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Abstract

We propose a method to couple a three-dimensional continuum domain to a molecular

dynamics (MD) domain to simulate propagating cracks in dynamics. The continuum do-

main is treated by an extended finite element method, to handle the discontinuities. The

coupling is based on the Bridging Domain Method (BDM) which blends the continuum and

atomistic energies. The Lennard-Jones potential is used to model the interactions in the

atomistic domain and the Cauchy-Born rule is used to compute the material behaviour in the

continuum domain. To our knowledge, it is the first time that a three dimensional extended

bridging domain method is reported. To show the suitability of the proposed method, a

three-dimensional crack problem with an atomistic region around the crack front is solved.

The results show that the method is capable of handling crack propagation and dislocation

nucleation.

1 Introduction

The modelling and simulation of cracks in structure traditionally relies on energy considerations

at the engineering scale: cracks propagate when a sufficient quantity of mechanical energy is

available to create free surfaces in the structure. Such approaches have been successful for the

prediction of failure of brittle homogeneous materials, but encounter difficulties in more complex

cases, as the surface energy depends on the micro-structure of the material. Therefore, modern
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crack modelling revisits this phenomenon as a coupling between the scale of the structure and

the scale of the material. However, choosing the scale at which the material failure can be

accurately described is still an open issue. Recently, with the increase of computing power,

researchers have tried to simply analyse the local state of the material at quantum level, in the

hope than information about the local failure would not be altered by any intermediate-scale

assumption. However, quantum methods are extremely expensive and can handle only systems

which are still significantly smaller than engineering length scales. Molecular dynamics (MD)

relies on simplifying assumptions to make computations at the atomistic scale more amenable,

but are still expected to provide valuable insights into the low-scale physics of material failure.

In spite of these simplifying assumptions, MD simulations can still not be performed, today, on

structures of engineering relevance.

Consequently, some “model reduction” method is necessary. We are particularly interested

here in methods that address the following question: “Where is the atomistic description neces-

sary, and conversely, where is a continuum description of the structure sufficiently accurate for

our purposes, and how can these two descriptions be coupled?”. Consequently, this particular

branch of “multiscale methods” decreases the computational expense by simply restricting the

fine, atomistic treatment to areas where it is required to increase physical realism. The quasi-

contiuum approach Tadmor et al. [1] or the bridging domain method (BDM) S.P. Xiao [2] are

example of such “concurrent multiscale methods” where the continuum description is used far

way from the region of interest and the MD formulation is used at the crack front. These meth-

ods differ in the way the two descriptions are coupled, which is of tremendous importance in

terms of numerical stability and accuracy. In the subset of methods comprising a variant of the

Arlequin method of Ben Dhia H [3] and the bridging domain method (BDM) the continuum and

MD models are coupled over a blending (or handshake) region (i.e.: the corresponding domains

overlap). This algorithmic feature introduces some flexibility in the description of the coupling,

which permits, to some extend, to tackle difficult numerical issues related to the dynamic field

transfer between the two regions such as artificial wave reflections.

Whilst discontinuities arising from separating atomic planes in molecular dynamics do not

require special treatment, dealing with evolving discontinuities in the continuum region can be

challenging in a discrete setting. For example, the finite element method (FEM) is ill-suited to
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handle complicated moving fronts across which discontinuities exist, although very robust mesh

generation software is now available with some very impressive results shown (inter alia, for

multi-material domains in Zhang et al. [4] and for arbitrary crack problems in Cavalcante Neto

et al. [5]). Since the inception of the partition of unity method (PUM) by Babuška et al. [6]

in the last decade, enriched methods such as the generalised finite element method Strouboulis

et al. [7], the extended finite element method [8] (XFEM) [9], the hp cloud method Duarte

and Oden [10] or enriched boundary element methods Simpson and Trevelyan [11, 12], enriched

meshfree methods such as the enriched element free Galerkin method using extrinsic enrichment

Ventura et al. [13] and Rabczuk and Zi [14], Rabczuk and Belytschko [15] and weight-function

based enrichment as in Duflot and Nguyen-Dang [16] and more recently Barbieri et al. [17], are

now commonly accepted versatile tools to handle arbitrary crack paths and dislocations Gracie

et al. [18].

The idea of this paper is to show how, for three-dimensional crack problems, molecular

dynamics can be coupled to continuum methods in order to obtain a technique which focuses

the computational effort where it is most required to capture the relevant Physics of crack and

dislocation initiation and growth. This affords the modelling and simulation of relatively long

cracks, by restricting the MD model to a small zone around the crack front. Ultimately, this

approach also makes it possible to adaptively refine or coarse-grain the atomistic region where

appropriate [19].

The methodology adopted in this work relies on two ingredients. The first is partition of

unity enrichment for discontinuities in the continuum region. The second is the bridging domain

method (BDM), inspired by the Arlequin method of Ben Dhia H [3] and by the coupling methods

of S.P. Xiao [2], Mei Xu [20] and Gracie and Belytschko [21]. These energy-coupling methods

enforce a weak coupling between the models in the two adjacent domains. It was shown in

Mei Xu [20] that spurious wave reflection is limited when using this method.

The advantage of the coupled XFEM-BDM method over most concurrent multiscale methods

such as the standard BDM or the quasi-continuum method of Tadmor et al. [1], Shenoy et al.

[22] and Miller and Tadmor [23] is that the XFEM-BDM requires the atomistic region to be

present only around the crack front, and not along the whole length of the crack surface to

represent the discontinuity across the crack faces. The enrichment of the finite elements in the
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handshake and continuum parts of the domain allows cracks to be smoothly represented from

the continuum model to the atomistic model, through the transition region.

The BDM and the XFEM were first coupled, in the context of two-dimensional problems by

P. Aubertin [24, 25], R. Gracie [26]. Yet, crack problems are inherently three dimensional, where

the XFEM-Bridging Domain method is not well tested. The three dimensional problem intro-

duces a range of difficulties, demanding the development of new algorithms. These problems

include locating the crack and dislocations within the MD domain and other implementation

difficulties discussed briefly in this paper.

This paper is organized as follows. First, the governing equations are stated. Then the crack

modelling in continuum domains using the extended finite element approach is discussed briefly.

Next the coupling method and coupling force calculations are detailed, before implementation

and numerical examples are presented.

2 Model Description and Governing Equations

2.1 Definitions

Consider a domain Ω where an existing crack with surface ∂Ωc is to be simulated. We introduced

an overlapping decomposition of the domain Ω into domain Ωfs where the material is modelled

by MD, and domain Ωcs where the system is described by a continuum formulation relying on

the Cauchy-Born rule as constitutive model 1. The shape of Ωfs is introduced a priori in this

study (this restriction will be discussed in the conclusion), and is such that Ωfs contains the

crack front of the macroscopic crack. The overlap region ΩB = Ωcs∩Ωfs is the so-called bridging

domain. The outer boundary of Ωcs is denoted by ∂Ωcs with ∂Ωcs = ∂Ωcs
t ∪ ∂Ωcs

u ∪ ∂Ωcs
c and

∂Ωcs
t ∩∂Ωcs

u = ∅, ∂Ωcs
c ∩∂Ωcs

u = ∅, ∂Ωcs
t ∩∂Ωcs

c = ∅; subscripts u, t and c indicate ’displacement-

’, ’traction-’ and ’crack-’, respectively. Notations are summarized in Fig. 1. This molecular

treatment of the crack front zone enables the description of voids, dislocations and cracks which

are known to strongly influence the initiation and propagation of cracks, see, e.g. Lange [27]

and Ravi-Chandar and Knauss [28].

In this study, a base crystalline material with a given lattice structure is assumed everywhere.

The fine scale region Ωfs\ΩB is composed of the atoms of this base lattice structure and the

1In this paper, the superscripts fs and cs denote the fine scale and coarse scale, respectively.
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Figure 1: The fine and coarse scale overlapping domains.

finite elements in this region are deactivated. This is shown in Fig. 2. In the continuum region,

Ωcs\ΩB, the continuum model is activated where the material behaviour is approximated by

the Cauchy-Born rule (Tadmor et al. [1]). The idea of the Cauchy-Born rule is to compute the

material properties and stress from the same potential used in the fine scale domain Ωfs, here the

Lennard-Jones potential (LJP). In other words at every point of the continuum model, we have

a very small atomistic model with the same lattice structure and force fields. The interested

reader can refer to studies by Aghaei et al. [29] and Pozrikidis [30] on the applicability and

stability of the Cauchy-Born method.

In the bridging (or handshake/blending) domain ΩB = Ωcs∩Ωfs, the continuum and atomistic

descriptions cohabit. In the bridging domain, the continuum energy and the atomistic energy

are blended through a weighting by functions summing to unity. One criterion which should be

fulfilled is that the sum of the continuum and the atomistic energy is unchanged by the coupling

method. From a kinematic point of view, in this sub-domain, the continuum model is coupled

to the atomistic model by enforcing compatibility of the displacements of the atoms and that

of the nodes.

2.2 The Displacement Approximation

Let the reference and the current configurations of the domain be denoted by Ω0 and Ω, respec-

tively. The number of atoms in sub-domain Ωfs is denoted by nfs. Let the number of ghost or

pad atoms be denoted by nG. Ghost atoms are those atoms located in the continuum region Ωcs

that are within the cut-off radius of atoms in the atomistic region Ωfs. The positions of ghost
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Figure 2: The solution domain including the crack and the bridging domain.

atoms are interpolated from the continuum solution. The material coordinates of a point in Ωcs
0

are denoted by X and the spatial coordinates by x. The location of atom α in the reference

and spacial configurations will be denoted by Xα and xα respectively.

The atomistic evolution of the material in time and space is approximated by now wonted

molecular dynamics formulations, details of which are given in a body of literature, such as

Haile [31], Rapaport [32]. In the continuum sub-domain, the displacement field is approximated

by the extended finite element method (XFEM). In this approximation, the displacement field

is decomposed into a continuous part and a discontinuous part as in Belytschko and Black [8]:

u
h (X) =

∑

I∈N

NI (X)uI

︸ ︷︷ ︸

ucont

+
∑

I∈Nb

NI (X)H (fI (X))aI

︸ ︷︷ ︸

udiscont

(1)

where N is the set of all nodes in the domain and Nb is the set of nodes that belong to all

elements which are completely cut by the crack. The nodal unknowns uI and aI are standard

and enriched degrees of freedom respectively and H is the discontinuous enrichment (Heaviside)

function:
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H (f (X)) =







1 if f (X) > 0

0 if f (X) < 0

(2)

with

f (X) = sign [n · (XI −X)]minXI∈∂Ωc
‖XI −X‖ (3)

where n is the outward normal to the crack surface. In this study since the crack front is

modelled by the atomistic region, no crack-front enrichment is needed.

2.3 The Handshake Region

Consider an FEM discretization of the entire domain Ω0. Let the set of nodes and the set of

elements of this mesh be denoted by N and E, respectively. As described above, we will weigh

the contributions of the atomistic and continuum models in the bridging domain ΩB relative to

the total energy of the system. To accomplish this we define a weight function which is unity

outside the atomistic domain, zero inside the atomistic domain, and smooth in the blending

region. A range of admissible such weight functions w writes:

w(X) =







1 ∀X ∈ Ωcs \ Ωfs

[0, 1] ∀X ∈ ΩB

0 ∀X ∈ Ωfs \Ωcs.

(4)

In order to define w at any point X we compute a normalized distance function by:

w(X) =
l(X)

l0
(5)

where l(X) is the orthogonal projection of X on the interior boundary of the continuum scale

sub-domain Ωcs and l0 is the length of this orthogonal projection to the boundary of the atomistic

region Ωfs. Fig. 3 gives a schematic description of these definitions.

The weighting parameter is constant and defined according to the material coordinate. This

means that the weighting parameter is computed once in the beginning of the simulation and
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Figure 3: Calculation of the weighting function in the bridging domain in two dimensions

with the unreformed configuration. In practice, we just locate the continuum nodes with w = 0

and w = 1 and we interpolate the weighting of other points such as atoms and integration points

from the finite element nodes. Thus, the weighting function defines the continuum nodes and

elements and active atoms during solution.

2.4 Coupling Method

The coupling method for BDM is comprehensively described in the work of S.P. Xiao [2], Mei Xu

[20], G. Anciaux [33], Guidault PA [34] therefore we only briefly explain the governing equations.

The governing equations are derived from the Lagrangian of the systems, L, which is the sum

of the Lagrangians of each subdomain:

L = L
cs + L

fs + L
B (6)

where Lfs and L
cs are the Lagrangians of the atomistic and continuum sub-domains, respectively

and L
B is the energy contribution from the enforcement of compatibility between the atomistic

and the continuum displacements in the bridging domain ΩB.

In the following, lower case indices indicate coordinate directions, e.g. i = 1, 2, 3 and upper

case indices indicate finite element nodes and atoms, e.g. I.

The semi-discrete equations of motion can be obtained from the Lagrange equations of

motion:
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d

dt

(
∂L

∂u̇Ii

)

−
∂L

∂uIi
= 0 (7)

d

dt

(
∂L

∂ḋfsα

)

−
∂L

∂dfsα
= 0 (8)

where u̇Ii and ḋfsα are the time derivatives of uIi and dfsα respectively.

For the coarse scale, continuum, sub-domain, the Lagrangian is:

L
cs =

1

2

∫

Ωcs
0

(1− w (X)) ρ0u̇
h · u̇hdΩcs

0 −

∫

Ωcs
0

(1− w (X))W (F) dΩcs
0 −W ext (9)

where F = Fij is the deformation gradient, ρ0 is the initial density, W ext is the work of the

external loads and W (F) is the strain energy density of the continuum which is determined

from the Cauchy-Born rule [35].

For the fine scale, atomistic, subdomain, the Lagrangian is:

L
fs =

1

2

nfs

∑

α=1

w (Xα)m
fs
α ḋ

fs
α · ḋfs

α −
nfs

∑

α=1

nfs+nG

∑

β>α

1

2
(w (Xα) + w (Xβ))V (rαβ) (10)

where mfs
α is the mass of atom α, rαβ is the distance between the two atoms α and β and

V (rαβ) is the two body potential relating the atoms. We assume a cut-off radius outside of

which atomic forces are zero.

The constraints from the coupling region write

gαi (t) = ucsi (Xα, t)− dfsiα (t) . (11)

Applying the above constraint to the Lagrangian is done here by using Lagrange multipliers

λα:

L
B =

∑

α∈ΩB
0

λα · gα (12)

It is notable that the Lagrange multipliers are assigned to the discrete positions of atoms in

the bridging domain. Finally, we obtain the following semi-discrete equations of motion:
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∀I ∈ N
cs ∀i ∈ {1, 2, 3} : MIJ üJi = f ext

Ii − f int
Ii + fλcs

Ii , (13)

∀α ∈ J1, . . . , nfsK, ∀i ∈ {1, 2, 3} : mfs
α d̈

fs
αi = f fs

αi + fλfs
αi , (14)

where üJ and d̈Aα are the accelerations of node J and atom α, respectively. Also, the mass

matrix is computed by:

∀I, J ∈ N
cs : MIJ =

∫

Ωcs
0

(1− w) ρ0NINJdΩ
cs
0 , (15)

The internal forces in the continuum domain write:

∀I ∈ N
cs, ∀i ∈ {1, 2, 3} : f int

Ii =

∫

Ωcs
0

(1− w)Pij
∂NI

∂Xj

dΩcs
0 , (16)

where P = Pij is the nominal stress. From the Cauchy-Born rule it writes P(F) = ∂W (F)
∂F

. The

forces on each atom are determined from the interatomic potential V as

∀α ∈ J1 . . . nfsK, ∀i ∈ {1, 2, 3} : f fs
αi = −

∑

β

1

2
(w (Xα) + w (Xβ))

∂V (rαβ)

∂dfsiβ
, (17)

where β ranges over all atoms within the cutoff radius of atom α. The forces fλcs in the

continuum region and fλfs in the atomistic region, due to the coupling are given by:

∀I ∈ N
cs, ∀i ∈ {1, 2, 3} : fλcs

Ii =
∑

α∈ΩB
0

λαiNI (Xα) , (18)

and

∀α ∈ J1 . . . nfsK, ∀i ∈ {1, 2, 3} : fλfs
αi = −λαi. (19)

Remark 1 To compute the Lagrange multiplier unknowns we use the method described by

T. Belytschko [36].

Remark 2 The mass matrix in the continuum region is diagonalized according to the mass-

lumping scheme for XFEM which was proposed by Menouillard et al. [37].
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3 Some Implementation Details

3.1 Molecular Dynamics

The fact that continuum and atomistic (discrete) domains are coupled creates certain difficulties

in the implementation due to the different nature of the information available in both domains.

For the atomistic part a code named WARP from Plimpton [38] is adopted here. WARP is a

parallel molecular dynamics simulation code and antecedent of LAMMPS Molecular Dynamics

Simulator of Plimpton [39] for modelling stress and strain in materials using the embedded atom

method (EAM), Modified embedded atom method (MEAM) and Lennard-Jones (LJ) potentials.

It is written in Fortran 90 and performs message-passing via MPI calls. WARP already has a

very efficient neighbour search and force computation algorithms which are essential in three

dimensional simulations.

The WARP code is modified and merged into an extended finite element library called

PERMIX (based on Fortran 2003 standard). The potentials in WARP had to be also modified

to account for weighting of the atoms in the bridging domain. Also, to implement the Cauchy-

Born rule, a very small atomistic part is defined at the integration point level of the coarse scale

which handles stress and stiffness calculation. The usage of the WARP code over the current

version of LAMMPS is attributed to its ease of integration into our in-house XFEM library

since both programs are written in the Fortran language and the WARP code was easier to

modify. However, using the current version of LAMMPS will be considered in the future to use

its many capabilities over WARP.

In our implementation we create Lagrange multiplier mesh with the same fineness as the

atomistic spacing. The size of the coupling region is based on the finite element mesh and it

is one element thick. In this study, we did not notice any instability due to spurious wave

reflections.

3.2 Three Dimensional XFEM

XFEM was used in this study to represent the crack surface during the simulation. In general,

XFEM possesses many advantages over finite elements for crack simulation such as meshing

problems. However, in comparison to pure Finite Elements and especially in three dimen-

sions, the XFEM formulation introduces some difficulties in the implementation. Some of the
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difficulties include initial crack surface input, integration and post-processing.

To create the initial crack surface, we directly enter the level sets associated with every

cracked node and element. Theses level sets are created by the ABAQUS software package

[40]. Therefore the implementation will be very general and can be applied to various problems.

There are standard methods to integrate fields in XFEM elements [41] where we tetrahedral-

ize the XFEM elements and create the integration points within every tetrahedron. We use

same tetrahedrons for post-processing purposes where we project the fields to the nodes of the

tetrahedrons.

4 Numerical example

Consider a three dimensional single crystal with a face centred cubic (FCC) lattice which has

dimensions 1, 000× 1, 000× 150 Å3 . In this example a straight crack of length 500 Å is assumed

present in the domain across the whole thickness. Along the bottom boundary of the continuum

domain, all degrees of freedom are fixed to zero. The continuum model consists of 44,890

hexagonal elements and 152,592 degrees of freedom. The element size is constant over the

domain, about 15 Å. An atomistic domain of size 365 × 365 × 150 Å3 is placed centred around

the crack front. Fig. 4 shows a schematic configuration of the system.

Since part of the crack falls within the atomistic domain, the crack must be modelled

in the atomistic region as well as in the continuum region. We do not follow the generally

adopted method of removing rows of atoms along the crack, as this is somewhat arbitrary and

introduces extra parameters in the formulation. Instead, we modify the neighbour list of the

atoms to prevent force transmission across the crack faces. This is done as follows. The initial

crack position allows us to define two groups of atoms: group 1 is composed of atoms above the

crack, and group 2 of atoms located below the crack. During the neighbor search, we forbid

atoms of group 1 to become neighbors of atoms of group 2, and vice versa. As cracks propagate,

or for more complex crack geometries, a criterion similar to the “visibility criterion” used in

meshless methods2 could be used. The method that we used here to introduce a crack can be

used generally for other potentials such as EAM and MEAM since it is based on the neighbour

lists and not the potential itself. This method will produce a crack which is consistent with a

2see the recent review on (enriched) meshless methods by Nguyen et al. [42]
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sharp XFEM crack.

The use of XFEM for the current example seems to be unnecessary since the initial crack

surface is straight and the crack is not propagated into the continuum field. Nevertheless, our

implementation is usable for a very general case of complicated geometry and crack surface.

Also, the extension of this method to a simulation with coarse graining will be straight forward

and the advantages of XFEM over Finite Elements are trivial in that case.

The atomistic domain is a three dimensional lattice from an FCC crystal with lattice constant

3.645 Å extended in the [1 0 0] crystal direction. Atomic interactions are modelled by the

Lennard-Jones potential with parameters σ = 2.29621 Å, ǫ = 0.467 eV , and a cut-off radius of

4.0 Å; the mass of all atoms is taken as 65 g
mol

. In this study, we have not taken the temperature

into account, since the focus was on the coupling of (extended) finite element method with

Molecular Dynamics. However, in our development, we can easily control the temperature in

the atomistic domain with Nose-Hoover thermostat method by S. [43]. To be able to model a

realistic three dimensional problem, where periodicity is usually not available, we have not used

any periodic boundary in the system. Therefore, the only type of boundary condition employed

in this example in the atomistic region is that coming from the coupling region.

Before the actual coupled simulation starts, we have minimized energy in the pure atomistic

part to relax the system. We have used the the conjugate gradient (CG) algorithm [44] to

minimize the energy of the system. At each iteration the force gradient is combined with the

previous iteration information to compute a new search direction perpendicular (conjugate) to

the previous search direction.

The coupling of the continuum and atomistic part is performed within a cubic box with of

dimensions 310×310×150 Å3. The elements which are cut by this box are the bridging elements

and the atoms which are located inside bridging elements are the bridging atoms. Consequently,

the coupling region is one element wide. With this configuration the model has 1,368,575 active

atoms, 231,890 bridging atoms and 308,067 ghost atoms.

The driving force for the system is introduced through a velocity boundary condition on

the top face of the continuum region. A velocity of 0.1Å/pico seconds is set on all the nodes

belonging to the top boundary of the continuum domain, at every time step. The time step is

0.003 picoseconds and the total simulation time is 1200 picoseconds. The magnitude of the time
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Figure 4: Schematic view of the example, bridging domain, atomistic domain and boundary
conditions for a mode I crack.

step is chosen according to the time step suitable for the pure atomistic simulation; therefore

not multiple time-stepping is employed here. Fig. 5 shows the initial configuration of the body

and the weighting of the atoms and nodes.

Fig. 7 shows the atoms with higher centro-symmetry value, at different time steps. For

the current system the centro-symmetry parameter is a powerful measure of the local lattice

disorder around an atom and may be used to characterize and visualize whether the atom

belongs to a perfect lattice, a defect (e.g. a stacking fault or a dislocation), or a surface [45].

The centro-symmetry indicator CS is computed as explained in Kelchner et al. [46]:

CS =

N

2∑

i=1

∣
∣
∣Ri +Ri+N

2

∣
∣
∣

2
, (20)

where N is the number of nearest neighbours for each atom in the underlying lattice of atoms.

For example here N = 12 for the FCC lattice. Ri and Ri+N

2

are vectors from the atom of

interest to a particular pair of nearest neighbours. The value in the sum is computed for each

atom, and the N/2 smallest quantities are used. For an atom on a lattice site, surrounded by

atoms on a perfect lattice, the centro-symmetry parameter will be 0. It will be also near 0 for

small thermal perturbations of a perfect lattice.
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Figure 5: Initial configuration of the system and the contour of the weighting values at the
atoms and nodes.
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From Fig. 7 we realize that although, from a continuum point of view, the boundary

conditions suggest an almost mode I loading of the crack, which should consequently propagate

normally to the loading direction, we do not observe this behaviour here.

In the atomistic region, the nucleation and propagation of dislocations (in blue in Figs.

6(a), 6(b) and 6(c)), and the creation of free surfaces (in green in the same figures) are strongly

influenced by surface effects. These effects lead to anisotropy and hence to deviations from

behaviours expected from isotropic continuum theory. Also, in this example we have not applied

boundary conditions which suggest pure Mode I failure from continuum theory since the bottom

of the system is fully clamped. Moreover, the anisotropic behaviour in the pure atomistic

simulation of single FCC crystals have been studied extensively such as in [47, 48]. Notice in

Fig. 7(c) the triangular shape of the propagating crack and the dislocations nucleating from

the boundaries of the domain.

In Fig. 7(d) it is seen that the dislocations have propagated and have just reached the

coupling region. At this point, the model is not valid any more since the dislocations should

pass into the continuum region or the atomistic region should be adaptively enlarged to handle

the dislocation propagation. There are two methods which may be used to pass the dislocations

to the continuum region. First is the one suggested by Gracie and Belytschko [19] which

describes the dislocations in terms of XFEM enrichment. The second method is offered by

Xiong et al. [49] where a new continuum field formulation of balance laws with relevant atomistic

information (the arrangements and interactions of atoms) considered to represent dislocations

by the continuum region.

The choice of adaptively enlarging the atomistic region as opposed to using methods to han-

dle dislocations in the continuum region is problem dependent. For example, in problems where

the size of the region with dislocation nucleation and growth are confined, we can effectively

use the former method. The latter method seems more useful for the current problem since

eventually a big portion of the system should be handled by pure atomistic formulation.

Fig. 8 shows the stress contours at four different time steps which are the same time steps

as in Fig. 7. In this figure, the cross section of the specimen is shown for better visualization

of stress fields around the crack surface. The atomistic stress computed here is the virial stress

tensor. The symmetric virial stress tensor is computed for every atom and for pair potentials

16



(a) (b)

(c)

Figure 6: Pictorial representation of the propagating crack (free surfaces represented in green)
and the initiated dislocations (represented in blue).
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(a) (b)

(c) (d)

Figure 7: The propagation of the crack front and dislocations shown with atoms with high
centro-symmetry value in different time steps (a) step 10000, (b) step 33000, (c) step 34000, (d)
step 35800.
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such as the one used here is defined in Robert [50] and Subramaniyan and Sun [51]:

σV
ij =

1

V

∑

α




1

2

N∑

β=1

(

Rβ
i −Rα

i

)

Fαβ
j −mαvαi v

α
j



 (21)

where (i, j) range over the spatial directions, x, y, z. β ∈ J1, . . . , NK ranges over the N neighbors

of atom α, Rα
i is the coordinate of atom α in the i direction, Fαβ

j is the force on atom α from

atom β along the j direction, V is the total volume, mα is the mass of atom α and vα is the

velocity of atom α. The definition of virial stress involves the instantaneous velocities only

due to thermal fluctuations. While Eq. 21 is temperature dependent, we have neglected these

effects. This assumption will not in general affect the qualitative results discussed here since the

first term in Eq. 21 dominates the second term and will not influence the stress concentration

regions. Note that to obtain the equivalent continuum Cauchy stress, the virial stress from the

molecular dynamics (MD) simulations has to be averaged over time and space, as explained in

Bühler [52]. In Fig. 8(a) and (b) a stress concentration is visible, that is initially confined at

the crack front; subsequently when propagation occurs, the stress waves are emitted from the

crack tip. From Fig. 8(b) and (c) the surface effects of the third dimension are also evident.

From this figure we also notice the stress distribution around the dislocations and the crack.

Such complex mechanisms of crack and dislocations could not be predicted by any classical

continuum description of motion.

5 Conclusion

We presented a coupling method for bridging a three dimensional extended finite element treat-

ment of cracks and molecular dynamics. This method is based on an overlapping domain-

decomposition scheme where the displacement compatibility conditions in the overlapping sub-

domain are enforced by Lagrange multipliers. We showed how the method can be successfully

used to simulate the propagation of a crack in quasi-mode I, where an atomistic domain is placed

on top of the three dimensional extended finite element domain, around the crack front. We

also computed the centro-symmetry parameter and virial stress tensor in the atomistic region.

We have observed that our three dimensional coupled method is capable of representing the

crack and dislocation propagation for much fewer degrees of freedom than a direct numerical
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(a) (b)

(c) (d)

Figure 8: The virial stress contours of the cross section of the specimen in different time steps
(a) step 10,000, (b) step 33,000, (c) step 34,000, (d) step 35,800.
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simulation.

Future work includes:

• performing simulations back to back with a fully atomistic model, for small problems

where this is possible. In particular it will be worthwhile to investigate the role of defects

in the atomistic lattice on crack propagation;

• fine-graining methods based on (goal-oriented) error estimates, allowing to spawn atom-

istic regions where required (see, e.g. Oden and Vemaganti [53] and Oden and Prudhomme

[54]);

• coarse-graining of the cracks into continuum cracks in an energetically consistent manner,

once atomistic descriptions are no-longer required;

• decreasing the computational expense through a combination of the proposed bridging

scale method with adaptive model reduction techniques for fracture, e.g. Kerfriden et al.

[55, 56], Galland et al. [57], and Kerfriden et al. [58]. It would be particularly interesting

to investigate these model reduction techniques coupled with domain decomposition, so as

to be able to reduce subdomains where non-linearities are weak and revert to full solutions

of non-reducible subdomains, where non-linearities are too strong.
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