions;28–31 this method, however, does not implement Newton's (or Lagrange's)
equations of motion. Recently, Rudnicki et al.32 designed a molecular dynamics algorithm
based on the Lagrange formalism33 for their physics-based mezoscopic model of nucleic acids.
34

For the past several years, we have been developing a physics-based united-residue force field,
hereafter referred to as UNRES.35–49 Each amino acid residue is represented by only two
interaction sites, which makes the model simple enough to carry out large-scale simulations.
In comparison to other mezoscopic protein models, UNRES offers two important advantages.
First, the force field has been derived carefully as a potential of the mean force of the united-
residue chain. This treatment enabled us to rationally introduce multibody terms that do not
have counterparts in all-atom force fields and thus far were derived in a heuristic manner.28,
30,31 The multibody terms are indispensable for reproducing the correct geometry of regular
secondary structures, such as α-helices and β-sheets in unrestricted simulations. Second, our
recently developed method of optimization of the UNRES force field44,47–49 is based on a
hierarchical concept of the protein energy landscape25 and, thereby, reflects the hierarchy of
folding events of the training proteins. In connection with the efficient conformational space
annealing (CSA) method50,51 of global optimization, UNRES is able to predict the structures
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of real-size proteins without ancillary information from structural databases.39,43,48,49,52,
53 For all these reasons, UNRES appears to be a good mezoscopic force field with which the
folding pathways of proteins can be studied in real time. Therefore, our present work is aimed
at implementation of the UNRES force field in a molecular dynamics algorithm. As did
Rudnicki et al.,32 we made use of the general Lagrange formalism. In this paper, we describe
the extension of the UNRES model to molecular dynamics simulations and initial tests of the
stability of the algorithm run in the microcanonical mode. In the accompanying paper,54 we
introduce Langevin dynamics and perform initial tests of folding the model Ala10 polypeptide
and the B-domain of staphylococcal protein A. On the basis of these tests, we relate the time
scale of UNRES dynamics to that of all-atom dynamics. More extensive tests on more proteins
have appeared in a separate paper.55

2. Theory

2.1. United-Residue Force Field

In the UNRES model,35–49 a polypeptide chain is represented as a sequence of α-carbon atoms
(Cα's). The Cα's are linked together by virtual bonds (designated as dCs), which constitute the
backbone. United side chains (SCs) are connected to the backbone by the virtual bonds (dXs).
United peptide groups (p's) are in the center of the virtual bonds. The centers of mass of the
side chains are at the ends of the dXs (Figure 1A).

The interaction sites are the united peptide groups in the middle of the dCs, and the united side
chains at the ends of the dXs. The p centers represent only the C′, O, N, and H atoms of the
peptide groups, while the Cα atoms are included in the SC centers. Consequently, the positions
of the Cα atoms are only geometric points. Until now, in the applications of the UNRES force
field, only the side-chain angles (αSC and βSC), the virtual-bond angles (θ), and the virtual-
bond dihedral angles (γ) could vary. In this work, we also allow the virtual-bond lengths to
vary, which requires introducing additional harmonic potentials (last term of eq 1). The SC
centers of glycine residues are located on their Cα atoms; consequently, there are no virtual
Cα…SC bonds for glycine residues.

The first and the last Cα's correspond to the N- and the C-terminal blocking groups, respectively.
If there is a peptide group between the first (last) full residue and a blocking group, then the
first (last) Cα is treated as a glycine SC center. To define the ends of a chain in a consistent
manner, we introduce dummy blocking groups if the ends are unblocked and are not glycine.
If one or both ends is blocked or is a glycine, then the first (last) UNRES residue is a glycine
residue, because it has either a Cα atom or a methyl carbon atom, e.g., of an acetyl group, which
effectively serves as a Cα atom. This is illustrated in Figure 1B and also in Figure 2 in ref 35.

UNRES is a physics-based force field, which is derived as a restricted free energy (RFE)
function of a polypeptide chain. The RFE is defined as the free energy of a given coarse-grain
conformation obtained by integrating the Boltzmann factor of the all-atom (i.e., the polypeptide
chain plus solvent) energy over the degrees of freedom that are neglected in the united-residue
model.38,40,45,46 The complete UNRES potential-energy function is expressed by eq 1.

(1)

The terms USCiSCj correspond to the mean free energy of hydrophobic (hydrophilic)
interactions between the side chains. These terms implicitly contain the contributions from the
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interactions of the side chain with the solvent. The terms USCipj correspond to the excluded-
volume potential of the side chain–peptide group interactions. The terms Upipj represent the
energy of average electrostatic interactions between backbone peptide groups. The terms
Utor and Utord are the torsional and the double-torsional potentials, respectively, for the rotation
about a given virtual bond or two consecutive virtual bonds. These potentials account for
intrinsic barriers to rotation about a single and about two consecutive virtual bonds,
respectively, and originate in the coupling between the local conformational states of two or
three consecutive residues, respectively.40,46 The terms Ub and Urot are the virtual-angle-

bending and side-chain-rotamer potentials, respectively. The terms  correspond to the
correlations (of order m) between peptide-group electrostatic and backbone-local interactions.
The terms Uvib(di), di being the length of the ith virtual bond introduced in this work, are simple
harmonic potentials defined by eq 2.

(2)

where kdi is the force constant of the ith virtual bond, currently set at 500 kcal/(mol Å2) and
 is the average length (corresponding to that used in the fixed-bond UNRES) of the ith virtual

bond, e.g.,  = 3.8 Å for a Cα…Cα virtual bond corresponding to a trans peptide group.

The terms USCiSCj, Ub, and Urot were parametrized36,37 from the distribution and correlation
functions determined from the Protein Data Bank (PDB). Utor, Utord, and Ucorr were based on
the cumulant expansion of the RFE of the polypeptide chains38,40 and parametrized from the
RFEs of model systems obtained by high-level MP2/6-31G(d,p) ab initio calculations of model
systems.45,46 Finally, the w's are weights of the various energy terms. All of them except
wvib were obtained in our earlier work48 by optimization of the potential-energy function to
obtain a funnel-like energy landscape44 of 1IGD (an α + β protein). The resulting force field
reproduces the structure of α and α + β proteins reasonably well.48 The weight wvib was
arbitrarily set at 1.

2.2. Lagrange Equations of Motion with the UNRES Model

The Cartesian coordinates of the interacting sites in the UNRES model (which do not include
Cα's) are not sufficient to define the UNRES conformations. Therefore, we adopt the Lagrange
formulation of the equations of motion,33 which is frequently used to describe the time
evolution of a classical system characterized by a set of generalized coordinates. For the
UNRES model, we chose the virtual-bond vectors dCs and dXs. The choice of virtual-bond
vectors instead of the positions of geometric points (Cα's and SC's) was motivated by the fact

that the analytical expressions35,38,40 for the Upp and  terms (eq 1) contain not only
distances between the interacting sites but also orientations of the virtual bonds containing the
interacting sites and their neighbors. The internal coordinates (the angles θ, γ, α, and β) needed
to calculate the torsional (Utor), double-torsional (Utord), virtual-bond angle-bending (Ub), and
side-chain-rotamer (Urot) energy terms can also be readily calculated from these vectors. We
denote the generalized coordinates by q and the corresponding generalized velocities by q˙.
The vectors q and q˙ are composed of virtual-bond vectors and the associated velocities,
respectively, as defined by eq 3.
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(3)

where dCo and dC˙o specify the position and velocity of the first Cα atom of the chain,
respectively, dCi and dC˙i specify the  virtual-bond vector and the associated velocity,
respectively, while dXi and dX˙i specify the  virtual-bond vector and the associated
velocity, respectively, s and e are the number of the first and the last nondummy Cα atom,
respectively (if the first residue is a dummy, then s = 2; otherwise s = 1; if the last residue is a
dummy, then e = n − 1; otherwise e = n), while i1, i2, …, im denote the numbers of non-glycine
residues, at which the Cα…SC virtual-bond vectors are anchored (m being the number of non-
glycine residues). The SCs of glycine residues and nondummy blocking groups are located on
the corresponding Cα atoms, and those sites do not possess a dX vector (cf. section 2.1).
Consequently, the number of Cα…SC vectors is equal to m = n − nGly, where n is the number
of residues and nondummy blocking groups in the chain and nGly is the number of glycine
residues and dummy blocking groups in the chain.

From eq 3, the Cartesian coordinates rpi and rSCi and velocities vpi and vSCi of the peptide
groups and side chains, respectively, are defined by eqs 4–7.

(4)

(5)

(6)

(7)

The factor of ½ in front of the last dCi in eq 4 and dC˙i in eq 5 comes from the fact that the
masses of the peptide groups are located in the middle of the respective virtual bonds.

The definition of the virtual-bond vectors and their relation to the peptide-group and side-chain
Cartesian coordinates is illustrated in Figure 1C.

It should be noted that we consider only the UNRES degrees of freedom here, neglecting those
that are integrated out when passing from the all-atom to the UNRES potential-energy function.
38,40 Therefore, we assume that the neglected degrees of freedom undergo much faster
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motions than the UNRES degrees of freedom.56 Consequently, the forces acting on the system
come from the potential of mean force, i.e., the UNRES energy function defined by eq 1 plus
dissipative and friction forces, coming mainly from kinetic-energy exchange with the solvent.

The Lagrangian is defined by eq 833

(8)

where K and V are the kinetic and potential energy of the system, respectively.

For each generalized coordinate, the Lagrangian equations of motion can be written as a system
of second-order ordinary differential equations33 (eq 9).

(9)

where ffrict and frand are the friction (dissipative) and random forces, respectively, acting on
the system and ▽a = (∂/∂a1, ∂/∂a2, …, ∂/∂aM), with a being a vector of variables and M its
dimension.

It should be stressed that eq 9 should be considered an assumption, because it is not the exact
form that describes the motion of a united-residue chain. Eliminating fast motions from a
system of differential equations often results in equations of quite different form than the
original ones.56 However, for example, a system of rigid bodies, which can be considered as
a collection of point masses, can still be described by Lagrange equations of motion. Therefore,
the assumption seems to be reasonable.

The nonconservative forces are zero when a closed system is treated at the atomistic level (in
other words, the total energy of the system is conserved). However, for a united-residue chain
immersed in water, there will be significant friction and random forces coming from the
exchange of energy and momentum with the solvent molecules as well as random forces arising
from the internal degrees of freedom that are integrated out. We leave the introduction of these
forces until the accompanying paper.54 In this initial work, we assume that the right-hand side
of eq 9 is zero; i.e., there are no friction or random forces. This certainly does not correspond
to a physical situation, but we need an ensemble with a constant energy to test the numerical
stability of the algorithm. It should also be noted that, because we average over the fast-moving
degrees of freedom, the time unit of the UNRES dynamics is larger than that of the all-atom
dynamics as we will demonstrate in the accompanying paper.54

The kinetic energy of a polypeptide chain in the UNRES model will consist of two parts: the
part arising from the UNRES degrees of freedom (Kx) and the average kinetic energy of the
hidden degrees of freedom due to averaging corresponding to a given UNRES conformation
and momenta (Ky). In general, both parts will depend on the coordinates and momenta
corresponding to the UNRES degrees of freedom. However, the treatment of the part
corresponding to the hidden degrees of freedom is not straightforward, and therefore, in this
paper we assume that this kinetic energy, Ky, is constant, as given by eq 10. Consequently, we
consider only Kx.

(10)

The right-hand side of eq 10 is exact if it is assumed (i) that the transformation from one UNRES
conformation to another one is infinitely slow compared to the motion of the “fast” degrees of
freedom and (ii) that, at each point of the UNRES trajectory, the UNRES degrees of freedom
act as constraints.57 However, while condition i can be considered to be reasonably satisfied,
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the UNRES degrees of freedom should be considered as average values of the respective
coordinates rather than exact constraints. Such a case belongs to the third category of variable
separations according to van Kampen,56 where the slow variables correspond to the
coordinates of “guiding centers”. We, therefore, treat eq 10 as an assumption.

Because the degrees of freedom corresponding to the rotation about the Cα…Cα and Cα…SC
axes are averaged out, we consider only stretching of the virtual bonds along their axes, dC
and dX, and rotations of the virtual bonds about axes perpendicular to them and passing through
the center of mass. Rotations about the virtual-bond axes and vibrations along the axes
perpendicular to the virtual-bond axes correspond to the hidden degrees of freedom. The
average potential energy corresponding to these degrees of freedom is included in the UNRES
energy function (eq 1), while the average kinetic energy is assumed to be constant (cf. eq 10).
In other words, we treat the virtual bonds as thin rods. We further assume that the density (ρ)
of the mass along a rod is a function of its relative position along the rod, as given by eq 11,
and that the center of mass is in the middle of a rod.

(11)

where d is the length of a rod and z is the position of a point on the rod taking the center of
mass as the origin. For the ith peptide group, the length of the rod is equal to the length of the
corresponding virtual bond, while for a side chain except glycine the length is twice the length
of the Cα…SC virtual bond; for glycine, the side chain is a point mass located on the Cα atom.
The kinetic energy Kx consists of the contributions arising from the translational motions as
well as the internal motions of all interaction sites, the latter including rotation and vibration.
32

(12)

In the above equation,  is the translational kinetic energy of the ith peptide group,

 is the translational kinetic energy of the ith side chain group,  is the internal kinetic
energy of the ith peptide group (which is the kinetic energy of the distribution of the mass of

the virtual bond given a fixed position of the center of the mass), and  is the internal kinetic
energy of the ith side-chain group, respectively.

On the basis of eqs 5 and 7, we can express , , , and  by eqs 13 – 16.

(13)

(14)

(15)
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(16)

with, according to eq 11

(17)

(18)

In eqs 17 and 18, Ip and ISCi are the mass coefficients of the moments of inertia of the ith
peptide group and the ith side chain, respectively, about axes perpendicular to the Cα…Cα and
Cα…SC bonds, respectively. For ρ = constant (a uniform mass distribution), Ipi = (1/12)mp and
ISCi = (⅓)mSCi (the length of a side chain is twice its virtual-bond length and hence the factor
of ⅓ instead of 1/12).

As can be seen from eqs 13–16, the kinetic energy depends only on velocities. The derivatives
of the Lagrangian in velocities and time are expressed by eqs 19–24, respectively.

(19)

and

(20)

(21)

(22)

(23)

(24)

where 1 is the 3 × 3 identity matrix.

The derivatives of the Lagrangian in generalized coordinates q constitute the gradient of the
UNRES energy function, because the kinetic energy does not depend on coordinates (eqs 13–
16). Therefore, the left side of the Lagrange equations of motion (eq 9) can be expressed by
eq 25.

Khalili et al. Page 8

J Phys Chem B. Author manuscript; available in PMC 2008 October 8.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



(25)

with

(26)

The term with the matrix A corresponds to the translational part of the inertia matrix and that
with the matrix H to the internal-motion part. The matrix A is the matrix of a linear
transformation from the space of generalized coordinates and velocities (q and q˙) to the space
of the Cartesian coordinates and velocities of the interacting sites (eqs 4–7). This matrix is
defined by eq 27.

(27)

where hSCi is 0 if SCi = Gly and 1 otherwise, 1 is a 3 × 3 identity matrix, and 0 is a 3 × 3 matrix
composed of zeros. It should be noted that the columns of the matrix A run through all variables
(the elements of the vector q of eq 3) and the rows run through the Cartesian coordinates of
the interacting sites.

The matrix M is a diagonal matrix containing the masses of the interacting sites and is defined
by eq 28
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(28)

where mp is the mass of a peptide group and mSCi is the mass of the ith side chain.

The matrix H contains the quantities Ip and ISCi of eqs 17 and 18, respectively. It is defined by
eq 29.

(29)

The fact that the matrix G defined by eq 26 is nondiagonal implies that a system of linear
equations must be solved to compute accelerations from forces (see eq 32 in section 2.3). One
may ask if, with an appropriate choice of coordinates, the problem could be reduced to a
diagonal one, i.e., to classical Newton's equations. Using the Cartesian coordinates of the
interacting sites (i.e., the SC and p centers) as variables seems to be a natural choice leading
to diagonal equations of motion. These coordinates do not, however, define the geometry of
an UNRES chain, because the virtual-bond vectors are also required. The virtual-bond vectors
can be defined, if the coordinates of the Cα's are specified. Because the peptide groups are
located exactly in the middle between the consecutive Cα's, a complete set of coordinates could
consist of the Cartesian coordinates of the Cα's and the attached SCs. However, with such a
choice, the system still is nondiagonal because the coordinates of the centers of the peptide
groups are linear combinations of those of the Cα's.

2.3. Integrating the Equations of Motion

A variety of integrators have been designed for molecular dynamics algorithms, the most
common being the Verlet algorithm,58 the leapfrog algorithm,59 the Beeman algorithm,60

and the velocity Verlet algorithm.61 We chose the velocity Verlet algorithm, because it yields
velocities and positions at a specific time t rather than at other times.59 The velocities are, in
turn, needed to compute the kinetic energy (which is necessary to couple the system to the
thermal bath) and to compute friction forces, as is done in the accompanying paper.54 Another
advantage of the velocity Verlet algorithm is that it is symplectic (allowing, in particular, for
an approximate conservation of the total energy in long-time simulations62–64) and time-
reversible.65,66 The algorithm consists of two iterating steps. In the first step, the coordinates
at time t + δt (where δt is the time step) are calculated from the positions, velocities, and
accelerations computed at t by using eq 30.

(30)
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In the second step, the velocities at t + δt are calculated from eq 31.

(31)

The accelerations are computed from eq 32.

(32)

From eq 32, it appears that the choice of virtual-bond vectors as variables instead of curvilinear
coordinates (such as, e.g., virtual-bond angles and virtual-bond dihedral angles) contributes to
reducing the numerical cost of the algorithm. The matrix G is a constant matrix, and therefore,
its inverse can be computed once and then used to calculate accelerations from eq 32, the cost
of this operation being on the order of N2 where N is the number of coordinates. Use of
curvilinear coordinates would require inverting the matrix G at each integration step, the cost
of which scales as N3.

It is desirable to increase δt as much as possible because that means advancing faster through
the trajectory. For all-atom potentials, δt is chosen such that the total time at each step is at
least an order of magnitude smaller than the length of time corresponding to the fastest motion
in the system. Typically, this motion is the vibration of a hydrogen bond with a period less
than 1 fs. Therefore, δt for an all-atom molecular dynamics algorithm is on the order of
femtoseconds. The values of δt for some of the molecular dynamic packages are summarized
in Table 1. It can be seen that these time steps are orders of magnitude smaller than the time
scales of processes occurring in living cells, which are summarized in Table 2. Therefore, the
application of all-atom molecular dynamics to study biochemical processes is usually limited
to motions about the equilibrium structure of a macromolecule unless specially designed
potentials guiding the system to the desired configuration are implemented. If the energy is
expressed in kcal/mol, the mass in g/mol, and the distance in Å, then the natural unit of time
is 48.9 fs; this unit will hereafter be referred to as the molecular time unit (mtu). In contrast to
this, use of the UNRES representation of a polypeptide chain involves averaging over fast
motions,56 and consequently, the effective UNRES unit of time is larger than that resulting
from dimensional analysis. We address this question in the accompanying paper.54

The effective time step can be increased by using the time-split algorithms65–69 in which the
forces acting in the system are split into the long-range forces (FL), which are expensive to
evaluate but usually vary slowly with conformation, and the short-range forces (FS), which are
not expensive to evaluate and vary quickly. The short-range forces are integrated with a smaller
time step (δtS), and the long-range forces with a larger time step (δtL); δtS = δtL/n, where n is
an integer. The time-split algorithms are derived by splitting the Liouville propagator of the
time evolution of the system under study.65–69 In this study, in part of our calculations (section
3) we adapted the reversible reference system propagator algorithm (RESPA).65 In the RESPA
algorithm, each integration step consists of the following operations:

1. Calculate the velocities at half of the large time step (δtL) by using eq 33.

(33)

with

(34)
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where UL denotes the sum of the long-range energy components of the UNRES energy
function.

2. After the velocities are set at q˙1 as computed in step 1, carry out n velocity Verlet steps (eqs
30 and 31) with accelerations computed by using only the short-range forces (eq 35). Let the
resulting coordinates and velocities be denoted by q2 and q˙2, respectively, q2 = q(t + δtL)
being the final coordinates at the end of the RESPA step.

(35)

where US denotes the sum of the short-range energy components of the UNRES energy
function.

3. Through the use of the coordinates and velocities from step 2, compute the velocities at the
end of the RESPA step from eq 36.

(36)

The accelerations q¨L(t + δt) are computed from eq 34, where q(t + δtL) is substituted for q
(t).

2.4. Generating Initial Velocities

The initial velocities were generated from a Gaussian distribution corresponding to a given
temperature. To derive appropriate formulas, we first note that the kinetic energy can be
expressed by eq 37.

(37)

with

(38)

where the matrix G is defined by eq 26, μi, i = 1, 2, …, n are the eigenvalues of G, and V is
the matrix of the eigenvectors of G. The velocities expressed in normal coordinates (ξ1, ξ2, …,
ξn) can now be sampled from normal distributions, and the initial velocities q˙ of the virtual-
bond vectors can be computed by inverting eq 38, as expressed by eqs 39 and 40, respectively.

(39)

(40)

where N(0,1) is the normal distribution with zero mean and unit variance.

3. Numerical Tests of the Total Energy Conservation

One of the most desired features of any molecular dynamics algorithm is its symplecticity. A
symplectic algorithm ensures approximate conservation of the total energy (without drift) in a
long simulation of a microcanonical ensemble, assuming that a sufficiently small time step and
a sufficiently smooth potential-energy function are used.63,64 This is a test that allows one to
determine how stable an integration scheme is and the largest integration time step that can be
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used. It should be noted, however, that microcanonical simulations do not correspond to
realistic models and most simulations are carried out in the canonical mode where energy
exchange between the system under study and the environment occurs.

To test the integration scheme, we carried out microcanonical ensemble simulations (i.e.,
without coupling to a thermal bath) for 100 mtu (4.89 ps) on the unblocked Ala10 polypeptide
with various values of δt. The global minimum for the UNRES potential energy with the F2
set of parameters derived in ref 48 corresponds to a full right-handed α-helix, as found by the
global-optimization CSA method.50,51 The simulations were started from the right-handed
α-helix, with all virtual-bond angles θ set at 90° and all virtual-bond dihedral angles γ set at
45°. The components of the initial velocity vector were sampled from the Gaussian distribution
of velocities with zero mean and variance corresponding to a “temperature” of 300 K as
described in section 2.4. (We must bear in mind that, since this is a microcanonical simulation,
the total energy and not the temperature is supposed to be conserved throughout the run.) The
graph of the total energy versus time for different values of δt is shown in Figure 2A. The drift
of the total energy from the initial value (|δEtot|) for different values of δt is shown in Table 3.

It can be seen from Figure 2A and Table 3 that the largest allowable time step for UNRES is
0.02 mtu, which corresponds to the formal time step of about 1 fs (cf section. 2.3). For larger
values of δt, the total energy drifts significantly from the initial value in a stepwise manner.
For reasonably small values of δt, the drift of the total energy is negligible compared to the
variation of the potential and the kinetic energy, as can be seen from Figure 2B.

The rapid changes of the total energy correlate with sharp spikes in the magnitude of the
maximum change of the acceleration at a given time step, as can be seen in Figure 2C for δt =
0.03 mtu. Clearly, when switching to the canonical mode, in which the total energy is not
conserved and the system is subjected to stochastic forces (considered either explicitly in
Langevin dynamics or implicitly when applying the Berendsen or Nose–Hoover thermostat)
which lead to quite significant changes of the total energy, the time step can be larger because
the stochastic forces overwhelm the error in the total energy inherent in the integration
algorithm.

An analysis of the components of the forces revealed that the most rapid changes occur in the
gradient of the side-chain-rotamer energy, Urot (cf. eq 1). This contribution to the energy
consists of logarithms of the sums of the Gaussian terms in the angles α and β that define the
rotameric state of a side chain (Figure 1A). These rapid jumps of the gradient of Urot arise in
the neighborhood of αSC = 180°. The explanation for this behavior is simple: Here, we consider
the gradient in the virtual-bond vectors. Suppose that αSCi approaches 180°. Then, a very small
change of the corresponding virtual-bond vector dXi will result in a big change of the angle
βSCi and, consequently, in the pertinent component of Urot, which results in high gradients in
dXi. It should be noted that, when αi = 180°, the angle βSCi and, thereby, the gradients in
dXi are indefinite. In our previous implementation of the UNRES force field (in which we
performed only local energy minimizations),39,43,70 this problem did not arise because we
used the angular coordinates (θ, γ, αSC, and βSC) as variables. Such a choice of variables is,
however, not appropriate for molecular dynamics because it involves a greater cost for
computing accelerations from forces (eq 32). Besides, the present Urot is one of the few terms
remaining in UNRES that were derived as statistical potentials from the PDB.36,37 We are
now working on replacing these statistical terms (including Urot) with physics-based terms that
will not depend on angles explicitly and will, therefore, not result in numerical instabilities in
the forces. For this reason, instead of tuning the present integration scheme to handle the
gradients of Urot perfectly, we worked out a practical temporary solution, which is described
below.
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To prove that the gradient of Urot is the cause of the spikes in the acceleration and, consequently,
in the energy drift, we carried out a series of 100 000 mtu (4.89 ns) of microcanonical
simulations on the Gly10 polypeptide where the Urot energy component is absent. With the
force field used, Gly10 has a doubly degenerate global minimum, this being either a right- or
a left-handed α-helix. The plots of the total energy versus time for the time steps of 0.05, 0.1,
0.15, and 0.2 mtu, respectively (2.445, 4.89, 7.335, and 9.78 fs, respectively), are presented in
Figures 3A–D, while a graph of the potential, kinetic, and total energy for the time step of 0.15
mtu is shown in Figure 3E. It can be seen that oscillations of the total energy take place only
up to the time step of δt = 0.15 mtu (7.335 fs), and the energy drift starts to appear (after more
than 40 000 mtu or about 2 ns) only with the time step δt = 0.20 mtu (9.78 fs). For larger time
steps, the trajectory is unstable with the total energy rapidly diverging.

To prove that the spikes in accelerations are not caused by other components involving the
side-chain virtual-bond vectors dX, we carried out a series of 100 000 mtu simulations on the
Ala10 peptide with the UNRES energy function in which Urot was replaced with a simple
harmonic potential defined by eq 41.

(41)

where the angles are expressed in radians. The potential defined by eq 41 forces the angles to
be centered about (α = 120°, β = −120°), close to the position of the center of the alanine side
chain determined from the PDB.37 The large force constant (100 kcal/(mol rad2)) keeps the
angles α away from the instability region close to α = 180°. The graphs of the total energy for
the time steps of 0.05, 0.1, and 0.15 mtu are shown in Figures 4A–C, respectively (the total
energy diverges for higher δt values), while the plots of the potential, kinetic, and the total
energy are shown in Figure 4D. It can be seen that the total energy only oscillates now, as in
the case of the Gly10 system. It can, therefore, be concluded that the energy drift observed
when carrying out molecular dynamics simulations with the full UNRES is caused by
numerical instability of the gradient of Urot.

Because the total energy is reasonably conserved for most of an UNRES molecular dynamics
trajectory run in the microcanonical mode, even for larger time steps for most of a trajectory
except for the spikes in acceleration, we conclude that reducing the time step in the regions of
the spikes, while retaining a larger time step for most of a run, could increase the time scale of
the UNRES dynamics. One algorithm for reducing the time step in these dangerous regions
was designed by Gibson and Scheraga.71 They derived rigorous formulas based on the
Lyapunov theory of stability for the length of the time step, depending on the shape of the
energy function at a given point. However, these formulas require the computation of the third
derivatives of the potential-energy function (this is a third-order tensor), which is very
expensive in the case of UNRES because of the presence of the multibody terms. We, therefore,
designed a simpler algorithm, which can be summarized as follows:

1. Store the coordinates, velocities, and accelerations from the previous time step.

2. Compute the new coordinates from eq 30 and the current value of the time step.

3. Through the use of the new coordinates, compute the forces and accelerations.

4. Determine the maximum change of acceleration .

5. If δamax is less than the cutoff value (we use 1 or 2 Å/mtu2), then compute the new
velocities from eq 31 and go to the next time step. If not, then reduce the time step
according to eq 42 and go back to step 2.

(42)
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where int(x) denotes the integer closest to x and smaller or equal to it. Scaling δt by powers of
2 is not important in this work but becomes important when quantities dependent on the value
of the time step are needed (such as, e.g., those used in the integration of the Langevin equations
of motion; see the accompanying paper54).

Figure 5A shows the variation of the total energy for five representative trajectories of the
unblocked Ala10 polypeptide obtained with the constant time step δt = 0.05 mtu, while Figure
5B shows the corresponding trajectories (each drawn with the same line style as its counterpart
in Figure 5A) obtained with the variable-time-step algorithm. We noted earlier (Figure 2 and
Table 3) that this time step is too large for the constant-time-step velocity Verlet integrator to
yield stable trajectories. Each pair of corresponding trajectories (one of Figure 5A and one of
Figure 5B) was started from the same set of initial velocities (generated as described in section
2.4). It can be seen that the use of the variable time step reduces the energy drift greatly, and
the total energy is reasonably conserved.

We also carried out test simulations with the variable time step for more values of δt. The
results are summarized in Table 4. It can be seen that, even with δt = 0.1 mtu (4.89 fs), the drift
of the total energy reaches 8.8 kcal/mol only after 10 ps. This is certainly a large value for a
microcanonical simulation; however, for canonical simulations, the fluctuations of the total
energy for the Ala10 polypeptide are on the order of 50 kcal/mol,54 and therefore, a time step
that causes a larger energy drift can be used. It can also be seen by comparing Table 4 with
Table 3 that the shortening of the total length of the trajectory due to occasional reduction of
the time step (eq 42) appears insignificant.

While the variable-time-step algorithm described above seems to be a practical temporary
solution, it should be noted that it is not time-reversible and not symplectic. We, therefore,
tried to implement the symplectic multiple-time-step RESPA algorithm,65 as described in
section 2.3. We found that, for reasonable stability, the short time step δts must be on the order
of 0.005 mtu (0.2445 fs). The graphs of the total energy for δtL/δtS = 0.02/0.004, 0.05/0.005,
and 0.1/0.005 mtu are shown in Figure 6; some drift in the total energy is still observed.
However, first, it occurs on a much longer time scale (on the order of nanoseconds) than when
applying the variable-time-step algorithm and, second, has the form of long-period waves and
not energy jumps. Therefore, numerically, the use of RESPA is a much better solution to handle
the instability of the gradient of Urot than using the variable-time-step algorithm. However,
RESPA involves a major increase of computational cost. For the time step of δtL = 0.05 mtu
when 10 steps with δtS are required, the cost increases by 90%, and for δtL = 0.10 mtu (20 steps
with δtS), the cost increases by 180%. The major contribution to this increase arises from the
fact that computation of accelerations from forces involves a matrix multiplication (eq 32). In
comparison to this, the use of the variable-time-step algorithm involves only a 5% increase in
computational cost. The increase of computational cost when using RESPA is even more
significant for larger systems, because the cost of computation of accelerations from forces
scales with the square of the size of the system (cf. section 2.3). For example, for the N-terminal
portion of the B-domain of staphylococcal protein A (a 46-residue protein) studied in the
accompanying paper,54 10 and 20 small time steps increase the cost by 140% and 270%,
respectively. Because the variable-time-step algorithm proved to provide sufficient energy
stability to maintain constant average temperature when carrying out canonical simulations,
54 we decided to use it as a temporary solution of the problem of instability of the gradient of
Urot.

Figure 7 shows snapshots from a trajectory of the Ala10 system started from an extended
structure (i.e, all of the virtual-bond dihedral angles γ have been set at 180° obtained with δt =
0.02 mtu (about 1 fs)). It can be seen that, even though the simulation was carried out in the
microcanonical mode, which means that there was no possibility to transfer the high potential
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energy of the starting structure to a thermal bath, helix nucleation, propagation, and unwinding
can be observed, all these events occurring within about 10 ps. Because helix formation requires
at least 0.6 μs,5,72 the value of δt taken in these calculations must actually correspond to a
value much larger than 1 fs, resulting from unit conversion, as remarked in the Methods section.

4. Conclusions

In this paper, we derived the Lagrange equations of motion for the UNRES force field,
implemented the velocity Verlet algorithm to integrate them numerically, and analyzed the
stability of the integration scheme by carrying out microcanonical molecular dynamics runs.
The total energy of the system appears to be sufficiently conserved (i.e., the algorithm is stable)
for up to 10 ps (Table 3) with a time step of 0.02 molecular time units, which formally
corresponds to 0.978 fs. However, energy drift and not just oscillations is observed even for
the smallest time step applied. The energy drift occurs because of rare but dramatic changes
in the magnitude of the forces (and, thereby, accelerations); such changes usually result in
stepwise changes of the total energy. An analysis of UNRES energy components showed that
the present statistics-based side-chain-rotamer potentials (Urot in eq 1) are responsible for the
drift in the total energy. These Urot potentials depend explicitly on the angles αSC and βSC
defining the orientation of a side-chain center with respect to the peptide backbone (Figure
1A), and therefore, their gradients in the virtual-bond vectors are numerically unstable in the
vicinity of the side-chain angle α = 180°. When Urot is not present or replaced with a
numerically stable potential, the total energy does not drift but undergoes oscillations only until
the time step of 0.15 mtu (7.335 fs) and for the total length of a trajectory equal to 100 000 mtu
(4.89 ns). This time-step value is comparable with that achieved by Rudnicki et al.32 with their
mezoscopic model of nucleic acids. These results demonstrate that the functional form of the
present Urot must be replaced with one implying stable gradients in virtual-bond vectors. Work
in this direction is now being carried out in our laboratory.

To be able to carry out molecular dynamics simulations with the present UNRES, we
introduced a variable-time-step algorithm in which the time step is scaled down if a rapid
change of acceleration is detected. With this modification, the energy drift is greatly reduced
and the time step can be increased to 0.05 mtu (2.445 fs). In the accompanying paper,54 we
demonstrate that, even when the time step is set at 0.1 mtu (4.89 fs), the average temperature
is kept constant while running simulations in the canonical mode. Using the variable-time-step
algorithm involves only about a 5% increase of computational cost. Thus, the solution worked
out in this paper appears to be sufficient for the time being. It should be noted, however, that
use of the variable-time-step algorithm breaks the symplecticity and time reversibility of the
integration scheme, resulting in possible worsening of the total energy conservation in a longer
microcanonical simulation.

We also tried to implement the time-reversible multiple-time-step RESPA algorithm65 to
handle the instability of the gradient of Urot. We found that, with the RESPA algorithm, the
energy is reasonably stable even for long-time trajectories up to a time step of 0.15 mtu (7.335
fs) and the energy drift is manifested as long-period oscillations (the energy drift cannot be
eliminated completely because of the inherent instability of the gradient of Urot). Therefore,
RESPA is clearly superior to the variable-time-step algorithm as far as stability is concerned.
However, it involves a dramatic increase of computational cost (90% for the Ala10 sequence
and 140% for the 46-residue fragment of the staphylococcal protein A); this cost is associated
with the need to perform a matrix multiplication when computing accelerations from forces
(eq 32) and will therefore increase as the square of the size of the system. We, therefore, decided
to keep the variable-time-step method as a temporary solution for the instability of the gradient
of Urot.
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Even when the problem of instability of the Urot gradient is eliminated by revising this energy
component, the use of the multiple-time-step algorithm can lead to an increase in the integration
time step because rapid oscillations in the short-range fast-varying forces are eliminated (such
as, e.g., the gradients of the virtual-bond-stretching energy Uvib). (It should be noted that these
oscillations do not result from the instability of the respective gradient components, as opposed
to the case of Urot, but from the fact that the corresponding forces vary faster than the long-
range forces.) Preliminary studies suggest that extension of the time step to about 20 fs appears
feasible; this would expand the time scale of simulations. However, the problem of the
increased cost of computing accelerations from forces must be solved; otherwise the advantage
of increasing the time step is largely reduced. The cost of RESPA also depends on the selection
of the slow and the fast part of the potential and can be reduced further by implementing a
variable time step. These issues are now being addressed in our laboratory.

Even the present variable-time-step algorithm appears sufficient to carry out ab initio
simulations of protein folding. Even in the microcanonical test simulation of Ala10, we were
able to observe formation and unwinding of the α-helix within picoseconds on the UNRES
time scale, while the experimental folding times of model short α-helical polypeptides are on
the order of 0.6 μs. Therefore, the UNRES time scale seems to be larger by orders of magnitude
than it seems from the analysis of units. We address this issue in more detail in the
accompanying paper.54

Acknowledgements

We are indebted to Professor Bogdan Lesyng, University of Warsaw, for valuable suggestions and comments on the
manuscript. This work was supported by grants from the National Institutes of Health (NIH; GM-14312), the National
Science Foundation (MCB00-03722), the NIH Fogarty International Center (TW1064), and the Polish Ministry of
Scientific Research and Information Technology (3 T09A 032 26 and 6 T11 2003 C/06098). Studies of P.G. and F.R.
were partially supported by the European Centre of Excellence MAMBA (project QLRI-CT-2002-90383). This
research was conducted by using the resources of (a) our 392-processor Beowulf cluster at the Baker Laboratory of
Chemistry and Chemical Biology, Cornell University, (b) the National Science Foundation Terascale Computing
System at the Pittsburgh Supercomputer Center, (c) our 45-processor Beowulf cluster at the Faculty of Chemistry,
University of Gdańsk, (d) the Informatics Center of the Metropolitan Academic Network in Gdańsk, and (e) the
Interdisciplinary Centre for Mathematical and Computational Modelling at Warsaw University.

References and Notes

1. van Gunsteren, WF. Molecular dynamics and stochastic dynamics: A primer. In: van Gunsteren, WF.;
Weiner, PK.; Wilkinson, AJ., editors. Computer Simulation of Biomolecular Systems. ESCOM;
Leiden, The Netherlands: 1993. p. 3-36.

2. Fersht AR, Daggett V. Cell 2002;108:573. [PubMed: 11909527]
3. Day R, Daggett V. Adv Protein Chem 2003;66:373. [PubMed: 14631823]
4. Shea JE, Brooks CL III. Annu Rev Phys Chem 2001;52:499. [PubMed: 11326073]
5. Kubelka J, Hofrichter J, Eaton WA. Curr Opin Struct Biol 2004;14:76. [PubMed: 15102453]
6. Elber R, Ghosh A, Cárdenas A. Acc Chem Res 2002;35:396. [PubMed: 12069624]
7. Ghosh A, Elber R, Scheraga HA. Proc Natl Acad Sci U S A 2002;99:10394. [PubMed: 12140363]
8. Duan Y, Kollman PA. Science 1998;282:740. [PubMed: 9784131]
9. Pande VS, Baker I, Chapman J, Elmer SP, Khaliq S, Larson SM, Rhee YM, Shirts MR, Snow CD,

Sorin EJ, Zagrovic B. Biopolymers 2003;68:91. [PubMed: 12579582]
10. Jang S, Kim E, Shin S, Pak Y. J Am Chem Soc 2003;125:14841. [PubMed: 14640661]
11. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE III, DeBolt S, Ferguson D, Seibel G,

Kollman P. Comput Phys Commun 1995;91:1.
12. Case, DA.; Pearlman, DA.; Caldwell, JW.; Cheatham, TE., III; Wang, J.; Ross, WS.; Simmerling,

CL.; Darden, TA.; Merz, KM.; Stanton, RV.; Cheng, AL.; Vincent, JJ.; Crowley, M.; Tsui, V.;
Gohlke, H.; Radmer, RJ.; Duan, Y.; Pitera, J.; Massova, I.; Siebel, GL.; Singh, UC.; Weiner, PK.;
Kollman, PA. AMBER 7. University of California; San Francisco, CA: 2002.

Khalili et al. Page 17

J Phys Chem B. Author manuscript; available in PMC 2008 October 8.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



13. Cramer CJ, Truhlar DG. Chem Rev 1999;99:2161. [PubMed: 11849023]
14. Bashford D, Case DA. Annu Rev Phys Chem 2000;51:129. [PubMed: 11031278]
15. Veitshans T, Klimov D, Thirumalai D. Folding Des 1996;2:1.
16. Klimov DK, Thirumalai D. Phys Rev Lett 1997;79:317.
17. He S, Scheraga HA. J Chem Phys 1998;108:271.
18. He S, Scheraga HA. J Chem Phys 1998;108:287.
19. Hoang TX, Cieplak M. J Chem Phys 2000;112:6851.
20. Cieplak M, Hoang TX, Robbins MO. Proteins: Struct Funct Genet 2002;49:104. [PubMed: 12211020]
21. Sorenson JM, Head-Gordon T. Proteins: Struct Funct Genet 2002;46:368. [PubMed: 11835512]
22. Koretke KK, Luthey-Schulten Z, Wolynes PG. Proc Natl Acad Sci U S A 1998;95:2932. [PubMed:

9501193]
23. Hardin C, Eastwood MP, Luthey-Schulten Z, Wolynes PG. Proc Natl Acad Sci U S A 2000;97:14235.

[PubMed: 11114172]
24. Takada S. Proteins: Struct Funct Genet 2001;42:85. [PubMed: 11093263]
25. Hardin C, Eastwood MP, Prentiss M, Luthey-Schulten Z, Wolynes PG. J Comput Chem 2002;23:138.

[PubMed: 11913379]
26. Hardin C, Eastwood MP, Prentiss MC, Luthey-Schulten Z, Wolynes PG. Proc Natl Acad Sci U S A

2003;100:1679. [PubMed: 12554830]
27. Fujitsuka Y, Takada S, Luthey-Schulten ZA, Wolynes PG. Proteins: Struct Funct Genet 2004;54:88.

[PubMed: 14705026]
28. Kolinski A, Godzik A, Skolnick J. J Chem Phys 1993;98:7420.
29. Kolinski A, Skolnick J. Proteins: Struct Funct Genet 1994;18:338. [PubMed: 8208726]
30. Kolinski A, Skolnick J. Proteins: Struct Funct Genet 1994;18:353. [PubMed: 8208727]
31. Kolinski A, Rotkiewicz P, Ilkowski B, Skolnick J. Prog Theor Phys Suppl 2000;138:292.
32. Rudnicki WR, Bakalarski G, Lesyng B. J Biomol Struct Dyn 2000;17:1097. [PubMed: 10949175]
33. Kilmister, CW. Lagrangian Dynamics: An Introduction for Students. Logos Press Limited; London,

U K: 1967.
34. Maciejczyk M, Rudnicki WR, Lesyng B. J Biomol Struct Dyn 2000;17:1109. [PubMed: 10949176]
35. Liwo A, Pincus MR, Wawak RJ, Rackovsky S, Scheraga HA. Protein Sci 1993;2:1715. [PubMed:

8251944]
36. Liwo A, Ołdziej S, Pincus MR, Wawak RJ, Rackovsky S, Scheraga HA. J Comput Chem 1997;18:849.
37. Liwo A, Pincus MR, Wawak RJ, Rackovsky S, Ołdziej S, Scheraga HA. J Comput Chem 1997;18:874.
38. Liwo A, Kaźmierkiewicz R, Czaplewski C, Groth M, Ołdziej S, Wawak RJ, Rackovsky S, Pincus

MR, Scheraga HA. J Comput Chem 1998;19:259.
39. Liwo A, Lee J, Ripoll DR, Pillardy J, Scheraga HA. Proc Natl Acad Sci U S A 1999;96:5482.

[PubMed: 10318909]
40. Liwo A, Czaplewski C, Pillardy J, Scheraga HA. J Chem Phys 2001;115:2323.
41. Lee J, Ripoll DR, Czaplewski C, Pillardy J, Wedemeyer WJ, Scheraga HA. J Phys Chem B

2001;105:7291.
42. Pillardy J, Czaplewski C, Liwo A, Wedemeyer WJ, Lee J, Ripoll DR, Arłukowicz P, Ołdziej S,

Arnautova YA, Scheraga HA. J Phys Chem B 2001;105:7299.
43. Pillardy J, Czaplewski C, Liwo A, Lee J, Ripoll DR, Kaźmierkiewicz R, Ołdziej S, Wedemeyer WJ,

Gibson KD, Arnautova YA, Saunders J, Ye YJ, Scheraga HA. Proc Natl Acad Sci U S A
2001;98:2329. [PubMed: 11226239]

44. Liwo A, Arłukowicz P, Czaplewski C, Ołdziej S, Pillardy J, Scheraga HA. Proc Natl Acad Sci U S
A 2002;99:1937. [PubMed: 11854494]

45. Ołdziej S, Kozłowska U, Liwo A, Scheraga HA. J Phys Chem A 2003;107:8035.
46. Liwo A, Ołdziej S, Czaplewski C, Kozłowska U, Scheraga HA. J Phys Chem B 2004;108:9421.
47. Liwo A, Arłukowicz P, Ołdziej S, Czaplewski C, Makowski M, Scheraga HA. J Phys Chem B

2004;108:16918.
48. Ołdziej S, Liwo A, Czaplewski C, Pillardy J, Scheraga HA. J Phys Chem B 2004;108:16934.

Khalili et al. Page 18

J Phys Chem B. Author manuscript; available in PMC 2008 October 8.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



49. Ołdziej S, Ła̧giewka J, Liwo A, Czaplewski C, Chinchio M, Nanias M, Scheraga HA. J Phys Chem
B 2004;108:16950.

50. Lee J, Scheraga HA, Rackovsky S. J Comput Chem 1997;18:1222.
51. Lee J, Liwo A, Scheraga HA. Proc Natl Acad Sci U S A 1999;96:2025. [PubMed: 10051588]
52. Lee J, Liwo A, Ripoll DR, Pillardy J, Scheraga HA. Proteins Struct Funct Genet 1999:204. [PubMed:

10526370]
53. Ołdziej S, Czaplewski C, Liwo A, Chinchio M, Nanias M, Vila JA, Khalili M, Arnautova YA,

Jagielska A, Makowski M, Schafroth HD, Kaźmierkiewicz R, Ripoll DR, Pillardy J, Saunders JA,
Kang YK, Gibson KD, Scheraga HA. Proc Natl Acad Sci U S A 2005;102:7547. [PubMed: 15894609]

54. Khalili M, Liwo A, Jagielska A, Scheraga HA. J Phys Chem B 2005;109:13798. [PubMed: 16852728]
55. Liwo A, Khalili M, Scheraga HA. Proc Natl Acad Sci U S A 2005;102:2362. [PubMed: 15677316]
56. van Kampen CW. Phys Rep 1985;124:69.
57. Sprik M, Ciccotti G. J Chem Phys 1998;109:7737.
58. Verlet L. Phys ReV 1967;159:98.
59. Hockney, RW.; Eastwood, JW. Computer Simulations Using Particles. McGraw-Hill; New York:

1981.
60. Beeman D. J Comput Phys 1976;20:130.
61. Swope WC, Andersen HC, Berens PH, Wilson KR. J Chem Phys 1982;76:637.
62. Ruth R. IEEE Trans Nucl Sci 1983;30:2669.
63. Calvo, MP.; Sanz-Serna, JM. Numerical Hamiltonian Problems. Chapman & Hall; London, U K:

1994.
64. Benettin G, Giorgilli A. J Stat Phys 1994;74:1117.
65. Tuckerman M, Berne BJ, Martyna GJ. J Chem Phys 1992;97:1990.
66. Ciccotti G, Kalibaeva G. Philos Trans R Soc London 2004;362:1583.A
67. Martyna GJ, Tuckerman ME, Tobias DJ, Klein ML. Mol Phys 1996;87:1117.
68. Stocker U, Juchli D, van Gunsteren WF. Mol Simul 2003;29:123.
69. Litniewski M. Mol Simul 2003;29:223.
70. Czaplewski C, Liwo A, Pillardy J, Ołdziej S, Scheraga HA. Polymer 2004;45:677.
71. Gibson KD, Scheraga HA. J Comput Chem 1990;11:468.
72. Thompson PA, Muñoz V, Jas GS, Henri ER, Eaton WA, Hofrichter J. J Phys Chem B 2000;104:378.

Khalili et al. Page 19

J Phys Chem B. Author manuscript; available in PMC 2008 October 8.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 1.
(A) UNRES model of the polypeptide chain. Dark circles represent united peptide groups (p),
and open circles represent the Cα atoms, which serve as geometric points. Ellipsoids represent
side chains, with their centers of mass at the SCs. The p's are located halfway between two
consecutive Cα vectors or dCs. The SCs are located at the ends of the Cα…SC vectors or the
dXs. The variables to change the conformation of the polypeptide chain are the virtual-bond
angles θ, the virtual-bond dihedral angles γ, and the angles αSC and βSC that define the location
of a side chain with respect to the backbone. (B) Ends of a united-residue chain. The peptide
groups p1 and pn−1 are empty ellipsoids and are marked by symbols in italics, because they
can be either real peptide groups that interact with the other peptide groups and side chains if
the first (last) residue is glycine or a terminal blocking group that contains a backbone amide
bond or empty groups. If the first (last) residue is not glycine and the chain is unblocked, then
p1 and pn−1 are dummy objects introduced only to define the first (last) virtual-bond angle
(θ) and virtual-bond dihedral angle (γ), which are, in turn, necessary to define the geometry of
the first (last) side chain. Likewise, the first (last) SC center (marked with empty circles and
symbols in italics) is a methylene or methyl group (both identified with the glycine SC center)
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if the first (last) residue is blocked or if it is a blocking group with an amide bond or a dummy
center, if the chain is unblocked. The other peptide groups and side chains are black and filled
with a dashed pattern, respectively, and marked with regular-text symbols. (C) Illustration of
the definition of the virtual-bond vectors dC (for Cα…Cα virtual bonds) and dX (for Cα…SC
virtual bonds) and the calculation of the Cartesian coordinates of the interacting sites given by
eqs 4 and 6. For clarity, the vectors are marked with arrows over the respective symbols. The
vector dCo defines the position of the first atom of the chain in the reference system.
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Figure 2.
(A) Total energy of the Ala10 system as a function of time for the time step δt = 0.01 and 0.02
mtu (solid overlapping lines for both time steps), 0.03 mtu (dotted line), and 0.05 mtu (dot–
dashed line). It can be seen that, for too large values of δt, the total energy increases in a stepwise
manner; this usually corresponds to jumps in the acceleration. (B) Variation of the kinetic (solid
line), potential (dashed line), and the total (dotted line) energy for the Ala10 system with the
time step δt = 0.02 mtu (0.978 fs). (C) Plot of the total energy of panel A for δt = 0.03 mtu
(solid line) and the maximum difference in acceleration at the beginning and at the end of a
given time step (|δa|, dashed line). It can be seen that the spikes in |δa| correlate with the jumps
in the total energy.
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Figure 3.
Variation of the total energy of the Gly10 system with time, for the time step δt = 0.05 (A),
0.10 (B), 0.15 (C), and 0.20 mtu (D) and the variation of the potential (lower curve), kinetic
(upper curve), and total (middle curve) energy with time for the time step δt = 0.15 mtu (E).
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Figure 4.
Variation of the total energy of the Ala10 system, with the Urot component of the UNRES
energy function replaced by a simple harmonic term defined by eq 41, with time for the time
step δt = 0.05 (A), 0.10 (B), and 0.15 mtu (C) and the variation of the potential (lower curve),
kinetic (upper curve), and total (middle curve) energy with time for the time step δt = 0.15 mtu
(D).
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Figure 5.
Comparison of the variation of the total energy of the Ala10 system with molecular dynamics
step for the fixed (A) and variable-time-step integration algorithm (B) for five pairs of
trajectories with δt = 0.05 mtu. Trajectories are distinguished by line style; the trajectories
corresponding to the same line styles in panels A and B were started from the same initial
conditions.
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Figure 6.
Variation of the total energy of the Ala10 system with time after implementing the reversible
RESPA algorithm65 for the time steps δtL/δtS = 0.02 mtu/0.004 mtu (A), 0.05 mtu/0.005 mtu
(B), and 0.10 mtu/0.005 mtu (C) and the variation of the kinetic (upper curve), potential (lower
curve), and total (middle curve) energy for the time steps 0.10 mtu/0.005 mtu.
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Figure 7.
Snapshots of the microcanonical-mode trajectory of the Ala10 polypeptide, starting with a fully
extended structure obtained with δt = 0.03 mtu. It can be seen that a partially α-helical structure
forms after 4.9 ps of simulation and starts to unfold after 7.8 ps of the simulation.
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Table 1

Time Step δt for Some of the Conventional MD Algorithms

force field explicit solvent implicit solvent

AMBERa 1 fs 2 fs
CHARMMb 3 fs 4–5 fs
TINKERc 1 fs 2 fs

a
http://amber.scripps.edu/.

b
http://www.charmm.org/.

c
http://dasher.wustl.edu/tinker/.
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Table 2

Time Scales Associated with Some of the Biological Activities of the Cella

local motions rigid-body motion large-scale motion

0.01 to 5 Å,
10−15 to 10−1 s

1 to 10 Å,
10−9 to 1 s

>5 Å,
10−7 to 104 s

atomic fluctuation helix motion helix–coil transition
side-chain motion domain motion dissociation/association
loop motion subunit motion folding/unfolding

a
Adapted from Brooks, C. L., III; Karplus, M.; Pettitt, B. M. A Theoretical Perspective of Dynamics, Structure, and Thermodynamics; Wiley: 1988; pp

19–20, Table 1.
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